Magnetic moments of light nuclei

Daniel Möller

Arseniy Filin, Vadim Baru, Evgeny Epelbaum, Hermann Krebs, Patrick Reinert

Institut für theoretische Physik II Fakultät für Physik und Astronomie Ruhr-Universität Bochum

Meeting of the Low Energy Nuclear Physics International Collaboration Ruhr-Universität Bochum, August 24-26, 2022

Outline

Introduction

Few-nucleon magnetic form factors

Calculation

Calculation of magnetic form factors Current operators Fitting procedure and error analysis

Results (all preliminary)

Magnetic form factors Magnetic moments and radii Isovector observables

Summary

Magnetic moments of light nuclei

Daniel Möller

ntroduction

Results

Introduction

Magnetic moments of light nuclei

Daniel Möller

Introduction

Few-nucleon magn. FFs

Calculation

Results

Current status of few-nucleon magnetic form factors

Experiment

- Magnetic moments of deuteron, triton, and helion known extremely precisely e.g. $\mu_d = 0.8574382346(53)\mu_N$ Puchalski_2015
- Magnetic radii known poorly

(muonic spectroscopy measurements discussed Antognini:2015vxo)

- Some data of deuteron magnetic form factor, less for 3N ones Chiral EFT
 - Other recent studies Marcucci:2015rca; Schiavilla:2018udt; Seutin:2021hls are to N³LO and lack proper error analysis or put different focus
 - Can use the same setup as for *charge* form factors Arseniy's talk, in particular: - N⁴LO⁺ chiral 2N forces
 Patrick's talk
 - N²LO chiral 3N forces (plus selected N⁴LO 3N forces)
 - uncertainty estimation (most importantly truncation errors)
 - Spatial components of isoscalar vector current operators also known up through N⁴LO

Magnetic moments of light nuclei

Daniel Möller

Introduction Few-nucleon magn. FFs

Calculation

Results

Motivation

- All ingredients to perform precision calculations of magnetic observables
- Accurate experimental magnetic moments provide benchmarks for ChEFT

 → for light as well as heavier nuclei
- Improve predictions of magnetic form factors and radii
- Fix unknown LECs for reuse in other calculations

Magnetic moments of light nuclei

Daniel Möller

Introduction

Few-nucleon magn. FFs

Calculation

Results

Magnetic form factors

Scattering cross section

n:
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{NS}} F(Q^2,\theta)^2$$

 $Q^2 := -k_{\mu}k^{\mu}$

. .

$$e \xrightarrow{e} e$$

nuc. e nuc.

Magnetic moments of light nuclei

Daniel Möller

Introduction

Few-nucleon magn. FFs

Calculation

Results

Summary

 $\begin{array}{ccc} \text{Spin-1 particle (deuteron)} & \text{Spin-}\frac{1}{2} \text{ particle (triton, helion)} \\ & F & F \\ & \swarrow & \downarrow & & \downarrow \\ & G_C & G_Q & G_M & & F_C & F_M & F_M^S = \frac{1}{2} \left(F_M^{3\text{He}} + F_M^{3\text{H}} \right) \\ & & F_C & F_M & F_M^V = \frac{1}{2} \left(F_M^{3\text{He}} - F_M^{3\text{H}} \right) \end{array}$

Magnetic moments: $\mu \propto X_M(0)$ Magnetic radii: $r_M^2 \propto X_M'(0)$

Yennie_1957; Drell:1963ej; Garcon:2001sz; Gilman:2001yh

Calculation

Magnetic moments of light nuclei

Daniel Möller

Introduction

Calculation

Calculation of magnetic form factors

Current operators

Fitting and error analysis

Results

Calculation of magnetic form factors

Convolutions $\langle P',\lambda'|J^i|P,\lambda\rangle$ of

a) spatial components of the vector current operator J^i

b) with wave functions $|P,\lambda\rangle$ obtained from SMS chiral forces

- 1. Solution of Schrödinger and Faddeev equations in PW basis
- 2. Decomposition of current operators in PW basis
- 3. Analytic integration over angles (either directly or by Fourier transform to coordinate space)
- 4. Cheap numeric integration over absolute values of momenta or coordinates
- 5. Fitting of unknown LECs
- 6. Error analysis

