Emulators for Bayesian Inference in Chiral EFT
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What would we like to use Bayesian inference for?

In order of complexity . ..
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o

f 1. Forward UQ (e.g., propagate errors using already-sampled posteriors)

5} 2. Inverse UQ (e.g., parameter estimation including theory errors)

~—~. 3. Experimental Design (guide to experiment: which data are most likely to

(96 : : : : :

¢ 3  provide the largest information gain; both theory uncertainty and the
expected pattern of experimental errors must be considered)
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Barrier to using Bayesian methods: Computational cost

Calculating Bayesian pdfs and expectation values can be prohibiti

for expensive likelihood. What can we do to mitigate the cost?
0.5

Use conjugate priors: for some likelihoods, posterior pdfis in

same family as prior pdf = analytical updating of posterior. ~ _

Example: the EFT truncation variance (used in LENPIC papers):
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X207 AN(0) x“2(m012) VT =g Y gl
. Gaussian approximation (data >> model complexity)

. Variational Bayesian Inference or VBI (approximate the posterior)

- Make a computer model of your calculation
* Gaussian process model emulators [e.g., learn your residuals]
e Eigenvector continuation (EC) and extensions [Kénig et al., PLB 810
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. Sample with Markov chain Monte Carlo (MCMC) using an emulator See also Witala et al.,

arXiv:2103.13237

, 135814 (2020)]


https://arxiv.org/abs/2103.13237

Basic idea: a small # of ground-state eigenvectors
from a selection of parameter sets is an extremely
effective variational basis for other parameter sets.

Eigenvector continuation emulators for few-nucleon observables

Characteristics: fast and accurate!
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Works well for transitions, too!



https://www-sciencedirect-com.proxy.lib.ohio-state.edu/science/article/pii/S0370269320306171?via%3Dihub
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.104.064001
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Rigorous constraints on three-nucleon forces in chiral effective field

theory from fast and accurate calculations of few-body observables
S. Wesolowski, |. Svensson, A. Ekstrom, C. Forsseén, rjf, J. A. Melendez, and D. R. Phillips

ai B Prior
Posterior

o BUQEYE Collaboration Original title: Fast & rigorous constraints on chiral
‘_ K Notebook with all figures at three-nucleon forces from few-body observables
| https://bugeve.github.io arXiv:2104.04441 PRC 104, 064001 (2021)
BUQEYE Collaboration
. >< ++ Fast: uses eigenvector continuation emulators for observables
X {0} KI Rigorous: statistical best practices for parameter estimation
t + IXI Chiral 3N forces: estimate constraints on ¢, and ¢,
Ce Cp

Few-body observables (cf. other possibilities):
bs qu I>+ >K + X 3H ground-state energy; 3H B-decay half-life;

H M “He ground-state energy; “He charge radius



https://buqeye.github.io/
https://arxiv.org/abs/2104.04441

(almost) Full Bayesian approach to constraining parameters

Experimental data Other info (EFT scheme/scale, etc.)
- ) N - - g — -
pr(a, O, ¢ IyeXp, Iy o pr(yey,la, Z. I)‘ pr(a|l) pr(c”|0, a, I) pr(Q]a, I)'
Y
NN and , Truncation . .
3N LECs EFT expansion error Everything has priors!
parameter

variance
All experiment and theory errors

Likelihood: pr(yeXplaa 29 I) ~ N(yth(a)a Zexp + Zmethod + z“[h)

Uses NNLO chiral EFT without A’s based on Carlsson et al. PRX 6, 011019 (2016),
but methods are general (other regulators, A’s, other observables)

Sample pdf with MCMC over 15 dimensions (11 NN LECs + ¢y, ¢ + Q, ¢?)
- marginalize (integrate out) what you are not considering



Posteriors from “Fast & Rigorous” (arXiv:2104.04441)

Posterior for ¢, and ¢; Posterior for Q and ¢ Posterior predictive distribution
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Sample pdf with MCMC over 11 NN LECs + ¢, ¢ + Q, ¢ = marginalize (integrate out) what you are not considering



