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Background: Neutrino-nucleus guasi-elastic scattering is crucial to interpret the neutrino oscillation results in
long baseline neutrine experiments. There are rather large uncertainties in the cross section, due to insufficient
knowledge on the role of two-body weak currents.

Purpose: Determine the role of two-body weak currents in neutrino-deuteron quasi-elastic scattering up to GeV
energies.

Methods: Calculate cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-
changing weak currents, from threshold up to GeV energies, using the Argonne w3 potential and consistent
nuclear electroweak currents with one- and two-body terms.

Results: Two-body contributions are found to be small, and increase the cross sections obtained with one-body
currents by less than 10% over the whole range of energies. Total cross sections obtained by describing the
final two-nucleon states with plane waves differ negligibly, for neutrino energies =500 MeV, from those in
which interaction effects in these states are fully accounted for. The sensitivity of the calculated cross sections to
different models for the two-nucleon potential and/or two-body terms in the weak current is found to be weak.
Comparing cross sections to those obtained in a naive model in which the deuteron is taken to consist of a free
proton and neutron at rest, nuclear structure effects are illustrated to be non-negligible.

Conclusion: Contributions of two-body currents in neutrino-deuteron quasi-glastic scattering up to GeV are
found to be smaller than 10%. Finally, it should be stressed that the results reported in this work do not include
pion production channels.
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We solved the three-nucleon (3N ) Faddeev equation including relativistic features at incoming neutron lab
energies E}ft’ = 28, 65, 135, and 250 MeV. Those features are relativistic kinematics, boost effects and Wigner
spin rotations. As dynamical input a relativistic nucleon-nucleon (NN ) interaction exactly on-shell equivalent
to the AVI8 NN potential has been used. The effects of Wigner rotations for elastic scattering observables
were found to be small. The boost effects are significant at higher energies. They diminish the transition matrix
elements at higher energies and lead in spite of the increased relativistic phase-space factor as compared to the
nonrelativistic one to rather small effects in the cross section, which are mostly restricted to the backward angles.
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Abstract

The potentials V' (v) in the nonrelativistic (relativistic) nucleon—nucleon (NN) Schridinger equation are related by a quadratic equation. That
equation is numerically solved, thus providing phase equivalent v-potentials related for instance to the high precision NN potentials, which are
adjusted to NN phase shift and mixing parameters in a nonrelativistic Schrédinger equation. The relativistic NN potentials embedded in a three-
nucleon (3N) system for total NN momenta different from zero are also constructed in a numerically precise manner. They enter into the relativistic
interacting 3N mass operator, which is needed for relativistic 3N calculations for bound and scattering states.
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We solve the Faddeev equation in an exactly Poincaré invariant formulation of the three-nucleon problem.
The dynamical input is a relativistic nucleon-nucleon (N N) interaction that is exactly on-shell equivalent to
the high-precision CD Bonn N N interaction. S-matrix cluster properties dictate how the two-body dynamics is
embedded in the three-nucleon mass operator (rest Hamiltonian). We find that for neutron laboratory energies
above ~20 MeV relativistic effects on A, are negligible. For energies below ~20 MeV dynamical effects lower
the nucleon analyzing power maximum slightly by ~=2% and Wigner rotations lower it further up to ~10%,
thereby increasing disagreement between data and theory. This indicates that three-nucleon forces (3NF) must
provide an even larger increase of the A, maximum than expected up to now.



Formalism

In our approach a relativistically invariant quantum mechanical model is defined by a unitary
representation, U( A, a), of the Poincaré group acting on the Hilbert space of the theory.

(1) For a particle of mass m and spin j a single-particle unitary representation of the
Poincaré group is given on the single-particle basis states by:

E())

U(B(p/m))|(m, j)0, p) = (m, 7)p, 1)
U(N. a)|(m,j)p. p) =
Ep
e~ a Z [(m, j)p’, v) E((I ))DJT Ry(A,p)]

v=—j

rotationless Lorentz transformation

B ) 0 — E‘ . . B 77, i f— B ! Di pu— _i N
(p/m)’ = E(p)/m (p/m)'o = B(p/m)"s = p'/m that maps (m, 0, 0, 0) to (E(p), p)

B(P/”?)ij = 0" + })f';)j/(??z(??i + E(p)). E(p) = v/m? + p?
Pt o= ALY

Ry,(A,p) == B~ p'/m)AB(p/m) Wigner rotation !



