
FRIB: Opening New Frontiers in Nuclear Science 
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Achieving this goal involves developing predictive theoretical models that allow us to understand the 
emergent phenomena associated with small-scale many-body quantum systems of finite size. The detailed 
quantum properties of nuclei depend on the intricate interplay of strong, weak, and electromagnetic 
interactions of nucleons and ultimately their quark and gluon constituents. A predictive theoretical 
description of nuclear properties requires an accurate solution of the nuclear many-body quantum 
problem — a formidable challenge that, even with the advent of super-computers, requires simplifying 
model assumptions with unknown model parameters that must be constrained by experimental 
observations.  

Fundamental to Understanding 

The importance of rare isotopes to the field of 
low-energy nuclear science has been 
demonstrated by the dramatic advancement in 
our understanding of nuclear matter over the 
past twenty years. We now recognize, for 
example, that long-standing tenets such as 
magic numbers are useful approximations for 
stable and near stable nuclei, but they may 
offer little to no predictive power for rare 
isotopes. Recent experiments with rare 
isotopes have shown other deficiencies and 
led to new insights for model extensions, 
such as multi-nucleon interactions, coupling 
to the continuum, and the role of the tensor 
force in nuclei. Our current understanding has 
benefited from technological improvements 
in experimental equipment and accelerators 
that have expanded the range of available 
isotopes and allow experiments to be 
performed with only a few atoms. Concurrent 
improvements in theoretical approaches and 
computational science have led to a more 
detailed understanding and pointed us in the 
direction for future advances.  

We are now positioned to take advantage of these developments, but are still lacking access to beams of 
the most critical rare isotopes. To advance our understanding further low-energy nuclear science needs 
timely completion of a new, more powerful experimental facility: the Facility for Rare Isotope Beams 
(FRIB). With FRIB, the field will have a clear path to achieve its overall scientific goals and answer the 
overarching questions stated above. Furthermore, FRIB will make possible the measurement of a majority 
of key nuclear reactions to produce a quantitative understanding of the nuclear properties and processes 
leading to the chemical history of the universe. FRIB will enable the U.S. nuclear science community to 
lead in this fast-evolving field. 

 
Figure 1: FRIB will yield answers to fundamental questions 
by exploration of the nuclear landscape and help unravel 
the history of the universe from the first seconds of the Big 
Bang to the present.  
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“Feed-forward ANNs can be viewed as universal non-linear 
function approximators [Hornik 1989 & 1991]. Moreover, ANNs 
can find solution when algorithmic methods are computationally
intensive or do not exist. For this reason, ANNs are considered
a more powerful modeling method for mapping complex nonlinear
input-output problems.”

G.A. Negoita, G.R. Luecke, J.P. Vary, P. Maris, A.M. Shirokov,  I.J. Shin, Y. Kim, E.G. Ng and C. Yang,
in Proceedings of the Ninth International Conference on Computational Logics, Algebras, 
Programming, Tools, and Benchmarking COMPUTATION TOOLS 2018; arXiv: 1803.03215

G.A. Negoita, J.P. Vary, G.R. Luecke, P. Maris, A.M. Shirokov, I.J. Shin, Y. Kim, E.G. Ng, C. Yang, 
M. Lockner and G.M. Prabhu,  Phys. Rev. C 99, 054308 (2019); arXiv: 1810.04009

Machine Learning to predict ab initio No-Core Shell Model (NCSM) results

“Training/testing data” supplied by ab initio NCSM results 
obtained on Leadership-Class supercomputers 

ANN

Predictions of exact NCSM results in the continuum limit



• Adopt realistic NN (and NNN) interaction(s) & renormalize as needed - retain induced 
many-body interactions: Chiral EFT interactions and Daejeon16

• Adopt the 3-D Harmonic Oscillator (HO) for the single-nucleon basis states, α, β,…
• Evaluate the nuclear Hamiltonian, H,  in basis space of HO (Slater) determinants 

(manages the bookkeepping of anti-symmetrization)
• Diagonalize this sparse many-body H in its “m-scheme” basis where [α =(n,l,j,mj,τz)]

• HO basis defined by                 where 
• Evaluate observables and compare with experiment

Comments
• Straightforward but computationally demanding => new algorithms/computers
• Requires convergence assessments and extrapolation tools
• Achievable for nuclei up to A=16 (40) today with largest computers available
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A large sparse matrix eigenvalue problem
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Daejeon16 NN interaction
Based on SRG evolution of Entem-Machleidt “500” chiral N3LO to

followed by Phase-Equivalent Transformations (PETs) 
to fit selected properties of light nuclei.