EC emulators for NN and 3N scattering

* EC extended to 2-body scattering by rjf et al., PLB (2020) using the Kohn variational principle.
* Method improved by Drischler et al., PLB (2021) (e.g., mitigate Kohn anomalies).
* Two-body emulation w/o wfs by Melendez et al., PLB (2021) (Newton variational method).
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What about 3-body scattering emulators?
Most useful for Bayesian XEFT LEC estimation.
- Xilin Zhang proof of principle w/KVP (2022).
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3-body S-matrix
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size 3,6,9,12, 14
with schematic
potential for two
test LEC points.

See also Sarkar and Lee, PRL 126 (2021) and PR Res. 4 (2022)
and Krakow group for Faddeev emulator, EPJA 57 (2021).
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Eigenvector continuation (EC) for bound states

~ ~ o~ - Affine dependence
HO)=T+V(0)=T+ Z 9@ 0@ with LECs 6 = {60(9)}  (could be chiral EFT or
a AV18 or ...)

Ground-state variational: § [<¢ma1\ﬁ(9)wmal> — A((isial|[Vrial) — 1)} —0

N

EC: [$uial) = Y  ¢ilthgs(0;)) = gen. eig. problem: Amin & Egs, {¢i} — [1hgs(6))
1=1

* Use regularization to deal with ill-conditioning of norm matrix
 EC works for local or non-local potentials, r-space or k-space, many body



Eigenvector continuation (EC) for scattering

(here chiral)

HO) =T +V(@) =T+ 6@0W with LECs § = {g(»)} Al dependence
K matrix: k(E) = tand,(E) [cf. s,(E) = ?9¢(F)]  Take £ = 0 here, p = \/2uE

[kO (E)]trial
p

2 1 - 1 ko (E
_ hl; <¢trial|H(0) — E|wtrial>] = (0 with |¢tria1> rjo ]—Dsm(pr) + 0( )

Kohn: ¢

Xilin Zhang Alberto Garcia Patrick Millican

cos(pr)



Eigenvector continuation (EC) for scattering

AN AN AN

HO)=T+V(0) = T + Z 0@ (@) with LECs 6 = {Q(a)} Could:\flcghci)rfl EFT or

K matrix: k(E) = tand,(E) [cf. 5,(E) = *?¢(F)]  Take £ = 0 here, p = /2uE

] [kO(E)]trial 2/«’J - o . 1 . ]‘C()(E)
Kohn: ¢ [ ’ ~ 7 (Vrial|[H (0) — EWtrial)] = 0 with [Y¢ria1) Tjo ]—jsm(pr) + cos(pr)
) = 3 sl (6 s = S (AT) (Fofply — 3) and 2 = A0 o/l ~ 1)
EC ’wtr1a1> — P Zwa(91)> — T T ; (AU)zj ([ko/p]] )\) d )\ T sz(Aﬁ);l

with AU;;(E) = ﬁ<¢E(9i)l2‘7(9) ~V(8;) - V(8,)|¥£(0;)) & Coulomb cancels!

Stationary functional for k,(E) but not an upper (or lower bound) = still works!

* Use nugget regularization to deal with ill-conditioning and/or mix boundary conditions
EC works for local or non-local potentials, r-space or k-space, complex potentials, 3-body
* More recent: also works for complex E and extrapolating in E (Xilin Zhang)



Testing eigenvector continuation (EC) for scattering

Many different model problems tested: square well, + Coulomb, Yamaguchi potential, ...
- one example: Minnesota potential in 3S; channel (other plots available with notebooks)
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Emulating the Lippmann-Schwinger (LS) equation

LS equation: Sets of parameters:  K-matrix formulation:

K(@) = V(@) + V(@) Go(E,) K@) - {d@i} - Ki(E,) = — tand,(E,)
Newton variational principle (NVP): Eq=q" /2

K(B) =Y BiK; = K[K] =V +VGK + KGoV — KGoK + KGoVGoK
| K[ Kexact + 0K] = Keyact + (6K)?