In this representation the spin observable in an arbitrary frame is defined as the spin that would
be measured in the particle's rest frame if it was boosted to the rest frame using B*(p/m).

Dirac spinors as defined in the Bjorken and Drell’s textbook provide for j= % a four
dimensional representation of the Poincare group with the so-called canonical spin !

(2) The free dynamics on a multi-particle Hilbert space is given by the tensor product of
the single particle unitary representations, U,(/, a), of the Poincaré group:

Us(A, a) = @,U; (A, a)

The components of the free four momentum and the free Lorentz generators are the
infinitesimal generators of U,(/, a). The free mass Casimir operator, M,, and the
components of the canonical spin operator, j,', are functions of the infinitesimal
generators.



(3) Dynamical representation of the Poincare group is achieved through:
1. Building simultaneous eigenstates of the commuting observables for the noninteracting system (M,,
momentum, jy*, j; , )
2. Adding an interaction Vto M,: M = M, + V, where V fulfills

(' 3)D 1y V| (0, )ty d) = (D = )38 (i’ [V |l

d (d’) — degeneracy parameters; typically invariant masses and squares of angular momenta of
subsystems
3. Diagonalizing M in the basis from point 1 yields simultaneous eigenstates of (M, momentum, j,?, j, , ).
These eigenstates are complete on the N-body Hilbert space.
4. The dynamical representation of the Poincaré group is defined by requiring that the eigenstates from
point 3 transform like the single-particle states with the mass m replaced by the eigenvalue of M, m; :

U(A, a)|(mg,5)p, p, dy =

), B(p) = /< 17

E(p) D,{W [Rw lr\*"‘i.' p)]

J
e~P'a Z [(my,7)p', v, d)

v=—j

This construction is due to Bakamjian and Thomas and corresponds to what Dirac called , instant-form dynamics”.
It is formally applicable to calculations at energies below the threshold for pion production.



In our work the construction discussed above will be used to model the strong interactions;
the electromagnetic and weak interactions are treated using the one-boson exchange approximation.

In the one-boson exchange approximation U(A, a) factors into a tensor product of unitary
representations of the Poincaré group for the strongly interacting baryons (B) and the leptons (L):

U(A,a) = Ug(\,a) @ UL(A, a)

A current couples to the exchanged boson. The current is a sum of a lepton and strong (here nuclear)
current plus an interaction current, which does not contribute in the one-boson exchange approximation:

JH(x) = Jg(x) + JL(z) + I} (2) — Jp(x) + T (2)
The strong and lepton currents transform covariantly (A=B,L)

Ua(A,a)T4(2)Ua(A, @) = (A, T (Ax + a)



The strong and lepton currents are sums of one-body, two-body, ..., operators

“1)22.]_& ) + = ZIJLU
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The lepton currents can be approximately treated at tree level.

The many-body parts of the baryon currents must be non-zero in order to satisfy
the covariance and current conservation !

This follows from the commutation relations of the current operator with the
dynamical generators of the Poincaré group. The cluster expansions for the current
and rotationless boost generators, K, have the form

Jh(0) = Jh (0) + Jh(0), 1 o(0) Z Jh(0)
K=K, +K;, KO:ZKE-,

[K{ + KE. JY(0)] =iJ°(0), K, + K3, J°0)] = iJ'(0)



By cancelling the one-body terms, one arrives at the following condition:
K, TH0)] + (K, J4(0)] —aJ2(0) = [JE(0), K.
K}, J7(0)] + K7, J7(0)] —iJ7(0) = [J5(0), K]

If the right side of either equation is non zero then the current must have many-body
parts in order to satisfy current covariance. Similar conditions follow if the current is
conserved.