A.M. Shirokov, I.J. Shin, Y. Kim, M. Sosonkina, P. Maris and J.P. Vary,
“N3LO NN interaction adjusted to light nuclei in ab exitu approach,”
Phys. Letts. B 761, 87 (2016); arXiv: 1605.00413 

GS radius also agrees with experiment to within 1%

λ = 1.5 fm−1



Consider the goal of solving for the interaction energy and the radius of 6Li.
These are important test cases since available supercomputer calculations
can be used to train and test the validity of an ANN for predicting the first 
principles results.

Results of supercomputer calculations up to Nmax = 10 used for training/testing
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ANN Design

Topology:
hidden layer: hyperbolic tangent

sigmoid activation function
output layer: linear activation
function

The original dataset:
NCSM calculation results with
MFDn code using Daejeon16 at
19 selected values of ~� = 8 ≠ 50
MeV for all Nmax Æ threshold
test set (3/19 ¥ 16%)

3 random points for each Nmax

design set (16/19 ¥ 84%)
90% training

10% testing

Performance function: MSE
Training: Bayesian regularization

Feed-forward three-layer ANN:
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Fig. 5: ANN topological structure.

G. A. Negoita, J. P. Vary, G. R. Luecke (ISU) ANNs for Nuclear Structure Calculations November 29, 2018 20 / 31

Gianina Alina Negoita, James P. Vary, Glenn R. Luecke, Pieter Maris, Andrey M. Shirokov, Ik Jae Shin, 
Youngman Kim, Esmond G. Ng, Chao Yang, Matthew Lockner and Gurpur M. Prabhu, 
“Deep Learning: Extrapolation Tool for Computational Nuclear Physics,” PRC 99, 054308 (2019); arXiv: 1810.04009



G.A. Negoita, et al., “Deep Learning: Extrapolation Tool for Computational Nuclear Physics,” 
PRC 99, 054308 (2019); arXiv: 1810.04009

ANN results when training & testing data limited to Nmax 10≤
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“Deep Learning: 
Extrapolation Tool for
Ab Initio Nuclear Theory,”  
G.A. Negoita, et al., 
PRC 99, 054308 (2019);
arXiv:1810.04009
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6Li from NCSM/ANN
Daejeon16

!Ω = 12.5 MeV
PreliminaryNew application:

excited states
incl. resonances
R. McCarty, et al.,
in preparation

1
+
,0



7Li from NCSM/ANN second excited state (7/2-)
Daejeon16, !Ω = 12.5 MeV

Preliminary

M. Lockner, et al., in preparation



7Li from NCSM/ANN
Daejeon16

Preliminary

Excited states
incl. resonances
R. McCarty, et al.,
in preparation

!Ω = 12.5 MeV
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M. Lockner, et al., in preparation



Artificial Neural Networks applied to both No-Core Shell Model 
and Coupled Cluster results

• NNLOopt used for nucleon-nucleon interaction
• Adopts a sigmoid activation function (1 + e-x)-1

• Uses interpolation to augment the training data set
• Uses a Gaussian to downweight training data in the UV and IR regions 

~ employing a prior in Bayesian statistics
W. G. JIANG, G. HAGEN, AND T. PAPENBROCK PHYSICAL REVIEW C 100, 054326 (2019)

FIG. 6. Extrapolated results for 4He ground-state energy (upper
panel) and point-proton radius (lower panel) with NCSM data sets
from max(Nmax) = 10 to max(Nmax) = 20 employing neural network
(squares) and IR (circles) extrapolation. Error bars represent the
uncertainties of the extrapolations that are from changes in the initial
point in the training process.