Implementation:

(¢'|K(@, B)|o) = (¢/|V(@)|¢) + BT mi(d) — %
K o L
a3 0 = (SIK@ B)I9) ~ (#IV @) + 5" M (@)

J. A. Melendez et
al., Phys. Lett. B
821, 136608 (2021)

—

BT M(a@)5




NVP emulation: SMS chiral potential

Dealing with

 Emulation of 351-3D1 coupled channel anomalies/singularities:
.. C. Drischler et al.
e Basis size of 12 at N*L /
O+ arXiv: 2108.08269 (2021)
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J. A. Melendez et al., Phys.
Lett. B821, 136608 (2021)



In progress: Comparison of emulators for SMS chiral [A. Garcia]

Observables: Total cross section,
differential cross section, A, for
partial waves up to 3 = 20
Sampling: randomly chose values in
an interval of [-10, 10]; 2 x #LECs pts
Three different methods compared:
NVP and two KVP momentum-space

Errors: consistent for different cutoffs;
vary with method but mostly negligible
compared to other uncertainties

Timing: NVP speed up of > 300x
compared to “exact” calculation
>1000x if mesh size is doubled
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In progress: Comparison of emulators for SMS chiral [A. Garcia]

Observables: Total cross section,
differential cross section, A, for
partial waves up to 3 = 20
Sampling: randomly chose values in
an interval of [-10, 10]; 2 x #LECs pts
Three different methods compared:
NVP and two KVP momentum-space

Errors: consistent for different cutoffs;
vary with method but mostly negligible
compared to other uncertainties

Timing: NVP speed up of > 300x
compared to “exact” calculation
>1000x if mesh size is doubled
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In progress: Comparison of emulators for SMS chiral [A. Garcia]

* Observables: Total cross section,
differential cross section, A, for
partial waves up to 3 = 20

* Sampling: randomly chose values in
an interval of [-10, 10]; 2 x #LECs pts

* Three different methods compared:
NVP and two KVP momentum-space

* Errors: consistent for different cutoffs;
vary with method but mostly negligible
compared to other uncertainties

* Timing: NVP speed up of > 300x
compared to “exact” calculation
e >1000x if mesh size is doubled
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Summary and outlook for EC-style emulators

* General traits of emulators for chiral EFT applications:
» Based on stationary functionals = but do not need to give upper bound
 Trial functions are “snapshots” = wfs, etc. for a collection of parameter sets
* Fast, because all the expensive calculations (for training) are done “offline”
e Accurate for both interpolation and extrapolation
* Applications (so far) to few-body bound-state energies and radii including 3N,
transition matrix elements, NN scattering, many-body up to oxygen, ...

* Work in progress for chiral EFT applications:
Three-body scattering

Active learning of training points

Uncertainty quantification

Full Bayesian parameter estimation

Model mixing of pionless and chiral EFT



Bonus slides



Role of emulators: new workflows (cf. Lu Meng’s talk)

From Xilin Zhang, rjf, Fast emulation of quantum three-body scattering, Phys. Rev. C 105, 064004 (2022).
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Data assimilation

If you can create a fast & accurate™ emulator for observables, you can bypass
the expert knowledge and expensive resources needed for the calculations!



Model reduction methods
for nuclear emulators

J. Melendez, C. Drischler, rjf, A. Garcia, X. Zhang, arXiv:2203. 05528 - many great references

Need: to vary parameters for design, General classification of ROMs
control, optimization, UQ.

Exploit: much information in high-
fidelity models is superfluous.

Solution: reduced-order model
(ROM) = emulator (fast & accurate™).

