Precision calculations of charge radii of light nuclei

Arseniy Filin

Institut für Theoretische Physik II, Ruhr-Universität Bochum, Germany

in collaboration with

V. Baru, E. Epelbaum, C. Körber, H. Krebs, D. Möller, A. Nogga, and P. Reinert

PRL 124 082501 (2020) Phys.Rev.C 103 024313 (2021)

Precision calculations of charge radii of light nuclei

Motivation:

- Precision tests of nuclear chiral effective field theory (EFT)
- Help to resolve long-standing issue with underpredicted radii of medium-mass and heavy nuclei
- More applications:
 - A new way to extract the neutron and the proton charge radii from few-nucleon data
 - Search for Beyond-Standard-Model physics

Precision calculations of charge radii of light nuclei

Takeaway from A=2,3,4 calculations

Precision measurements of charge radii for A = 1, 2, 3, 4 nuclei

Number of neutrons

Chiral effective field theory - precise, accurate and consistent

New high-precision chiral NN forces (N⁴LO⁺) Reinert et al. PRL 126, 092501 (2021) talk by Patrick

- Nearly perfect description of pp and pn scattering data up to pion production threshold

Chiral 3N forces (general N²LO; selected terms at N⁴LO) Epelbaum:2019kcf

- LECs cD and cE (N²LO) are fitted to RIKEN Nd DCS data and ³He binding energy
- Consistent regularisation of N³LO is also in progress, talk by Hermann

2N Chiral electromagnetic currents (general N²LO; isoscalar N⁴LO⁻)

- N²LO (**isoscalar N⁴LO**-) is derived and regularised consistently with the chiral NN forces
- Consistent regularisation of N³LO (isovector) is in progress

Reliable methods to quantify truncation uncertainty of the EFT expansion

Kolling:2009iq Kolling:2012cs Krebs:2019aka

Krebs:2020pii (Review)

Epelbaum et al. EPJA 51 (2015); Furnstahl et al. PRC 92, 024005 (2015); Melendez et al. PRC 96, 024003 (2017), Wesolowski et al. J. Phys. G 46, 045102 (2019); Melendez et al. PRC 100, 044001 (2019), ...

Chiral EFT calculation of charge radii

Goals:

- consistent calculation of isoscalar charge radii of A = 2, 3, 4 nuclei
- aim at N⁴LO level of accuracy even when not all forces are available at N⁴LO
- careful estimation of uncertainties (truncation, statistical, incompleteness of 3NFs, ...)

Chiral EFT calculation of the nuclear charge radius

Charge radius r_c is related to the charge form factor $F_c(Q)$

$$r_C^2 = (-6) \frac{\partial}{\partial Q^2} F_C(Q^2) \Big|_{Q=0}$$

Charge form factor F_{C} can be computed (in the Breit frame) as

$$F_C(Q^2) = \frac{1}{2J+1} \sum_{M_J} < P', M_J | J_B^0 | P, M_J >$$

in chiral EFT

The matrix element is a convolution of nuclear wave function and charge density operator

Nuclear wave function - based on high-precision chiral EFT interactions

Charge density operator - consistent with chiral nuclear forces

Wave functions of A=2,3,4 nuclei

A=2,3,4 wave functions - solutions of Schrödinger / FY equations in the partial wave basis

- 2N forces at N⁴LO⁺
- 3N forces at N²LO LECs cD and cE (N²LO) are fitted to RIKEN Nd DCS data and ³He binding energy

Extra 3N forces at N⁴LO:

- added selected 3NF at N⁴LO (cE1 or cE3) (tree-level & regularised consistently)
- fitted LEC cE1 or cE3 to exactly reproduce ⁴He physical BE

In progress

- relativistic treatment of 3N and 4N equations (talk by Anderas)

Nuclear electromagnetic currents

Kolling:2009iq, Kolling:2012cs, Krebs:2019aka Review: H. Krebs, EPJA 56 (2020) 240

three-nucleon isoscalar charge operators are beyond N⁴LO

depend on 3 LECs

 ${}^{3}S_{1}-{}^{3}D_{1}$ - this one too

Chen, Rupak, Savage '99;