Magnetic moments of light nuclei

Daniel Möller

Introduction

Calculation

Calculation of magnetic form factors

Current operators

Fitting and error analysis

Results

Current operators

3N operators appear at higher orders

- No leading-order (LO, q⁻³) three-current operator in our power counting, first contribution at NLO (q⁻¹)
- Operators at N³LO only known in dim-reg Kolling:2011mt; Krebs:2019aka
- Current operators require consistent regularization with potential
 - \rightarrow for isovector currents beyond N^2LO still work in progress Hermann's talk
 - \Rightarrow Focus on isoscalar currents and observables

Magnetic moments of light nuclei

Daniel Möller

Introduction

Calculation

Calculation of magnetic form factors

Current operators

Fitting and error analysis

Results

Single-nucleon contributions

From NLO:
$$J_{1N} = -\frac{ie}{2m_N} \mathbf{k} \times \boldsymbol{\sigma} \mathcal{G}_M + \frac{e}{2m_N} (2\mathbf{p}_1 + \mathbf{k}) \mathcal{G}_E$$
 p_1

1

Single-nucleon Sachs FFs \mathcal{G}_E and \mathcal{G}_M

Keep unexpanded and replace by phenomenological parametrization: Ye:2017gyb, check consistency with Belushkin:2006ga; Lin:2021umz $\blacktriangleright \mathcal{G}_{E(M)} = \frac{1+\tau^3}{2} \mathcal{G}_{E(M)}^p + \frac{1-\tau^3}{2} \mathcal{G}_{E(M)}^n$ $\blacktriangleright \mathcal{G}_{E(M)}^{S} := \mathcal{G}_{E(M)}^{p} + \mathcal{G}_{E(M)}^{n}$ $\mathcal{G}_{E(M)}^V := \mathcal{G}_{E(M)}^p - \mathcal{G}_{E(M)}^n$

No further 1N contributions up to and including N⁴LO (also no relativistic boost corrections to rest-frame wave functions up to this order)

Magnetic moments of light nuclei

Daniel Möller

Calculation of

Current operators

Fitting and error analysis

Two-nucleon contributions

From NLO: $\boldsymbol{J}_{1\pi}^{\text{NLO}} = i e \mathcal{G}_E^V \frac{g_A^2}{4F_\pi^2} [\boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2]^3 \frac{\boldsymbol{\sigma}_2 \cdot \boldsymbol{q}_2}{\boldsymbol{q}_2^2 + M_\pi^2} \left(\boldsymbol{q}_1 \frac{\boldsymbol{\sigma}_1 \cdot \boldsymbol{q}_1}{\boldsymbol{q}_1^2 + M_\pi^2} - \boldsymbol{\sigma}_1 \right)$

parameter-free

fully isovector

From N³LO:
$$J_{1\pi}^{S} = ie 2\mathcal{G}_{E}^{S} \frac{-3g_{A}}{F_{\pi}^{2}} d_{9} \frac{\boldsymbol{\sigma}_{2} \cdot \boldsymbol{q}_{2}}{\boldsymbol{q}_{2}^{2} + M_{\pi}^{2}} \boldsymbol{k} \times \boldsymbol{q}_{2} \rightarrow \text{isoscalar } 1\pi \text{ exch.}$$

 $J_{\text{cont}}^{S} = ie \mathcal{G}_{E}^{S} L_{2}(\boldsymbol{\sigma}_{1} + \boldsymbol{\sigma}_{2}) \times \boldsymbol{k} \rightarrow \text{isoscalar contact}$
 $J_{\text{cont}}^{V} = ie \mathcal{G}_{E}^{V} L_{1} \tau_{1}^{3}(\boldsymbol{\sigma}_{1} - \boldsymbol{\sigma}_{2}) \times \boldsymbol{k} \rightarrow \text{single isovector contact}$
 $\boldsymbol{k} \rightarrow \boldsymbol{k} \rightarrow \boldsymbol{k} \rightarrow \boldsymbol{k} \rightarrow \boldsymbol{k} \rightarrow \boldsymbol{k}$