Data driven: interpolate output of high-fidelity model w/o understanding > non-intrusive
Examples: Gaussian processes; artificial neural network; see also hybrid ML approaches

Model driven: derive reduced-order equations from high-fidelity equations = intrusive
Features: physics-based, respects underlying structure = can extrapolate; often uses projection



Setting the stage

Vast range of problems have been attacked with MOR in science and engineering,
including heat transfer, fluid dynamics, electronic DFT, ...~ coupled ode’s and pde’s
(incl. time-dependent and nonlinear); eigenvalue problems; and more!

There’s likely something out there in the MOR literature analogous to what you do!

Projection-based emulator for solution ¢ of D(¢;0) =0 in Q ; B(¢;0) =0 on A
D and B are operators (or H(0)|y) = E|y)). “ \

domain boundary

Large speed-ups from offline-online paradigm if heavy compute resources are offline.

- move size- operations offline so that emulation varying 0 online is efficient.
Key: exploit affine parameter dependence in operators, e.g., H(0) = > h,(0)H,
For non-linear systems and non-affine parameters, use hyper-reduction methods.

Projection-based: (i) choose low-dimensional rep. of i and (ii) write in integral form.
For (i): 1(0) = Zf\[:‘l By = X3, X = 112 -+ ¥, ] with X found offline.

Snapshot approaches: construct X from high-fidelity solutions Y, = 1(0,) at set {6;}.



Variational and Galerkin emulators by concrete example

~

Emulator = () ~ 1(8) = X .,

Variational (Ritz)

S[y] = / dSZ(%VQ/)-Vz/)—gQ,/)) - / dr fi

Q r

oY
:>5S:/d525f — V%) — g /dI’éf —f
Q "‘.J( v ) r U<()n f)

So 6S =0 gives the Poisson eq. and BCs. Emulate)(0):
S[] — 6S[)] = Z

95 (5/32- = 0 = N, equations for 3,

4 D J 3 ij — fSlv‘*‘t ’ VUJ*
gi = fgz (](O)l* i fl - fl* f(O)L

If affine g(0), f(0) = calculate high-fidelity offline.
If nonlinear or nonaffine = hyper-reduction, etc.

If linear
(as here)

= (Y192 -
E.g., Poisson equation with Neumann BCs 2 [—~V?¢ = ¢(0)] with |

- 1, | find optimal E* cheaply online

oY

an = f(O)]r

Ritz-Galerkin

Weak formulation rather than variational
- multiply each equation by test function

oY
dQ o (=3 — /dF — 0
[ a0o(-v2v—g) + [ aro(Gh-r)
10 (Vo - Vi — — [ dl fé6 =0
=>/Q( (Vo - Vi — go) /( fo

r

Assert holds fory) — ¢y = X3 and ¢ = ZA’) 03
03; { / df (Vgﬁ'ﬁi -V B — gu'),i) - / dl’ f?,»f’l’,i} =0
Q r

Same result as variational here (but Galerkin is
more general). If @; # Y, then Petrov-Galerkin.



Parametric MOR emulator workflow

Bird’s eye view but still for projection-based PMOR only (i.e., not an exhaustive set!)

(1) Sampling across range of parameters 0 for N, candidate snapshots = {6;}
e E.g., space-filling design (like latin hypercube) or center near emulated values.
* Want N, £ Ng, e SNapshots; locate wisely based on basis construction method.

(2) Generating a basis X from the snapshots to create. Multiple options, including:
* Proper Orthogonal Decomposition (POD) [cf. PCA] = extract most important
basis vectors. Compute all Ny, Snapshots 1(6;) but keep Ny, based on SVD.
* Greedy algorithm is an iterative approach: next location 0. from fast estimated
emulator error at N, ., Values and choose value with largest expected error.
* For time-dependent case, sample also in time or frequency. Many options here!

(3) Construct the reduced system. Single basis X or multiple bases across 0
* Linear system and affine operators = projecting to single basis works well.
* If non-linear or non-affine = hyper-reduction approaches: e.g., empirical
interpolation method EIM or DEIM, which finds an affine (separable) expansion.