Phillips '07 AF et al. '20

³S₁-³S₁ - can be fitted to deuteron FF data

¹S₀-¹S₀ - can be fitted to ⁴He FF data

2N Charge density operators (N³LO)

Isoscalar 2N one-pion exchange charge density

— parameter free

- regularised consistently with NN forces
- **local** operator (simple PWD)
- depends on the off-shell parameters β_8 , β_9

β_8 , β_9 are chosen consistently with NN potential and checked

$$\rho_{2N}^{1\pi, reg} = (1 - 2\bar{\beta}_9) G_{\rm E}^{S}(Q^2) \frac{eg_A^2}{16F_\pi^2 m_N} (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \frac{(\boldsymbol{\sigma}_1 \cdot \boldsymbol{k})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q}_2)}{\boldsymbol{q}_2^2 + M_\pi^2} \exp\left(-\frac{\boldsymbol{q}_2^2 + M_\pi^2}{\Lambda^2}\right) \\ + (2\bar{\beta}_8 - 1) G_{\rm E}^{S}(Q^2) \frac{eg_A^2}{16F_\pi^2 m_N} (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)(\boldsymbol{\sigma}_1 \cdot \boldsymbol{q}_2)(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q}_2)(\boldsymbol{q}_2 \cdot \boldsymbol{k}) \left(\frac{1}{\left(\boldsymbol{q}_2^2 + M_\pi^2\right)^2} + \frac{1}{\Lambda^2 \left(\boldsymbol{q}_2^2 + M_\pi^2\right)}\right) \exp\left(-\frac{\boldsymbol{q}_2^2 + M_\pi^2}{\Lambda^2}\right)$$

2N Charge density operators (N³LO)

Isoscalar 2N contact charge density

- 3 LECs which we fit to reproduce the deuteron and 4He form factors
- regularised consistently with NN forces
- **separable** operator (also simple PWD)

$$\rho_{\text{Cont}} = 2eG_{\text{E}}^{S}(k^{2}) \left[\left(A + B + \frac{C}{3} \right) \frac{\sigma_{1} \cdot \sigma_{2} + 3}{4} \frac{1 - \tau_{1} \cdot \tau_{2}}{4} k^{2} + C \frac{1 - \tau_{1} \cdot \tau_{2}}{4} \left((k \cdot \sigma_{1})(k \cdot \sigma_{2}) - \frac{1}{3} k^{2}(\sigma_{1} \cdot \sigma_{2}) \right) + \left(A - \frac{3B - C}{15_{0} \cdot 15_{0} \text{ LEC}} \frac{1 - \sigma_{1} \cdot \sigma_{2}}{4} \frac{\tau_{1} \cdot \tau_{2} + 3}{4} k^{2} \right]$$
(regulator not shown)

Low-energy constants from a fit to charge and quadrupole form factors

Parameter-free prediction of structure radii

After all three LECs in charge density operators are fixed we get predictions for the structure radii

$$r_{str}(^{2}\text{H}) = 1.9729 \pm 0.0006_{\text{trunc}} \stackrel{+0.0012}{-0.0008 \text{ stat}} fm \quad \text{AF, Möller, Baru, Epelbaum, Krebs, Reinert,} \\ PRL 124 (2020) 082501; PRC 103 (2021) 024313 \\ r_{str}(^{4}\text{He}) = 1.4784 \pm 0.0030_{\text{trunc}} \pm 0.0013_{\text{stat}} \pm 0.0007_{\text{num}} fm \text{ (Preliminary)} \\ r_{str}(\text{Isoscalar 3N}) = 1.7309 \pm 0.0020_{\text{trunc}} \pm 0.0006_{\text{stat}} \pm 0.0002_{\text{iso-v}} \pm 0.0003_{\text{num}} \text{ (Preliminary)}$$

Using Bayesian model to estimate truncation uncertainty at each order Epelbaum et al. EPJA 56, 92 (2020)

error bands = χ EFT truncation uncertainty

orange band = our prediction ± total uncertainty

Chiral EFT expansion converges well

Regulator dependence is smaller than the truncation uncertainty

Extensive uncertainty analysis

Propagation of uncertainties from data and theory

Correlation between ⁴He structure radius and binding energy

using variation of cE1 (N⁴LO 3NF LEC)