• L_2 , L_1 are determined in this study No further isoscalar contributions at N⁴LO

Fitting and error analysis

Magnetic moments of light nuclei

Daniel Möller

Calculation of

Results

Regularization of two-nucleon contributions

Regularization 1π exchange contributions:

Replace propagators the same way as in the SMS potential

$$\frac{1}{q^2 + M_{\pi}^2} \to \frac{e^{-\frac{q^2 + M_{\pi}^2}{\Lambda^2}}}{q^2 + M_{\pi}^2}, \quad \frac{1}{(q^2 + M_{\pi}^2)^2} \to \frac{e^{-\frac{q^2 + M_{\pi}^2}{\Lambda^2}}}{(q^2 + M_{\pi}^2)^2} + \frac{1}{\Lambda^2} \frac{e^{-\frac{q^2 + M_{\pi}^2}{\Lambda^2}}}{q^2 + M_{\pi}^2}$$

Regularization of contact contributions:

Transversal $\boldsymbol{k} \cdot \boldsymbol{J} = 0 \Rightarrow$ current conservation does not help

Comparing with similar terms at higher order or other isovector terms at the same order, the most consistent approach appears to be

$$\begin{split} \boldsymbol{J}_{\text{cont}} &\to \frac{1}{4} \bigg(\exp \left[-\frac{(\boldsymbol{p} + \boldsymbol{k}/2)^2 + \boldsymbol{p}'^2}{\Lambda^2} \right] + \exp \left[-\frac{(\boldsymbol{p} - \boldsymbol{k}/2)^2 + \boldsymbol{p}'^2}{\Lambda^2} \right] \\ &\quad + \exp \left[-\frac{\boldsymbol{p}^2 + (\boldsymbol{p}' + \boldsymbol{k}/2)^2}{\Lambda^2} \right] + \exp \left[-\frac{\boldsymbol{p}^2 + (\boldsymbol{p}' - \boldsymbol{k}/2)^2}{\Lambda^2} \right] \bigg) \boldsymbol{J}_{\text{cont}}, \end{split}$$
with $\boldsymbol{p}^{(\prime)} = (\boldsymbol{p}_1^{(\prime)} - \boldsymbol{p}_2^{(\prime)})/2$

 \rightarrow to be verified once results from higher-derivative regularization are available

Magnetic moments of light nuclei

Daniel Möller

Introduction

Calculation

Calculation of magnetic form factors

Current operators

Fitting and error analysis

Results

Summary

12/21

Fits and uncertainties

Fitting of unknown LECs from N³LO operators:

- ► Isoscalar 1π -exch. LEC $d_9 \xrightarrow{\text{set to}} 0$ compatible with determination in πN sector Rijneveen:2021bfw
- $\blacktriangleright \text{ Isoscalar contact LEC } \underline{L_2} \xrightarrow{\text{fit to}} \mu_d^{\exp}$
- ▶ Isovector contact LEC $L_1 \xrightarrow{\text{fit to}} \mu_3^{V, \exp}$

Error analysis:

- Bayesian analysis considering chiral expansion order by order Furnstahl:2015rha; Melendez:2017phj; Wesolowski:2018lzj; Epelbaum:2019zqc
- ▶ No LO for magnetic observables → modified $\bar{C}_{0.5-10}^{650}$ model starting at NLO: $X_M = X_M^{(2)} + \Delta X_M^{(3)} + \Delta X_M^{(4)} + \ldots =: X_M^{\text{ref}} \left(c_2 q^2 + c_3 q^3 + c_4 q^4 + \ldots \right)$ with $X_M^{\text{ref}} = \max\left(\frac{|X_M^{(2)}|}{q^2}, \frac{|\Delta X_M^{(3)}|}{q^3}, \frac{|\Delta X_M^{(4)}|}{q^4} \right)$
- Inclusion of uncertainties beyond truncation errors is work in progress (assumed to be less dominant)