Some model reduction methods in context

Reduced Basis method (1980) widely used to emulate PDEs in
reduced-order approach. Specific choices in MOR framework:
* Parameter set chosen using greedy algorithm (or POD)
* Single basis X constructed from snapshots
 RB model built from global basis projection —

Parametric MOR ‘

RB method
EC

Eigenvector continuation (EC) is a particular implementation of the RB method
— parametric reduced-order model for an eigenvalue problem (lots of prior art)
* Global basis constructed with snapshot-based POD approach
* “Active learning” by Sarkar and Lee adds greedy sampling algorithm for next ©,

Summary: general features of good reduced-order emulators
e System dependent = works best when QOlI lies in low-D manifold and
operations on ) can be avoided during online phase
* Relative smoothness of parameter dependence
» Affine parameter dependence (or effective hyper-reduction or other approach)
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Thank you!



Extra slides



BAND (Bayesian Analysis of Nuclear Dynamics)

An NSF Cyberinfrastructure for Sustained Scientific Innovation (CSSI) Framework (from 7/2020)
Look to https://bandframework.github.io/ over the coming years!
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https://bandframework.github.io/

Look to https://bandframework.github.io/ over the coming years!

BAND (Bayesian Analysis of Nuclear Dynamics)

An NSF Cyberinfrastructure for Sustained Scientific Innovation (CSSI) Framework (from 7/2020)
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https://bandframework.github.io/

BAND (Bayesian Analysis of Nuclear Dynamics)

An NSF Cyberinfrastructure for Sustained Scientific Innovation (CSSI) Framework (from 7/2020)

Look to https://bandframework.github.io/ over the coming years!
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Model-mixing example:

A. Semposki et al.,
arXiv:2206.04116
Matching expansions of a
toy model at small and
large coupling, with GP
filling the gap. Future:
mixing pionless+chiral EFT



https://arxiv.org/abs/2206.04116
https://bandframework.github.io/

Propaganda: Jupyter notebooks for Bayesian UQ

Jupyter notebooks and Python are great tools for nuclear physics UQ

E.g., Bayesian methods for EFT and other theory errors (combined with experiment)

* Many examples from the BUQEYE collaboration [see https://bugeye.github.io/]

Aspiration: every paper should provide a notebook for reproducing figures

Github repositories with notebooks for learning Bayesian statistics for physics

>
>

>

BAYES 2019 (TALENT course): https://nucleartalent.github.io/Bayes2019/
[developed by Christian Forssén, rjf, Daniel Phillips]

Christian Forssén’s course at Chalmers in Jupyter Book format with notebooks:
https://physics-chalmers.github.io/tif285/doc/LectureNotes/ build/html/

rjif course at Ohio State with notebooks: https://furnstahl.github.io/Physics-8820/
[Jupyter Book based on BAYES 2019 and updates by rjf and C. Forssén]



https://buqeye.github.io/
https://nucleartalent.github.io/Bayes2019/
https://physics-chalmers.github.io/tif285/doc/LectureNotes/_build/html/
https://furnstahl.github.io/Physics-8820/

Lexicon for Model Order Reduction (MOR)

High fidelity
Reduced-order model
Intrusive

Offline-online paradigm
Affine

Snapshots

Proper Orthogonal
Decomposition (POD)

Greedy algorithm
Reduced basis methods

Hyper-reduction methods

Highly accurate, usually for costly calculation [Full-Order Model (FOM)]
General name for an emulator resulting from applying MOR techniques.
Non-intrusive treats FOM as black box; intrusive requires coding.

Heavy compute done once (offline); cheap to vary parameters (online).
Parameter dependence factors from operators, e.g., H(0) =) h,(0)H,
High-fidelity calculations at a set of parameters and/or times.

Generically the term POD is used for PCA-type reduction via SVD. In
snapshot context, PCA is applied to reduce/orthogonalize snapshot basis.

Serially find snapshot locations 0, at largest expected error (fast approx.).
Or RBMs. Implement snapshot-based projection methods.

Approximations to non-linearity or non-affineness (e.g., EIM).