These many-body contributions to the current appear in addition to the many-body
currents that arise from physical processes such as exchange of charged mesons. They
are not uniquely determined from current covariance.

One way to ensure covariance is to use current matrix elements. Since current matrix
elements transform covariantly, all current matrix elements can be generated from any
independent set of matrix elements using covariance.



Elastic electron scattering off the deuteron
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(pL. | T2 (0)|pe. fre) = o\ B Ue(PL, o)V te(Pe, fhe) electron current matrix element

1 1 o
(QW)S\/;LE (Pes fos Pes He)

(this form can be also used for neutrino scattering)

(pr .U’D DI‘}#uC:EMF(U) |pDr KD, D)
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At present the nuclear matrix elements comprise contributions only from the single-nucleon current:
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single-nucleon current matrix element

Explicit formula for the Dirac spinor
(Bjorken-Drell normalization)



We need to express 2N states with the relative momentum k and total momentum P

through product states

11
I(Uo — —) k, Py, p2)

(m. )P 4 (. 5)pa. 1)

Group theory helps to avoid combersome algebra !! We use the general formula

U(B(

and evaluate

E
p/m)l(m.3)0.) =\ 22 [im, ),

U(B(P/M,)) (| (mn, %)k, ) |(m, %)—k: Ty )

in two ways:

mmmm@mémw)ml>kmﬂ

(VBN

m —_)k: p) ) (U(B(P/MO))Kme EJ—ka [12) )
2 2
J”ﬂgp(mr~»kPmm>

M, = 2y m? + k?

1. individually

2. treating noninteracting 2N system
with total momentum zero as one
object with mass M,



Relativistic partial wave states
|(.} 'IL)P-. LS f' S)

are constructed in the following way:

First we build

|(j~ k)o #E 5 :fdk Z Yllui E s H5 S, }"-’:S|j ,LL)

HipsH1 2

o Yol (10m, )k m 5) ke ) )

and then calculate (again in two ways)

In one way we get simply

N A2 2 treating noninteracting 2N system
M;+P? oninte
V |(j, k)P,,u; f.: .5'} as one object with mass M,
VI




In this way we arrive at the Poincaré Clebsch-Gordan coefficients

(P1s 1, P2s o] (J; B)p, 1151, )
- (i'!'-‘_k( 3 — 7 .
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X D)/ [Ru(B(p/maz0). k)] DL [Ru(B(p/maz) ko))

Hapiy
X (L pus 8, us| g, 1) (Y2, 113, Y2, g8, pis)
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X ("" Hi, S, ,(E,gljf f"‘!)(l/g‘ .‘ufl 1/2: p’é|5f fLs) -
B EK)EX)(E(p;) + E(p
N-2(pr.py) = CWER)(EP + E(ps))

E(p1)E(p2)(E(k) + E(k))



relativistic relative 2N momentum

k= pr—po- (E(p1) — E(p2)) (p1 + p2)
’ E(p1) + E(p2) + v/ (E(p1) + E(p2))> — (p1 + p2)

R ])/ ”1120 kl) — B—l (Pz‘/??? )B(])/'FHJQDJB(}(«;/???) Wigner rotations we need

brings the particle with the momentum p, \

to its rest frame takes a particle of mass m at rest
to momentum k;

takes a system of two particles with the same mass, m, and momenta
k =k, and -k = k,, respectively, to the total two-particle momentum p,
by which the momentum k;is changed to p,

=M
(p.k) =k + 1 + 5 (p k) p i

— . — 2 2 2
1 (p-k)p = M? +p?

P2 p2(p. k) = —k + p_ 2F(K)(Ei(p.k) + 2E(k))



The relativistic deuteron at rest

(2 k2 + m? + V) |D) = mp |D) V — relativistic NN potential in the total 2N momentum zero frame

The relativistic deuteron with the total momentum g

(\/4]’52 + 4m? + g% + Vq) |D) = \/mlz) + q% |D) V, - »boosted” NN potential

The quantum numbers [ and s are kinematically invariant quantities that distinguish

representations with the same mass (k) and spin (j). For a two-nucleon

system they have the same spectrum as the orbital and spin angular momentum

operators in a partial wave representation of the nonrelativistic basis. deuteron component

(7, F)P., ;1. s;t.7|pp. ptp. D) = 0 (P —Ppp ) 01 0,4, 0s1 010 070 @p (k)

For the construction of V and V, from the nonrelativistic NN potential see H. Kamada and W. Gl6ckle,
Phys. Lett. B 655, 119 (2007). We use the Argonne V18 NN force.