Magnetic moments of light nuclei

Daniel Möller

Introduction

Calculation

Calculation of magnetic form factors

Current operators

Fitting and error analysis

Results

Summary

13/21

Magnetic moments of light nuclei

Daniel Möller

Introduction

Calculation

Results

Magnetic form factors

Magnetic moments and radii

lsovector observables

Summary

Results (all preliminary)

Deuteron magnetic form factor *P*

Prediction of FF shape at N⁴LO with $\Lambda = 450 \text{ MeV}$ band is 68% DoB truncation error, dashed are other cutoffs Experimental data (colored) and parametrization by Sick (black) from Marcucci:2015rca

ightarrow Excellent description of data within truncation error

Magnetic moments of light nuclei

Daniel Möller

Introduction

Calculation

Results

Magnetic form factors

Magnetic moments and radii

lsovector observables

3N isoscalar magnetic form factor $\binom{n}{np} + \binom{p}{np}$

Prediction of FF shape and magnetic moment (N⁴LO, $\Lambda = 450$ MeV)

 \rightarrow Prediction overall consistent with (poor) data

Magnetic moments of light nuclei

Daniel Möller

Introduction

Calculation

Results

Magnetic form factors

Magnetic moments and radii

lsovector observables

Isoscalar magnetic moment

Prediction of isoscalar 3N magnetic moment at N⁴LO, 68% DoB truncation errors

Magnetic moments of light nuclei

Daniel Möller

Introduction

Calculation

Results

Magnetic form factors

Magnetic moments and radii

lsovector observables

- Successful precision test of ChEFT (regarding order and DoB)
- Essential to include isovector current at N^{\geq 3}LO, fully covered by L_1 here

Isoscalar magnetic moment and magnetic radii

Results for magnetic moment and radius predictions and corresponding LECs (N⁴LO, 68% DoB truncation errors)

\varLambda in MeV	L_2 in $F_{\pi}^{-2} \Lambda_b^{-2}$	L_1 in $F_{\pi}^{-2} \Lambda_b^{-2}$	μ_3^S in μ_N	r^2_{Md} in ${\rm fm}^2$	$(r_{M3}^S)^2$ in ${\rm fm}^2$
400	0.023	1.285	0.4230(26)	4.481(27)	2.283(14)
450	0.052	1.201	0.4226(26)	4.481(27)	2.279(14)
500	0.079	1.187	0.4222(26)	4.481(27)	2.273(14)
550	0.109	1.225	0.4218(26)	4.480(27)	2.261(15)
experiment	—		0.425668622(6)	4.29(7)	2.1(24)

Magnetic moments of light nuclei

Daniel Möller

Introduction

Calculation

Results

Magnetic form factors

Magnetic moments and radii

lsovector observables

- (Isovector) L_1 large compared to (isoscalar) L_2 but of natural size
- Predicted radii much more precise than current experimental knowledge

Isovector and individual 3N FFs np X (n)p

Good agreement with data, including just a single N³LO isovector contribution

Magnetic moments of light nuclei

Daniel Möller

Isovector observables

19/21

Summary

Magnetic moments of light nuclei

Daniel Möller

Introduction Calculation

Results

Summary and outlook

- Calculation of isoscalar magnetic few-nucleon observables pushed to N⁴LO
- Calculation of *isovector* magnetic few-nucleon observables pushed beyond N²LO
- Good agreement with experimental data, in particular
 - successfully benchmarked ChEFT with isoscalar 3N magnetic moment
 - unprecedented precision for magnetic radii

Outlook

- ▶ Room for improvements, in particular for isovector and individual ³H, ³He form factors via consistently regularized (isovector) N^{≥3}LO current operators
- Calculation should be easily extensible to magnetic properties of larger nuclei, magnetic moments can provide ChEFT benchmark in addition to charge radii
 - \rightarrow We can provide "magnetic moment operators" to be directly plugged into existing frameworks.