⁴He binding energy and rstr are strongly correlated! ⁴He structure radius vs BE Digits show cE1 values 1.49 Preliminary ⁴He structure radius [fm] 10-1.0.0-1. 1.48 Our prediction for ⁴He structure radius: $r_{str}(^{4}He) = (1.4784 \pm 0.0030_{trunc}) fm$ preliminary (only truncation error is shown) 1.47 2. 2 When experimental BE is reproduced ВП the prediction for r_{str} is consistent with our 1.46 2 Exp. ⁴He error estimation (fits inside the orange band) $\Lambda = 400 \text{ MeV}$ $\Lambda = 450 \text{ MeV}$ 1.45 500 MeV -28.5 -29.5 -29.0-28.0 -27.5 ⁴He binding energy [MeV]

Correlation between ⁴He structure radius and binding energy

using variation of **cE3** (N⁴LO 3NF LEC)

⁴He structure radius vs BE

r-BE correlations help to precisely extract r_{str} even with incomplete 3NF!

Propagation of uncertainty from πN and NN LECs

Prepared **50 sets of NN LECs** and **50 sets of piN LECs** correlation information from NN and RS analysis Full calculation is repeated from scratch for each set

Applications

Relation between charge and structure radii

Nuclear charge radius can be decomposed into structure, proton and neutron radii

General
$$r_C^2 = r_{str}^2 + \left(r_p^2 + \frac{3}{4m_p^2}\right) + \frac{A-Z}{Z}r_n^2$$

We focus on isoscalar A=2,3,4 radii

Deuteron
$$r_d^2 = r_{str}^2 ({}^{2}\text{H}) + \left(r_p^2 + \frac{3}{4m_p^2}\right) + r_n^2$$

⁴He $r_C({}^{4}\text{He}) = r_{str}^2 ({}^{4}\text{He}) + \left(r_p^2 + \frac{3}{4m_p^2}\right) + r_n^2$
Isoscalar 3N $\frac{r_C^2({}^{3}\text{H}) + 2r_C^2({}^{3}\text{He})}{3} = \frac{r_{str}^2({}^{3}\text{H}) + 2r_{str}^2({}^{3}\text{He})}{3} + \left(r_p^2 + \frac{3}{4m_p^2}\right) + r_n^2$

Some applications of the accurate **xEFT calculation** of the **nuclear structure** radii:

- extract proton and neutron charge radii from precisely measured nuclear charge radii
- predict other nuclear charge radii

Extraction of the neutron charge radius

$$r_d^2 = r_{str}^2 (^2\text{H}) + \left(r_p^2 + \frac{3}{4m_p^2}\right) + r_n^2 \qquad \longrightarrow \qquad r_n^2 = (r_d^2 - r_p^2) - \frac{3}{4m_p^2} - r_{str}^2 = \frac{1.9729_{-0.0012}^{+0.0015} fm}{6}$$

Extraction of the neutron radius from $(r_d^2 - r_p^2) = 3.82070(31) fm^2$ (atomic spectroscopy + QED corrections)

 $r_n^2 = -0.105^{+0.005}_{-0.006} fm^2$

~2 σ deviation from the PDG (2020) weighted average $r_n^2 = -0.1161(22) fm^2$

Neutron charge radius in PDG 2022

Citation: R.L. Workman et al. (Particle Data Group), to be published (2022)