Note that the relativistic interaction V reproduces the same phase shifts as calculated
nonrelativistically - the phase shifts extracted from experiment are relativistically invariant !



Elastic electron scattering off the deuteron

First things first:
Kinematics

02 [GevZ/ ¢
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Unpolarized cross section

do 0.\ \ |p.|
2 , 2 2 2 € e
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See also

Y. Huang and W. N. Polyzou, Phys. Rev. C 80, 025503 (2009).
A. A. Filin et al., Phys. Rev. C 103, 024313 (2021).



Dependence on the model of the nucleon EM form factors
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dash-dotted: H. Budd, A. Bodek, and J. Arrington, arXiv:hep-ex/0308005v2 (2003) . o
dashed: J. J. Kelly, Phys. Rev. C 70, 068202 (2004) dipole parametrization
dotted: E. L. Lomon, Phys. Rev. C 66, 045501 (2002) of FF sticks out

solid: G. Shen, L. E. Marcucci, J. Carlson, S. Gandolfi, and R. Schiavilla, Phys. Rev. C 86, 035503 (2012)



Deuteron tensor analyzing power
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dashed: nonrelat. calculations
dotted: nonrelat. calculations with relat. kinematics
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form factors

1.5
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See also
A. F. Krutov, V. E. Troitsky, Phys. Rev. C 75, 014001 (2007)



Elastic neutrino (NC) scattering off the deuteron
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Lack of covariance in the nuclear current matrix element !

The effect amounts to approx. 1.5 % at 3 GeV

0




Gyor [1078 cm?]

... in contrast to elastic neutrino (NC) scattering off the proton
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total elastic cross section
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REL1 — relat. with the FeynCalc package of Mathematica® in CM
REL2 — relat. with the ,nuclear” formula: do/dQ ~ (v R +Vv;R;+---)p in LAB
NRL1 — nonrelat. with (p/m)? corrections in LAB

NRL2 — nonrelat. without (p/m)? corrections in LAB

angular distribution of the cross section
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relativistically we get ONE result for total elastic cross section !



Inelastic electron scattering off the deuteron: e+d > e’ +p+n

Ny

g ’ (P1. 1. 71 Py . T THe(0)|PD. ip. D)

e e = -

+ @ + @ % + @ (P, 1y, 1. Ph, 1, To| t(E + i€)Go( E + i€) J*,.(0) |pp. ptp, D)

Here t is the boosted t-matrx obtained
with the boosted potential by solving
the Lippmann-Schwinger equation for
the 2N system with total momentum gq.
G, is the relativistic free 2N propagator.

The rescattering contribution to the nuclear current matrix element
is calculated in two steps. We calculate first

(" K)p" s VST | H(E + ie) Go(E + i€) Jf,0(0) [ppppD)
and then

(PY- 15 1, Phs . To| H(E + i€)Go(E + i€) Jh,.(0) [pp, pip, D)



Exclusive cross section for the 2H(e,e’p)n reaction

Fixed electron parameters (chosen arbitrarily)
(a) E.=800MeV, 0= 38.7°, E',=635.3 MeV, E_,,=100 MeV, |q|= 500 MeV/c
(b) E.=800 MeV, ©.=106.5°, E'.=414.4 MeV, E_, =150 MeV, |q|= 1000 MeV/c

cm.