Magnetic moments of light nuclei

Daniel Möller

Introduction Calculation Results Summary

Supplementary slides

Magnetic moments of light nuclei

Daniel Möller

Supplementary slides

Fitting d_9 Beyond N⁴LO

lsovector observables

1N FF parametrizations

3N forces

Magnetic moments order by order

Contributions to magnetic moments

References

1/10

Fitting d_9 to μ_3^S at N⁴LO

- ▶ Having three precise experimental values μ_d , μ_3^S , μ_3^V , one can principally fit all LECs L_2 , L_1 , and d_9 simultaneously as done in Schiavilla:2018udt.
- Similar as there, we obtain a range of

 $d_9=0.3\ldots 0.5\,\mathrm{GeV}^{-2}$

by varying cutoffs. (d_9 actually cutoff-independent, since πN quantity)

 Quite sizable contribution but practically completely cancelled by L₂ contribution

 \rightarrow sum of both is very small and form factors as well as radii change only insignificantly compared to $d_9=0$

• Change to μ_3^S is only within truncation error

 \Rightarrow Unable to reliably extract non-zero d_9 from few-nucleon data

Magnetic moments of light nuclei

Daniel Möller

Supplementary slides

Fitting d₉ Beyond N⁴LO Isovector

1N FF parametrizations

3N forces

Magnetic moments order by order

Contributions to magnetic moments

N⁵LO contact current

▶ Derivable analogously to higher-order *charge* corrections in Filin:2020tcs via unitary transformation $U = e^{AT_1 + BT_2 + CT_3}$ of the leading current operator:

$$oldsymbol{\hat{J}}_{ ext{cont}}^{ ext{N}^5 ext{LO}} = \hat{U}^\dagger oldsymbol{\hat{J}}_{1 ext{N}} \hat{U} - oldsymbol{\hat{J}}_{1 ext{N}} \simeq \left[oldsymbol{\hat{J}}_{1 ext{N}}, \hat{\mathcal{T}}
ight]$$

- ▶ Regularization of the generators T_i consistent with the chiral potential from Reinert:2017usi as $T_i \rightarrow T_i \exp\left(-\frac{p^2 + p'^2}{\Lambda^2}\right)$
- Gives three more LECs, only two contribute to deuteron
- Fitting to G_M data yields high correlation of these LECs (not enough data from isoscalar 3N form factor)
- Fit only one of them to G_M shape (no contribution to magnetic moments)
- χ²-fit including experimental and theoretical errors (1N form factor parametrization and truncation [iteratively])

Magnetic moments of light nuclei

Daniel Möller

Supplementary slides

Fitting d_9

$\mathsf{Beyond}\ \mathsf{N}^4\mathsf{LO}$

lsovector observables 1N FF

parametrizations

3N forces

Magnetic moments order by order

Contributions to magnetic moments

Results beyond N⁴LO

Slightly improved description of G_M data after fitting single LEC Statistical uncertainty (red dashed) within truncation error \blacktriangleright Effect on F_M^S negligible Radii only get a few per mille larger N⁴LO prediction \Rightarrow already does a good iob

Magnetic moments of light nuclei

Daniel Möller

Supplementary slides

Fitting d_9

Beyond N^4LO

lsovector observables 1N FF

parametrizations

3N forces

Magnetic moments order by order

Contributions to magnetic moments

References

4/10

Details on isovector and individual 3N FFs

- Up through N²LO all operators included
- At N³LO only single isovector operator included in addition
- Fitting L₁ seems to do a good job compared to L₁ = 0 (dashed)
- Magnetic moment and radius predictions well in line with data but large (few-percent) truncation errors

Magnetic moments of light nuclei

Daniel Möller

Supplementary slides

Fitting d_9 Beyond N⁴LO

lsovector observables

1N FF parametrizations

3N forces

Magnetic moments order by order

Contributions to magnetic moments

Effects of changing 1N FF parametrizations

Scaled G_M for different parametrizations of the 1N Sachs form factors $\mathcal{G}_E, \mathcal{G}_M$