n MEAN-SQUARE CHARGE RADIUS

VALUE (fm ²)	DOCUMENT ID		COMMENT	
-0.1155 ± 0.0017 OUR AVERAGE				
$-0.115 \pm 0.002 \pm 0.003$	KOPECKY	97	<i>ne</i> scattering (Pb)	
$-0.124 \pm 0.003 \pm 0.005$	KOPECKY	97	<i>ne</i> scattering (Bi)	
-0.114 ± 0.003	KOESTER	95	<i>ne</i> scattering (Pb, Bi)	
-0.115 ± 0.003	¹ KROHN	73	ne scattering (Ne, Ar, Kr, Xe)	
● ● We do not use the following data for averages, fits, limits, etc. ● ●				
-0.1101 ± 0.0089	² HEACOCK	21	n interferometry	
$-0.106 \begin{array}{c} +0.007 \\ -0.005 \end{array}$	³ FILIN	20	chiral EFT analysis	
$-0.117 \begin{array}{c} +0.007 \\ -0.011 \end{array}$	BELUSHKIN	07	Dispersion analysis	
$-0.113 \pm 0.003 \pm 0.004$	KOPECKY	95	<i>ne</i> scattering (Pb)	
-0.134 ± 0.009	ALEKSANDR.	86	ne scattering (Bi)	
-0.114 ± 0.003	KOESTER	86	ne scattering (Pb, Bi)	
-0.118 ± 0.002	KOESTER	76	<i>ne</i> scattering (Pb)	
-0.120 ± 0.002	KOESTER	76	ne scattering (Bi)	
-0.116 ± 0.003	KROHN	66	<i>ne</i> scattering (Ne, Ar, Kr, Xe)	

 1 KROHN 73 measured $-0.112\pm0.003~{\rm fm}^2$. This value is as corrected by KOESTER 76. 2 HEACOCK 21 extract the value from Pendelloesung interferometry to measure the neutron structure factors of silicon. This value is strongly anti-correlated with the mean-square thermal atomic displacement.

³ FILIN 20 extract the value based on their chiral-EFT calculation of the deuteron structure radius and use as input the atomic data for the difference of the deuteron and proton charge radii.

⁴He charge radius: effective field theory and experiment

$$r_{C}(^{4}\text{He}) = r_{str}^{2}(^{4}\text{He}) + \left(r_{p}^{2} + \frac{3}{4m_{p}^{2}}\right) + r_{n}^{2}$$

Our prediction for ⁴He **charge** radius

 $r_C(^4$ **He**) = (1.6798 ± 0.0035) fm

•
$$r_{str}(^{4}\text{He}) = 1.4784 \pm 0.0030_{trunc} \pm 0.0013_{stat} \pm 0.0007_{num} fm$$

preliminary, using CODATA 2018 r_{p} and own determination of r_{n}

Our prediction for ⁴He charge radius is fully consistent with the muonic-atom spectroscopy

Indications of BSM physics in ⁴He ?

All data used to constrain chiral EFT LECs are from strong interaction / electron-based experiments:

π N Roy-Steiner analysis Hoferichter:2015tha, Hoferichter:2015hva

NN pn and pp scattering data, deuteron BE Reinert:2020mcu

Deuteron charge and quadrupole FF data JLABt20:2000qyq, Nikolenko:2003zq

Deuteron-proton radii difference from atomic spectroscopy Pachucki:2018yxe, Jentschura et al. PRA 83 (2011)

Proton charge radius CODATA2018

⁴He form factor data Erich:1971rhg, Mccarthy:1977vd, VonGunten:1982yna, Ottermann:1985km, Frosch:1967pz,

Arnold:1978qs, Camsonne:2013df

Binding energies of ³He and ⁴He

Nd DCS minimum @ 70 MeV RIKEN data

No muonic data is used in our chiral EFT predictions

Our prediction for ⁴He charge radius is consistent with the muonic experiment No indication of BSM physics in ⁴He at this accuracy level

Isoscalar nucleon charge radius from experimental ⁴He charge radius

Our prediction for ⁴He **structure** radius:

 $r_{str}(^{4}\text{He}) = 1.4784 \pm 0.0030_{trunc} \pm 0.0013_{stat} \pm 0.0007_{num} fm$

Proton charge radius from isoscalar nucleon radius

Our determination of the

isoscalar nucleon charge radius from ⁴He

 $(r_n^2 + r_p^2) = (0.597 \pm 0.009) fm^2$ preliminary

Our determination of the

neutron charge radius from ²H

$$r_n^2 = -0.105^{+0.005}_{-0.006} fm^2$$

AF, Möller, Baru, Epelbaum, Krebs, Reinert, PRL 124 (2020) 082501; PRC 103 (2021) 024313