Because the four-nucleon bound state of 4He is already well
converged with the maximum model space that NCSM calcu-
lation can reach, it is a good case to perform a benchmark
and study the performance of the neural network extrap-
olations. The networks are trained with different data sets
which contain the NCSM results from Nmax = 4 to the given
max(Nmax). For 4He, six data sets with max(Nmax) = 10 to
max(Nmax) = 20 are given, providing the neural network with
a sequence of mounting information. The extrapolation result
for the single neural network is given by the prediction of
Nmax = 100 when the observable value is virtually constant in
the interval 10MeV < h̄ω < 60MeV. With each data set, the
multiple neural network (containing 100 networks) is trained
with randomly initialized network values. The distribution
of the multiple neural network results is then fitted by the
Gaussian function. Finally, the recommended values of the
multiple neural networks are set to be the mean value µ and
the uncertainties are defined as the standard deviation σ of the
Gaussian.

Figure 6 shows the predictions and corresponding un-
certainties for the neural network approach compared with
the values obtained from the infrared (IR) extrapolations of
Ref. [22]. The error bars reflect the variations that are from
changes in the initial point in the training process. As we
can see, the uncertainty of the neural network predictions
decreases with increasing max(Nmax). This indicates that the
network is learning the pattern as the data set is enlarged. The
neural networks reach convergence after max(Nmax) = 16 and
their predictions agree with the IR extrapolations for both the

FIG. 7. Extrapolated results for 6Li ground-state energy (upper
panel) and point-proton radius (lower panel) with NCSM data sets
from max(Nmax) = 12 to max(Nmax) = 22 employing neural network
(squares) and IR (circles) extrapolation. Error bars represent the
uncertainties of the extrapolations that are from changes in the initial
point in the training process.

ground-state energy and point-proton radius. We note that the
two extrapolation methods exhibit different behaviors while
reaching identical converged values.

6Li is a more challenging task for both ab init io calcu-
lations and extrapolations. This is a weakly bound nucleus
where a weakly bound deuteron orbits the 4He core. Thus,
the radius is relatively large, and the calculated observables
converge slowly as the model space increases. This nucleus
is a good challenge for extrapolation methods. The results
for neural network extrapolations are shown in Fig. 7. For
the ground-state energy, the neural network gives Eg.s. =
−30.743 ± 0.061MeV with the largest data set max(Nmax) =
22 and the results start to converge when max(Nmax) reaches
16. As a long-range operator the radius converges even slower
than the energy, which makes it more difficult for the ex-
trapolation method to obtain a reliable prediction. With the
largest data set, the neural network extrapolated result is
rp = 2.471 ± 0.028 fm and the predictions start to converge
at max(Nmax) = 20. The error bars reflect the variations that
are from changes in the initial point in the training process.

So far, we have only studied the uncertainties from the
random starting point when training the network. To study
the robustness of the trained neural networks, we proceed as
follows. Once a network is trained, i.e., once its weights and
biases w are determined, we take a random vector (with com-
ponents drawn at random from a Gaussian distribution with
zero mean) #w in the space of weights and biases and adjust
its length such that the loss function fulfills L(w + #w) =
cL(w), with c = 2 or c = 10. These values are motivated

054326-6

4He 6Li

W.G. Jiang, G. Hagen and T. Papenbrock, Phys. Rev. C 100, 5 (2019)



arXiv: 2207.03828

Topology
PredictionsConclusion:  Use energy differences for training/testing

Use NCSM g.s. energy results for multiple
interactions and A = 2, 3 and 4 for training/
testing -> predict g.s. energies of heavier nuclei
with Nmax ≤ 12 NCSM results as input



Machine Learning – Issues & Challenges
• Discovering the best ML approach: a research project in its own right
• Opening the black box: from application success to physics insights
• Gaining trust in ML results: uncertainty quantification, benchmarking
• Quantifying network bias: model studies, multiple approaches - GP vs NN
• Sharing “expensive” simulated data sets: a community resource
• Limited computational resources: ML-friendly architectures
• Trained workforce considerations: career path, sustainability 
• Sharing experiences: improving exchanges with private sector

Funding Sources
DOE NP Division

DOE NP/ASCR Divisions (SciDAC/UNEDF SciDAC/NUCLEI)
DOE ASCR Division INCITE Awards on Leadership Class Supercomputers

