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Formalism

In our approach a relativistically invariant quantum mechanical model is defined by a unitary
representation, U( Λ, a), of the Poincaré group acting on the Hilbert space of the theory. 

(1) For a particle of mass m and spin j a single-particle unitary representation of the
Poincaré group is given on the single-particle basis states by:

rotationless Lorentz transformation 
that maps (m, 0, 0, 0) to (E(p), p)

Wigner rotation !



In this representation the spin observable in an arbitrary frame is defined as the spin that would 
be measured in the particle's rest frame if it was boosted to the rest frame using B-1(p/m).

(2) The free dynamics on a multi-particle Hilbert space is given by the tensor product of 
the single particle unitary representations, Ui(Λ, a), of the Poincaré group:

The components of the free four momentum and the free Lorentz generators are the 
infinitesimal generators of U0(Λ, a). The free mass Casimir operator, M0, and the 
components of the canonical spin operator, j0

i , are functions of the infinitesimal
generators.

Dirac spinors as defined in the Bjorken and Drell’s textbook provide for j= ½  a four
dimensional representation of the Poincare group with the so-called canonical spin !  



(3) Dynamical representation of the Poincare group is achieved through:
1. Building simultaneous eigenstates of the commuting observables for the noninteracting system (M0 , 

momentum, j0
2 , j0,z )

2. Adding an interaction V to M0 : M = M0 + V, where V fulfills

d (d’) – degeneracy parameters; typically invariant masses and squares of angular momenta of 
subsystems 

3.  Diagonalizing M in the basis from point 1  yields simultaneous eigenstates of (M, momentum, j0
2 , j0,z ).      

These eigenstates are complete on the N-body Hilbert space.
4. The dynamical representation of the Poincaré group is defined by requiring that the eigenstates from

point 3  transform like the single-particle states with the mass m replaced by the eigenvalue of M, mI :

This construction is due to Bakamjian and Thomas and corresponds to what Dirac called „instant-form dynamics”. 
It is formally applicable to calculations at energies below the threshold for pion production.



In our work the construction discussed above will be used to model the strong interactions; 
the electromagnetic and weak interactions are treated using the one-boson exchange approximation.

In the one-boson exchange approximation U(Λ, a) factors into a tensor product of unitary
representations of the Poincaré group for the strongly interacting baryons (B) and the leptons (L):

A current couples to the exchanged boson. The current is a sum of a lepton and strong (here nuclear) 
current plus an interaction current, which does not contribute in the one-boson exchange approximation:

The strong and lepton currents transform covariantly (A=B,L)



The strong and lepton currents are sums of one-body, two-body, …,  operators

The lepton currents can be approximately treated at tree level.

The many-body parts of the baryon currents must be non-zero in order to satisfy 
the covariance and current conservation !
This follows from the commutation relations of the current operator with the 
dynamical generators of the Poincaré group. The cluster expansions for the current 
and rotationless boost generators, K, have the form



By cancelling the one-body terms, one arrives at the following condition:

If the right side of either equation is non zero then the current must have many-body 
parts in order to satisfy current covariance. Similar conditions follow if the current is 
conserved.

These many-body contributions to the current appear in addition to the many-body 
currents that arise from physical processes such as exchange of charged mesons. They 
are not uniquely determined from current covariance.

One way to ensure covariance is to use current matrix elements. Since current matrix
elements transform covariantly, all current matrix elements can be generated from any 
independent set of matrix elements using covariance. 



Elastic electron scattering off the deuteron



electron current matrix element

deuteron current matrix element

???

(this form can be also used for neutrino scattering)



At present the nuclear matrix elements comprise contributions only from the single-nucleon current:

single-nucleon current matrix element

Explicit formula for the Dirac spinor 

(Bjorken-Drell normalization) 



We need to express 2N states with the relative momentum k and total momentum P

through product states

Group theory helps to avoid combersome algebra !!  We use the general formula

and evaluate

in two ways:

1. individually

2. treating noninteracting 2N system
with total momentum zero as one 
object with mass M0

𝑀0 = 2 𝑚2 + 𝒌2



Relativistic partial wave states

are constructed in the following way:

First we build

and then calculate (again in two ways)

.                          