Negative values of ©, or p,; correspond to ¢,.= 0 and their positive values to ¢,,= 180-.

dotted: relativ. plane wave results

solid: relativvistic full results
dash-dotted: nonrelat. plane wave results
dashed: nonrelat. full results
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Example of ,mixed kinematics” for the ?H(e,e’p)n reaction

Electron arm parameters: E.= 85 MeV, 0= 40°, 8 MeV <E, <10 MeV, cbpq: 450

0.7 .
0.6 p~, - ]
'\"-\.\"‘ e e E
™ n d4 15
05N = / B, ——
g \ dpk S dEdpdk
— 04 r “, -
— full relat. ™,
= U3 Fand N plane wave relat. and nonrelat. ]
= nonrelat. N,
=02t ~ -
& T,
= __r T
0.1 ri\ — |
0 el L Rl |
0 60 120 180
B [deg

P. von Neumann-Cosel et al., Phys. Rev. Lett. 88, 202304 (2002)

T35 b -
:_:.-:ﬂ-

< 73 1
L:"-:

725 | -

T2 L .

1 1
) 5.5 0 t

rescattering contribution is decisive at this kinematics !
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Semi-inclusive cross section for the ?H(e,e’) reaction
(only electron in the final state is detected)

A

Pe

In B. P. Quinn et al., Phys. Rev. C 37, 1609 (1988) a rich data set for the d*c/(dE’, dp’,)
differential cross sections is compared with Arenhével and Leidemann’s predictions as
well as with the results obtained by Laget.

Data taken in the vicinity of the quasi elastic peak, where one expects electron scattering on
a nucleon moving inside a nucleus.



B. P. Quinn et al., Phys. Rev. C 37, 1609 (1988), Fig. 8
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Enhancement of the cross
sections shown by full
calculations on left slopes in the
region where the internal two-
nucleon energy is very small

On right slopes and for large
energy transfers, where the
internal two-nucleon energy
exceeds the pion mass, new
channels (pion production,
isobar excitation) are open,
which cannot be described
by our theory.
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Dealing with ,,Q2-p,...” kinematics in the e + d - e’ + p + n reaction

(From '/ (c;llﬁ;dﬁgdk) to d%0/ (AQ? dpmise )

Following the experimental approach, we take finite bins in Q? and p,,..., scan the whole four
dimensional parameter space to see which combinations of (6,E’,, 6,, ¢, ) lead to required Q°
and p,.... intervals.

We set Ee= 500 MeV and chose four Q2 intervals:
1. (0.0875, 0.1125) GeV?,

2.(0.175, 0.225) GeV?,

3. (0.35, 0.45) GeV?,

4.(0.525, 0.675) GeV?2.

Values of the d°c/ g:lfj{_dE;d]% cross section for each point on a four dimensional grid were written
to a file together with the complete integral weight

21 AB, (1) sin (0.(7)) AEL(7) Abk(l) sin (0x(l)) Adr(n)

and with the value of the missing momentum. For each Q? interval a file containing several millions

124 M
of ,events” can be later sorted to arrive at o Ty

d%o _ 5 d%o
< '::l(ggdpmi:as > - / dQ / dpmiﬁﬁ '::l(ggdpmi:as |
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Inelastic neutrino NC and CC scattering off the deuteron

Total breakup cross section
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Conclusions and outlook

1. Based on our experience from nucleon-deuteron scattering as well as from electron and neutrino scattering
on 2H, 3H and 3He we are building a relativistic framework to describe elastic and inelastic electron and
neutrino scattering off the deuteron under the one-boson-exchange approximation.

2. The treatment of the nuclear sector corresponds to Dirac’s ,instant-form dynamics” and dates back to
Bakamjian and Thomas; Wayne Polyzou’s expertise proved to be crucial.

3. Ourframework is formally applicable to calculations at energies below the pion production threshold and at
arbitrary magnitudes of the three momentum transfer.

4. At low energy and momentum transfers our results coincide (nearly by construction !) with the nonrelativistic
predictions.

5. We can deal with various kinematics (exclusive, semi-exclusive, inclusive) and make predictions for
unpolarized cross sections and various polarization observables.

6. The framework presently lacks 2N parts in the nuclear current matrix elements, which restricts its
applicability to specific electron kinematics; should better work for neutrinos.

7. We (mainly Wayne@ ) see possible extensions of the framework
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