DOE ASCR Division NERSC Annual Awards



Seminal idea: let’s make the computation fully quantum 
mechanical

“I’m not happy with all the analyses that go with the classical theory, because 
nature isn’t classical, dammit, and if you want to make a simulation of nature, 
you’d better make it quantum mechanical, and by golly it’s a wonderful problem, 
because it doesn’t look so easy.” --- R. P. Feynman’s vision in 1982

[Int. J. Theor. Phys. Vol. 21, 
pp. 467-488, (1982)]



From classical to quantum mechanical

Quantum bit (qubit)

infinite number of states

Classical bit

2 states

transistor ON or OFF

91Adapted from Weijie Du, QCGSS Seminar 2020

ψ = a 0 + b 10  or  1



Qubit on the Bloch Sphere

Some use the notation |±i = |0i±|1ip
2

and | � /  i = |0i±i |1ip
2

Robert Basili (Iowa State University) Intro to Quantum Computing May, 2020 17 / 35
Adapted from Bo Basili, ISU Seminar 2020



Quantum Mechanics 101: Entanglement

Many-particle states

Many-particle states | 1i| 2i=| 1 2i are a tensor product of
single-particle states:

| 1i| 2i =

a

b

�
⌦

c

d

�
=

2

664

ac

ad

bc

bd

3

775

Entanglement:

Multiple Particles can be in ”entangled” states that cannot be
described independently.

Example: | i = 1p
2
(|00i+ |11i)

Entanglement may be thought of as the extension of superposition to
many-particle states.

Robert Basili (Iowa State University) Intro to Quantum Computing May, 2020 14 / 35Adapted from Bo Basili, ISU Seminar 2020

Quantum single-particle states as a column vector:  ψ 1 = a 0 + b 1 →
a 0

b 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

used to define quantum two-particle states as a "tensor product":

                 ψ = ψ 1 ψ 2 =
a 0

b 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⊗

c 0

d 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
→

α 00

β 01

γ 10

δ 11

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  ∍  α
2
+ β

2
+ γ

2
+ δ

2
= 1

Qubit #1 Qubit #2
Entangled Qubits #1 and #2

When we measure the state of two qubits, we find one of these four possible states



1-qubit logic gate examples

Robert Basili (Iowa StateUniversity) Intro to Quantum Computing May, 2020 21 / 35

Z: H:

Rz: U3:

Z = 1 0
0 −1

H = √1
2

1 1
1 −1

zR (φ) = 1 0
0 eiφ

U3(θ, φ, λ ) =
iλcos θ /2 −e  sinθ /2

e iφ sin θ /2 e i λ + i φ  sin θ /2

1

IBM Quantum Experience
Adapted from Bo Basili, ISU Seminar 2020

Z + = −   or  
1  0
0  -1
⎡

⎣
⎢

⎤

⎦
⎥

1
2

0
1
2

1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

1
2

0

− 1
2

1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



Quantum Logic Gates

Quantum logic gates must correspond to Unitary operators.

Infinite number of logic gates exist, but only a finite number are
required to form a ”universal gate set”.

Some standard 1-qubit gates:
I | i = | i (identity)
X |0/1i = |1/0i (flip)
Y |  / �i = | � /  i
Z |±i = |⌥i
H|0/1i = |±i

These may be defined using the ”number” and ”complement”
operators n|qi = q|qi and ñ = I � n:

Z = n � ñ

Y = iXZ

H = 1p
2
(X + Z )

Note X , Y , and Z are equivalent to the Pauli matrices.

The Hadamard gate, H, functions as a fourier transform.