(bands are propagated uncertainties of the parametrizations) \Rightarrow Within errors not relevant if Ye:2017gyb or Lin:2021umz are used though deviation is larger than for deuteron charge form factors (due to \mathcal{G}_M being more important here)

Magnetic moments of light nuclei

Daniel Möller

Supplementary slides

Fitting d_9 Beyond N⁴LO Isovector observables

parametrizations

3N forces

Magnetic moments order by order

Contributions to magnetic moments

Correlation of ³H binding energy and magnetic moment

Magnetic moments of light nuclei

Daniel Möller

Supplementary slides Fitting d₉ Beyond N⁴LO Isovector observables 1N FF parametriza-

3N forces

Magnetic moments order by order

Contributions to magnetic moments

Chiral convergence of magnetic moments

		μ_d 0.857 438	82346(53)			
	Λ NL	_O N ² LO	N ³ LO fit	N^4LO fit		
	400 0.86 450 0.86 500 0.86 550 0.85	$\begin{array}{ccc} (31) & 0.86(7) \\ (31) & 0.85(7) \\ (31) & 0.85(7) \\ (31) & 0.84(7) \end{array}$	$\begin{array}{c} 0.857(18) \\ 0.857(18) \\ 0.857(18) \\ 0.857(18) \\ 0.857(18) \end{array}$	$\begin{array}{c} 0.857(5) \\ 0.857(5) \\ 0.857(5) \\ 0.857(5) \\ 0.857(5) \end{array}$		
μ_3^S 0.425 66	8622(6)			μ_3^V –2.5	53293849(6)	
NLO N ² LO	N ³ LO	N ⁴ LO	Λ NI	.O N ² LC) N ³ LO fit	N ⁴ LO fit
$\begin{array}{rrr} 42(15) & 0.416(34) \\ 42(15) & 0.412(33) \end{array}$	$0.423(9) \\ 0.423(9)$	0.4230(26) 0.4226(26) 0.4222(26)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3(8) -2.26(3) 3(8) -2.28(3) 3(8) -2.30(3)	$\begin{array}{rrrr} 18) & -2.55(7) \\ 18) & -2.55(7) \\ 18) & -2.55(6) \end{array}$	-2.553(20) -2.553(19) -2.553(18)

 $\mu_{3\mathrm{H}}$ 2.978 962 471(10) beginning from N 3 LO incomplete

Δ

400 450 500

550

Λ	NLO	N^2LO	N ³ LO	N^4LO
400 450 500 550	$\begin{array}{c c} 2.7(10) \\ 2.7(10) \\ 2.7(10) \\ 2.8(10) \end{array}$	$\begin{array}{c} 2.67(21) \\ 2.69(22) \\ 2.70(22) \\ 2.72(22) \end{array}$	2.98(8) 2.98(7) 2.98(7) 2.98(7)	$\begin{array}{c} 2.976(21) \\ 2.976(20) \\ 2.975(19) \\ 2.975(19) \end{array}$

$\mu_{3\mathrm{H}}$	e -2.12762	25227(8) begin	ning from N ³ L	O incomplete
Λ	NLO	N^2LO	N ³ LO	N^4LO
400	-1.8(7)	-1.84(15)	-2.13(7)	-2.130(19)
450	-1.9(7)	-1.86(15)	-2.13(6)	-2.131(18)
500	-1.9(7)	-1.89(15)	-2.13(6)	-2.131(16
550	-1.9(7)	-1.91(15)	-2.13(5)	-2.131(15)

Magnetic moments of light nuclei

Daniel Möller

Supplementary slides

Fitting d_9 Beyond N⁴LO Isovector observables 1N FF

parametrizations

3N forces

Magnetic moments order by order

Contributions to magnetic moments

Individual contributions to magnetic moments

Percentages of individual contributions to deuteron and isoscalar 3N magnetic moments relative to the experimental value at $N^4 LO$