In one way we get simply

treating noninteracting 2N system
as one object with mass M0



In this way we arrive at the Poincaré Clebsch-Gordan coefficients



k

takes a particle of mass m at rest 
to momentum ki

takes a system of two particles with the same mass, m, and momenta 
k =k1 and −k = k2, respectively, to the total two-particle momentum p, 
by which the momentum ki is changed to pi

brings the particle with the momentum pi

to its rest frame

relativistic relative 2N momentum

Wigner rotations we need

E12(p,k) = 4𝒌2 + 4𝑚2 + 𝒑2

=  𝑀0
2 + 𝒑2

𝑚120 = 𝑀0



2  𝑘2 + 𝑚2 + 𝑉   𝐷 = 𝑚𝐷   𝐷

The relativistic deuteron at rest

The quantum numbers l and s are kinematically invariant quantities that distinguish 
representations with the same mass (k) and spin (j). For a two-nucleon
system they have the same spectrum as the orbital and spin angular momentum
operators in a partial wave representation of the nonrelativistic basis. deuteron component

The relativistic deuteron with the total momentum q

4 𝑘2 + 4𝑚2 + 𝒒2 + 𝑉𝑞   𝐷 = 𝑚𝐷
2 + 𝒒2   𝐷 𝑉𝑞 – „boosted” NN potential

𝑉 – relativistic NN potential in the total 2N momentum zero frame

For the construction of V and Vq from the nonrelativistic NN potential see H. Kamada and W. Glöckle, 
Phys. Lett. B 655, 119 (2007). We use the Argonne V18 NN force.

Note that the relativistic interaction V reproduces the same phase shifts as calculated
nonrelativistically - the phase shifts extracted from experiment are relativistically invariant !



First things first: 
Kinematics

final electron energy

four momentum
transfer squared

Ee = 1 GeV Ee = 3 GeV

Elastic electron scattering off the deuteron

relat.

nonrelat.



Unpolarized cross section

various nonrelat. 
and relat.  various nonrelat. 

relat.  



See also
Y. Huang and W. N. Polyzou, Phys. Rev. C 80, 025503 (2009).
A. A. Filin et al., Phys. Rev. C 103, 024313 (2021).

nonrelat.

relat.

nonrelat. with (p/m)2

corrections in the SN density



Dependence on the model of the nucleon EM form factors

dash-dotted: H. Budd, A. Bodek, and J. Arrington, arXiv:hep-ex/0308005v2 (2003)
dashed:  J. J. Kelly, Phys. Rev. C 70, 068202 (2004)
dotted: E. L. Lomon, Phys. Rev. C 66, 045501 (2002)

solid:  G. Shen, L. E. Marcucci, J. Carlson, S. Gandolfi, and R. Schiavilla, Phys. Rev. C 86, 035503 (2012)

dipole parametrization
of FF sticks out



various models of the nucleon EM 
form factors

dashed: nonrelat. calculations
dotted: nonrelat. calculations with relat. kinematics
solid: relat. calculations

See also
A. F. Krutov, V. E. Troitsky, Phys. Rev. C 75, 014001 (2007)   

Deuteron tensor analyzing power



Lack of covariance in the nuclear current matrix element !
The effect amounts to  approx. 1.5 % at 3 GeV

Elastic neutrino (NC) scattering off the deuteron

Total elastic cross section

nonrelat. calculation in LAB

relat. calculation in LAB

relat. calculation in CM



… in contrast to elastic neutrino (NC) scattering off the proton

total elastic cross section angular distribution of the cross section

Eν= 1000 MeV

REL1 – relat. with the FeynCalc package of Mathematica® in CM
REL2 – relat. with the „nuclear” formula:   dσ/dΩ ~  (vL RL + vT RT + · · · ) ρ in LAB
NRL1 – nonrelat. with  (p/m)2 corrections in LAB
NRL2 – nonrelat.  without (p/m)2 corrections in LAB

relativistically we get ONE result for total elastic cross section !



Inelastic electron scattering off the deuteron:  e + d → e’ + p + n

The rescattering contribution to the nuclear current matrix element 
is calculated in two steps. We calculate first

and then

Here t is the boosted t-matrx obtained
with the boosted potential by solving
the Lippmann-Schwinger equation for 
the 2N system with total momentum q. 
G0 is the relativistic free 2N propagator. 