Robert Basili (Iowa State University) Intro to Quantum Computing May, 2020 20 / 35
Adapted from Bo Basili, ISU Seminar 2020



Encoding Many-Body basis states on qubits

Direct encoding = one qubit for each single-particle state

Advantages:
Simplicity
Minimizes the circuit depth

Disadvantage:
While good for FCI applications (esp. Quantum Chemistry and valence-space Shell
Model applications) it is not particularly useful for Nmax truncations of the NCSM

Compact encoding = qubits assigned as digital counter 
of many-body states so that, with Nq qubits, one encodes 
2Nq many-body states

Advantages:
Works well for non-FCI truncation schemes such as the NCSM with Nmax truncation
Suitable for non-Slater determinant basis such as employed in tBFq and tBLFQq

Disadvantage:
Greater circuit depth than direct encoding 



Applications in HEP/NP

Two main directions:

● Variational Approaches: Variational Quantum Eigensolver (VQE), hybrid optimization 
algorithm, many variants, widely-used in quantum chemistry, lead to Q machine learning 

● Decomposition Approaches: Quantum Simulation Algorithms, prepare, evolve, fourier 
transform, measure to find quantum state of the system 

1

Image from Miessen’s talk at QGSS 2022

Peruzzo et al., 1304.3061 (2013)
Bharti et al., 2101.08448 (2021)

Wiesner, 9603028 (1996); Zalka, 9603026 (1996)



https://quantumalgorithmzoo.org/

Andrew Childs et al., Rev. Mod. Phys. 82, 1

Algorithm development

some algorithms of interest to nuclear physics

§ Eigensolver (for structure calculations)
§ Hamiltonian simulation (for 

dynamics, real-time evolution) 107

https://quantumalgorithmzoo.org/


Time-dependent Basis Function on Qubits (tBFq) algorithm 
(Hamiltonian simulation)

§ Unified structure and reaction theory
§ Based on successful Ab initio nuclear structure theory
§ Non-perturbative scattering method
§ Retaining full quantal coherence & entanglement
§ Circumventing the exponential cost in computation resource in 

simulating real-time many-body dynamics

Theoretical scattering method (tBF) introduced and solved on classical computers:
W. Du, P. Yin, Y. Li, G. Chen, W. Zuo, X. Zhao and J.P. Vary, “Coulomb Excitation of Deuteron
In Peripheral Collisions with a Heavy Ion,” Phys. Rev. C 97, 064620 (2018); arXiv: 1804.01156

tBF solved for deuteron inelastic scattering by simulation of a quantum computer:
W. Du, J.P. Vary, X. Zhao and W. Zuo, “Quantum Simulation of Nuclear Inelastic Scattering,” 
Phys. Rev. A 104, 012611 (2021); arXiv: 2006.01369

tBF provides a parameter-free deuteron elastic scattering cross sections on classical computers:
P. Yin, W. Du, W. Zuo, X. Zhao and J.P. Vary, “Sub-Coulomb barrier d+208Pb scattering in a 
Time-dependent basis function approach,” J. Phys. G. 2022 (in press); arXiv: 1910.10586



Demonstration problem: Coulomb excitation of deuterium 
system by peripheral scattering with heavy ion

straight trajectory

[Weijie Du et al., 2018]

§ H0: Target (deuteron in trap) Hamiltonian
§ ϕ: Coulomb field from heavy ion (U92+) sensed by target
§ ρ: Charge density distribution of target

111



Elements of tBFq

Construct the basis representation from ab initio nuclear structure calculation

Basis representation

1. Prepare the initial state – can be entangled state
2. Time-evolve the state – Trotterized evolution operator & qubitization
3. Measurement

Game plan for tBFq

H0 = Trel +VNN +U trap



The algorithm (Hamiltonian simulation)

State vector evolution

Time discretization

Trotterization (𝟏𝒔𝒕 order)

Qubitization

𝐧~⌈ ⌉𝒍𝒐𝒈𝑵𝒃𝒂𝒔𝒊𝒔

Quantum
circuit

113



1. 7 basis states of the target solved via ab initio structure calculation 
2. Initial state set to be antiparallel to z-axis
3. E1 radiative transitions retained in dynamics (time-evolution operator)
4. Trotterization; 7 basis states mapped to 3 qubits 114

|000>

|100>

|010>

|110>

|001>

|101>

|011>

[Weijie Du et al., 2017]

𝒏 ~⌈ ⌉𝒍𝒐𝒈𝑵𝒃𝒂𝒔𝒊𝒔

Basis set of the inelastic scattering problem

3 degenerate states

1 state



§ The initial state in the qubit representation is |000>
§ The quantum circuit is constructed by Quantum Shannon Decomposition