New determination of the proton charge radius: $r_p = (0.838 \pm 0.007) fm$

preliminary

Our extraction supports the "small" proton radius

Our uncertainty is comparable with the experimental one

Prediction for isoscalar 3N charge radius

With all LECs being fixed, we can predict the isoscalar 3N charge radius:

$$\frac{r_C^2({}^{3}\mathbf{H}) + 2r_C^2({}^{3}\mathbf{He})}{3} = \frac{r_{str}^2({}^{3}\mathbf{H}) + 2r_{str}^2({}^{3}\mathbf{He})}{3} + \left(r_p^2 + \frac{3}{4m_p^2}\right) + r_n^2$$

$$r_C^{isoscalar3N} = \sqrt{\frac{r_C^2({}^{3}\mathbf{H}) + 2r_C^2({}^{3}\mathbf{He})}{3}} = (1.9058 \pm 0.0026) fm$$

preliminary, using CODATA 2018 r_p and own determination of r_n

Our result is **10x more precise** than current experimental data: $r_{C, exp.}^{isoscalar3N} = (1.9030 \pm 0.0290) fm$

 $r_{C, exp.}^{3He} = (1.9030 \pm 0.0290) fm$ using muonic ³He and old ³H: $r_{C}^{3He} = (1.9687 \pm 0.0013) fm$ Pohl ²0 (preliminary) $r_{C}^{3H} = (1.7550 \pm 0.0860) fm$ Amroun et al. ⁹4 (world average)

T-REX experiment in Mainz [Pohl et al.] aims at measuring r_C^{3H} within ±0.0002 fm (400x more precise) The isoscalar 3N radius will be then known within ±0.0009 fm

⇒ precision tests of nuclear chiral EFT!

Estimation of ³H charge radius

Our isoscalar 3N charge radius calculation:

This estimation is 10x more precise than e⁻ data $r_C^{3H} = (1.7550 \pm 0.0860) fm$ Amroun et al. '94 (world average) But it suffers from parametric amplification of uncertainties (both from theory and from ³He data) => isoscalar 3N charge radius should be used for precision tests Takeaway from A=2,3,4 calculations

Importance of 2N charge density

Individual contributions to A=2,3,4 stucture radii from

- single-nucleon charge density (1N)
- 2N one-pion exchange density (OPE)
- 2N contact densities (CT 3S1, 3D1, 1S0)

2N charge density contribution to structure radii squared:

deuteron	~ 0.7%
isoscalar 3N	~ 2.5%
⁴ He	~ 6%

For A=2,3,4 importance of 2N charge grows with A

Importance of correct binding energy

Charge radius is correlated with BE

- correlation helps to calculate radii with incomplete 3NFs
- effects of over/underbinding cannot be compensated by short range charge density

Summary

Precise calculation of A = 2, 3, 4 charge radii in chiral effective field theory & uncertainty analysis

Isoscalar 2N charge density operators

- derived, regularized, PW-decomposed and LECs are fixed
- produce important contributions to A=2,3,4 structure radii (importance grows with A)
- can be used to calculate corrections to charge radii of A>4 nuclei

Applications and tests: preliminary

⁴He:

- calculated ⁴He charge radius (0.2% accuracy) agrees with the new μ⁴He measurement

³H-³He:

- predicted the isoscalar 3N charge radius r_C (0.1% accuracy)
- our r_C is in agreement with the current exp. value (which has 10x larger errors)
- the ongoing T-REX (³H) exp. in Mainz will allow for a precision test of nuclear chiral EFT
- **p** and **n** charge radii from light nuclei:
 - ²H r_{str} combined with isotope-shift data => extracted the neutron charge radius (2 σ tension with PDG)
 - ⁴He r_{str} combined with spectroscopic data => extracted isoscalar nucleon and proton charge radii

Outlook

- estimation of the effects from non-relativistic treatment of the SE (talk by Anderas)
- Analysis of magnetic form factors of ²H, ³H and ³He (talk by Daniel)

- Consistent inclusion of N³LO, N⁴LO three-nucleon forces
- Consistent inclusion of isovector currents (individual predictions for ³H and ³He)
- Application to processes with two photons (polarizabilities, ...)