Exclusive cross section for the 2H(e,e’p)n reaction
Fixed electron parameters (chosen arbitrarily)
(a) Ee= 800 MeV, Θe= 38.7◦, E′e = 635.3 MeV, Ec.m.=100 MeV, |q|= 500 MeV/c
(b) Ee= 800 MeV, Θe= 106.5◦, E′e= 414.4 MeV, Ec.m.= 150 MeV, |q|= 1000 MeV/c

Negative values of Θp or pmiss correspond to ϕpq= 0 and their positive values to ϕpq= 180◦. 
dotted: relativ. plane wave results
solid: relativvistic full results
dash-dotted: nonrelat. plane wave results
dashed: nonrelat. full results



Electron arm parameters: Ee= 85 MeV, Θe= 40◦,   8 MeV < Ex < 10 MeV, ϕpq= 45◦

Example of „mixed kinematics” for the 2H(e,e’p)n reaction

plane wave relat. and nonrelat.
full relat. 
and 
nonrelat.

rescattering contribution is decisive at this kinematics !



Semi-inclusive cross section for the 2H(e,e’) reaction
(only electron in the final state is detected)

In B. P. Quinn et al., Phys. Rev. C 37, 1609 (1988) a rich data set for the 𝑑3𝜎/(𝑑𝐸′
𝑒 d  𝑝’𝑒) 

differential cross sections is compared with Arenhövel and Leidemann’s predictions as
well as with the results obtained by Laget. 

Data taken in the vicinity of the quasi elastic peak, where one expects electron scattering on 
a nucleon moving inside a nucleus.

 𝑝𝑒

 𝑝’𝑒

Θe

D



B. P. Quinn et al., Phys. Rev. C 37, 1609 (1988), Fig. 8

(a) Ee= 174 MeV, Θe= 134.5◦ (b) Ee= 444 MeV, Θe= 134.5◦

(c) Ee= 293 MeV, Θe= 60◦
(d) Ee= 596 MeV, Θe= 134.5◦

Enhancement of the cross 
sections shown by full 
calculations on left slopes in the 
region where the internal two-
nucleon energy is very small

On right slopes and for large 
energy transfers, where the 
internal two-nucleon energy 
exceeds the pion mass, new 
channels (pion production, 
isobar  excitation) are open, 
which cannot be described 
by our theory.



B. P. Quinn et al., Phys. Rev. C 37, 1609 (1988), Fig. 9

(a) Ee= 465 MeV, Θe= 60◦ (b) Ee= 328 MeV, Θe= 134.5◦

(c) Ee= 278 MeV, Θe= 134.5◦



B. P. Quinn et al., Phys. Rev. C 37, 1609 (1988), Fig. 10

(b) Ee= 366 MeV, Θe= 60◦(a) Ee= 510 MeV, Θe= 60◦

(d) Ee= 233 MeV, Θe= 134.5◦
(c) Ee= 368 MeV, Θe= 134.5◦



Dealing with „Q2-pmiss” kinematics in the e + d → e’ + p + n reaction

(From                                              to                                          )

Following the experimental approach, we take finite bins in Q2 and pmiss, scan the whole four 
dimensional parameter space to see which combinations of (θe,E′e, θk, φk ) lead to required Q2

and pmiss intervals.

We set Ee= 500 MeV and chose four Q2 intervals:
1. (0.0875, 0.1125) GeV2,
2. (0.175, 0.225) GeV2,
3. (0.35, 0.45) GeV2,
4. (0.525, 0.675) GeV2.

Values of the                                   cross section for each point on a four dimensional grid were written
to a file together with the complete integral weight

and with the value of the missing momentum. For each Q2 interval a file containing several millions 
of „events” can be later sorted to arrive at







Inelastic neutrino NC and CC scattering off the deuteron

relat.

nonrelat.

nonrelat. with  
(p/m)2

corrections

Total breakup cross section



Conclusions and outlook

1. Based on our experience from nucleon-deuteron scattering as well as from electron and neutrino scattering
on 2H, 3H and 3He we are building a relativistic framework to describe elastic and inelastic electron and 
neutrino scattering off the deuteron under the one-boson-exchange approximation.

2. The treatment of the nuclear sector corresponds to Dirac’s „instant-form dynamics” and dates back to 
Bakamjian and Thomas; Wayne Polyzou’s expertise proved to be crucial.

3. Our framework is formally applicable to calculations at energies below the pion production threshold and at
arbitrary magnitudes of the three momentum transfer.

4. At low energy and momentum transfers our results coincide (nearly by construction !) with the nonrelativistic
predictions.

5. We can deal with various kinematics (exclusive, semi-exclusive, inclusive) and make predictions for 
unpolarized cross sections and various polarization observables. 

6. The framework presently lacks 2N  parts in the nuclear current matrix elements, which restricts its
applicability to specific electron kinematics; should better work for neutrinos.

7. We (mainly Wayne     ) see possible extensions of the framework
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Thank you ! 