Illustration: what’s going on in the Hamiltonian simulation? 

|0>  =
|0>  =
|0>  =

By measurement, we obtain the 
final state in terms of probability 
distribution.
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Transition probabilities and observables on a simulated  QC (dots)

116Weijie Du et al., Phys. Rev. A 104, 012611 (2021); arXiv:2006.01369



Dynamics of many-nucleon system on quantum computer

Goal: quantum algorithm for the structure and dynamics of the many-nucleon systems 

Focus: to develop input model for the second-quantized many-nucleon Hamiltonian

Hamiltonian:

Direct encoding scheme: one-on-one mapping between single-nucleon bases and qubits

Hamiltonian input model: to construct the isometry 𝒯 via oracle queries

Fock state encoded as binary string
| ⟩0,4,13,18
→ 100010000000 010000100000

[Berry and Childs, Quantum Inf. Comput. 12, 29 (2012)]

Problem: exponential scaling in computing resources of quantum many-body problems



High precision eigenvalues and phase shift via Rodeo algorithm

𝑝!"#$𝑐𝑜𝑡𝛿" 𝑝 = −1 "#$ (2𝜇𝜔)"#
$
!
Γ(2𝑙 + 34 − 𝜀

2)

Γ(1 − 2𝑙4 − 𝜀
2)
, 𝜀 =

𝐸
𝜔 , 𝑝

= 𝜇𝐸

𝐻& = 𝑇 +𝑉++

𝐻 𝜔 = 𝐻& + $
!𝜇𝜔

!𝑟!

𝐸0 = 𝐸0(𝜔)

Discretization by an external 
harmonic oscillator potential

Rodeo algorithm for e-values 

Zero-range relation[1], fitting

Scattering phase shift of free 

scattering system of 𝐻&

𝛿 = 𝛿 𝜔 |5→&

⟩|0

⟩|0

⟩|0

9:𝜓<

[T. Busch et al., Found. Phys. 28, 549 (1998)]
[K. Choi, D. Lee et al., PRL 127, 040505 (2021)] 
[Z. Qian et al., PRL, arXiv:2110.07747 (2021)]W. Du, et al., in preparation



Quantum 
computing

v.s.
Analytical solution

NN scattering phase shift via quantum computing

Demonstration problem:

𝑉" = 48.0002 MeV,	𝑅" = 1.70134 fm.	

1. 𝑉## as spherical well potential: 

𝑉## = B−𝑉", 𝑥 ≤ 𝑅"
0 , 𝑥 > 𝑅"

2. 3DHO basis:
𝜔 = 60 MeV, 𝑁$%& = 600. 

3. Analytical solution:

𝛿 = arctan
𝑘
𝑝
tan 𝑝𝑅" − 𝑘𝑅" + 𝑛𝜋

𝑘 = 2𝜇𝐸, 𝑝 = 2𝜇(𝐸 + 𝑉"). [Peiyan Wang, Weijie Du et al., in preparation]

Preliminary



SSVQE Application to BLFQ
The SSVQE approach can be naturally applied to BLFQ hadron structure calculations, where we look at problem 
Hamiltonian of reduced basis representation. For example, the smallest non-trivial Hamiltonian of BLFQ light meson 
system:

2

J.P. Vary et.al., 0905.1411 (2009)
W. Qian, S. Jia, Y. Li, J.P. Vary, 2005.13806 (2020)

In particular, we use compact encoding, orthogonal 
basis formed by Pauli strings under trace, and 
hardware-efficient heuristic ansatz, to represent 
the Hamiltonian economically on quantum circuit.