	Λ	1N contrib.	L_2 -term	truncation err	or		
• 0/	400	99.72	0.28	0.60			
μ_d in %:	450	99.36	0.64	0.60			
	500	99.03	0.97	0.60			
	550	98.74	1.26	0.60			
-							
	Λ	1N contrib.	NLO OPE	L_2 -term	L_1 -term	missing	truncation error
S : 0/	Л 400	1N contrib. 97.91	NLO OPE -0.07	L_2 -term 0.72	L ₁ -term 0.80	missing 0.63	truncation error 0.60
μ_3^S in %:	Л 400 450	1N contrib. 97.91 96.90	NLO OPE -0.07 0.02	L ₂ -term 0.72 1.63	L ₁ -term 0.80 0.74	missing 0.63 0.71	truncation error 0.60 0.60
μ_3^S in %:	Л 400 450 500	1N contrib. 97.91 96.90 95.96	NLO OPE -0.07 0.02 0.10	L ₂ -term 0.72 1.63 2.44	L ₁ -term 0.80 0.74 0.69	missing 0.63 0.71 0.82	truncation error 0.60 0.60 0.60

 \rightarrow Similar as for charge radii, 2N contributions drastically reduce cutoff dependence and their importance grows with number of nuclei

Magnetic moments of light nuclei

Daniel Möller

Fitting d_9 Beyond N⁴LO

observables 1N FF parametrizations 3N forces Magnetic

Magnetic moments order by order

Contributions to magnetic moments

References

A. Antognini (Dec. 2015). D. Beck et al., Phys. Rev. Lett. 59, 1537-1540 (1987). M. A. Belushkin, H.-W. Hammer, U.-G. Meißner, Phys. Rev. C 75, 035202 (2007). S. D. Drell, J. D. Walecka, Annals Phys. 28, 18-33 (1964). E. Epelbaum et al., Eur. Phys. J. A 56, 92 (2020). A. A. Filin, D. Möller, V. Baru, E. Epelbaum, H. Krebs, P. Reinert, Phys. Rev. C 103, 024313 (2021). R. J. Furnstahl, N. Klco, D. R. Phillips, S. Wesolowski, Phys. Rev. C 92, 024005 (2015). M. Garcon, J. W. Van Orden, Adv. Nucl. Phys. 26, 293 (2001). R. A. Gilman, F. Gross, J. Phys. G 28, R37-R116 (2002). S. Kölling, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 84, 054008 (2011). H. Krebs, E. Epelbaum, U.-G. Meißner, Few Body Syst. 60, 31 (2019). Y.-H. Lin, H.-W. Hammer, U.-G. Meißner, Eur. Phys. J. A 57, 255 (2021). L. E. Marcucci et al., J. Phys. G 43, 023002 (2016). J. A. Melendez, S. Wesolowski, R. J. Furnstahl, Phys. Rev. C 96, 024003 (2017). Y. I. Neronov, N. N. Seregin, J. Exp. Theor. Phys. 115, 777-781 (Nov. 2012). M. Puchalski, J. Komasa, K. Pachucki, Phys. Rev. A 92 (Aug. 2015). P. Reinert, H. Krebs, E. Epelbaum, Eur. Phys. J. A 54, 86 (2018). N. Rijneveen, A. M. Gasparvan, H. Krebs, E. Epelbaum (Aug. 2021). R. Schiavilla et al., Phys. Rev. C 99, 034005 (2019). R. Seutin, PhD thesis, Tech, U., Dortmund (main), Tech, U., Dortmund (main), 2021. S. Wesolowski, R. J. Furnstahl, J. A. Melendez, D. R. Phillips, J. Phys. G 46, 045102 (2019). Z. Ye. J. Arrington, R. J. Hill, G. Lee, Phys. Lett. B 777, 8-15 (2018). D. R. Yennie, M. M. Lévy, D. G. Ravenhall, Reviews of Modern Physics 29, 144-157 (Jan, 1957).

Magnetic moments of light nuclei

Daniel Möller

Supplementary slides