COBYLA Optimizer

W. Qian, R. Basili, S. Pal, G. Luecke, J. P. Vary, 2112.01927 (2021)



Additional hadron properties

With obtained quantum states for hadron states, we can directly evaluate observables by mapping BLFQ operator to 
quantum operator on the circuit, such as decay constants, parton distribution functions (PDF), and more

3

IBM QASM and statevector (SV) simulators results for PDF: longitudinal excitations emerging 
from increasing basis cutoffs

Transition amplitudes, such as radiative transitions, can also be computed in SSVQE

W. Qian, R. Basili, S. Pal, G. Luecke, J. P. Vary, 2112.01927 (2021)



Medium induced jet broadening in a quantum computer

2

Barata, Salgado, 2104.04661 (2021)
Barata, Du, Li, Salgado, Qian (2022, TBA) 

High-energy quark moving close to the light cone 
scattering on a dense nucleus medium

M. Li, Zhao, Maris, Chen, Y. Li, Tuchin, Vary, 2002.09757 (2020)

The light-front Hamiltonian consists of kinetic and potential term:

The stochastic background field uses the McLerran-Venugopalan 
(MV) model

Time evolution of the probe: 

W. Qian, M. Li, et al, in preparation



| ⟩𝑞 = 𝑎| ⟩&𝑞 + 𝑏| ⟩&𝑞𝑔 +⋯

Problem: a quark scattered by the colored background field generated by a heavy nucleus.

EOM on the light 
front:

Quark scattered in a colored background field by quantum simulation

Time evolution unitary:

Light-front Hamiltonian:

Fock sector truncation:

Method: time-dependent basis light-front quantization (tBLFQ) on quantum computer.

1. Encoding
2. State preparation
3. Time evolution
4. MeasurementQuantum 

simulation

momentum eigen basis 
rep.

[Meijian Li, et al., PRD 101, 076016 (2020)] 

Background field via the 
McLerran-Venugopalan model

[McLerran, et al., PRD 50, 2225 (1994)]

Sihao Wu, Weijie Du et al., in preparation



[Sihao Wu, Weijie Du et al., in preparation]

Quantum algorithm: Truncated Taylor series (TTS)

Basis states

Evolved states by TTS and 
Trotter

Pr
ob

ab
ili

tie
s

Time evolution Op.

Pre
p

Sel_
P

Sel_
VFouri

er
Fourier-

1

Prep-
1

𝑝'

𝑝(
color

Circuit structure:

Sample simulation result:

[Berry, et al., PRL 114, 090502 (2015) 
]

Prelimina
ry

Trotter: 

TTS:

TTS better than 
Trotter

Complexity analysis:Preliminary



Some key QC papers by our group - some in collaboration with other groups

Michael Kreshchuk, Shaoyang Jia, William M. Kirby, Gary Goldstein, James P. Vary and Peter J. Love, 
“Simulating Hadronic Physics on NISQ devices using Basis Light-Front Quantization,” 
Phys. Rev. A 103, 062601 (2021); arXiv: 2011.13443

Michael Kreshchuk, Shaoyang Jia, William M. Kirby, Gary Goldstein, James P. Vary and Peter J. Love, 
“Light-Front Field Theory on Current Quantum Computers,” 
Entropy 23, 597 (2021); Special Issue NISQ Technologies; arXiv: 2009.07885

Weijie Du, James P. Vary, Xingbo Zhao and Wei Zuo, 
“Quantum Simulation of Nuclear Inelastic Scattering”, 
Phys. Rev. A 104, 012611 (2021); arXiv: 2006.01369

Robert A.M. Basili, Wenyang Qian, Shuo Tang, Austin Castellino, Mary Eshaghian-Wilner, Ashfaq Khokhar, 
Glenn Luecke and James P. Vary, 
“Performance Evaluations of Noisy Approximate Quantum Fourier Arithmetic,” arXiv: 2112.09349 

Wenyang Qian, Robert Basili, Soham Pal, Glenn Luecke and James P. Vary, 
“Quantum Computing for Hadron Structures,” arXiv: 2112.01927

Weijie Du, James P. Vary, Xingbo Zhao and Wei Zuo, 
“Ab initio nuclear structure via quantum adiabatic algorithm,” arXiv: 2105.08910



Quantum Computing – Issues & Challenges
• Discovering the best QC algorithm: a research project in its own right
• New/improved QC algorithms emerging for Nuclear Structure, Reactions 

& Dynamics
• Need improved noise mitigating strategies for NISQ era and beyond
• Anticipating industry developments - # qubits, gate suites, topologies (“volume”)
• Trained workforce considerations: career path, sustainability 
• Sharing experiences: improving exchanges with private sector

Funding Sources
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