In-Medium No-Core Shell Model - Developments & Applications -

Robert Roth

Institut für Kernphysik - Theoriezentrum

Ab Initio Nuclear Structure Theory

He

AY

Chiral Effective Field Theory

Pre-Conditioning

Similarity Renormalization Group

Many-Body Solution

CI, NCSM, IM-SRG, CC, SCGF, MBPT...

Ab Initio Nuclear Structure Theory

Hamiltonian

Chiral Effective Field Theory

Pre-Conditioning

Similarity Renormalization Group

Many-Body Solution

CI, NCSM, IM-SRG, CC, SCGF, MBPT...

- unitary transformation of all operators as preparatory step
- drastically improves convergence of many-body calculation
- induces many-body terms that have to be monitored

Ab Initio Nuclear Structure Theory

Hamiltonian

Chiral Effective Field Theory

Pre-Conditioning

Similarity Renormalization Group

Many-Body Solution

CI, NCSM, IM-SRG, CC, SCGF, MBPT...

- different many-body methods for different mass regions and different observables
- established: light nuclei and closed-shell isotopes
- frontiers: open-shell mediummass nuclei and continuum

Similarity Renormalization Group

Similarity Renormalizatio

Glazek, Wilson, Wegner, Perry, Bogner, Furnstahl, Hergert, Roth,...

Robert Roth - Institut für Kernphysik - TU Darmstadt - 08/2022

Similarity Renormalizatio

Glazek, Wilson, Wegner, Perry, Bogner, Furnstahl, Hergert, Roth,...

need to truncate evolved Hamiltonian

$$H_{\alpha} = H_{\alpha}^{[1]} + H_{\alpha}^{[2]} + H_{\alpha}^{[3]} + H_{\alpha}^{[4]} + \cdots$$

- variation of flow parameter provides diagnostic for omitted many-body terms
- state of the art:
 - keep all terms up to the three-body level consistently
 - consistently evolve all relevant operators, e.g. electromagnetic operators

Barrett, Vary, Navrátil, Maris, Nogga, Roth,...

no-core shell model is universal and powerful ab initio approach for light nuclei (up to A≈25)

• idea: solve eigenvalue problem of Hamiltonian represented in model space of HO Slater determinants truncated w.r.t. HO excitation energy $N_{max}\hbar\Omega$

$$\begin{pmatrix} \vdots \\ C_{i'}^{(n)} \\ \vdots \end{pmatrix} = E_n \begin{pmatrix} \vdots \\ C_{i}^{(n)} \\ \vdots \end{pmatrix}$$

Barrett, Vary, Navrátil, Maris, Nogga, Roth,...

no-core shell model is universal and powerful ab initio approach for light nuclei (up to A≈25)

- idea: solve eigenvalue problem of Hamiltonian represented in model space of HO Slater determinants truncated w.r.t. HO excitation energy $N_{\text{max}}\hbar\Omega$
 - convergence of observables w.r.t. *N*_{max} is the only limitation and source of uncertainty
- Importance truncation: reduce NCSM model space to physically relevant basis states and extrapolate to full space a posteriori
 - increases the range of applicability of NCSM significantly

alternative basis sets: optimize to enhance model-space convergence or to include continuum physics

- single-particle basis: natural orbitals, Gamow states
- many-body basis: resonating group method with binary clusters

NCSM Convergence: Energies

Tichai, Müller, Vobig, Roth; PRC 99, 034321 (2019)

natural-orbital basis eliminates frequency dependence and accelerates convergence of NCSM

NCSM Convergence: Radii

MBPT natural-orbital basis eliminates frequency dependence and accelerates convergence of NCSM

Oxygen Isotopes

Tichai, Müller, Vobig, Roth; PRC 99, 034321 (2019)

Oxygen Isotopes

Tichai, Müller, Vobig, Roth; PRC 99, 034321 (2019)

In-Medium NCSM

Barrett, Vary, Navrátil, Maris, Nogga, Roth,...

no-core shell model is universal and powerful ab initio approach for light nuclei (up to A≈25)

• solve eigenvalue problem of Hamiltonian represented in model space of HO Slater determinants truncated w.r.t. HO excitation energy $N_{max}\hbar\Omega$

$$\begin{pmatrix} \vdots \\ C_{i'}^{(n)} \\ \vdots \end{pmatrix} = E_n \begin{pmatrix} \vdots \\ C_{i}^{(n)} \\ \vdots \end{pmatrix}$$

Barrett, Vary, Navrátil, Maris, Nogga, Roth,...

no-core shell model is universal and powerful ab initio approach for light nuclei (up to A≈25)

• solve eigenvalue problem of Hamiltonian represented in model space of HO Slater determinants truncated w.r.t. HO excitation energy $N_{max}\hbar\Omega$

In-Medium SRG

Tsukiyama, Bogner, Schwenk, Hergert,...

decouple reference state from excitations by a unitary transformation of Hamiltonian and other operators

use IM-SRG to decouple single-determinant reference state for particle-hole excitations, 0p0h matrix-element gives ground-state energy

Multi-Reference In-Medium SRG

Hergert, Gebrerufael, Vobig, Mongelli, Roth,...

decouple reference state from excitations by a unitary transformation of Hamiltonian and other operators

idea: use multi-reference formulation of IM-SRG to decouple reference space for rest of model space, i.e., block diagonalize A-body Hamiltonian

Multi-Reference In-Medium SRG

Hergert, Gebrerufael, Vobig, Mongelli, Roth,...

[Kutzelnigg & Mukherjee, 1997]

Hamiltonian and generator in normal order with respect to multi-determinant reference state, omit residual three-body piece

$$H(s) = E(s) + \sum_{ij} f_j^i(s) \tilde{A}_j^i + \frac{1}{4} \sum_{ijkl} \Gamma_{kl}^{ij}(s) \tilde{A}_{kl}^{ij} + \frac{1}{36} \sum_{ijklmn} W_{lmn}^{ijk}(s) \tilde{A}_{lmn}^{ijk}$$

define generator to suppress off-diagonal contributions that couple reference state to ph excitations

$$\eta(s) = \left[H(s), H^{d}(s)\right] = \left[H^{od}(s), H^{d}(s)\right]$$

Robert Roth - Institut für Kernphysik - TU Darmstadt - 08/2022

In-Medium NCSM

Gebrerufael, Vobig, Hergert, Roth; PRL 118, 152503 (2017)

Robert Roth - Institut für Kernphysik - TU Darmstadt - 08/2022

Gebrerufael, Vobig, Hergert, Roth; PRL 118, 152503 (2017)

Robert Roth - Institut für Kernphysik - TU Darmstadt - 08/2022

Gebrerufael, Vobig, Hergert, Roth; PRL 118, 152503 (2017)

Gebrerufael, Vobig, Hergert, Roth; PRL 118, 152503 (2017)

IM-NCSM: Oxygen Isotopes

Gebrerufael, Vobig, Hergert, Roth; PRL 118, 152503 (2017)

IM-NCSM: Oxygen Isotopes

Vobig, Mongelli, Roth; in prep.

In-Medium NCSM: Magnus Formulation

Magnus, Comm. Pure Appl. Math. 7, 649 (1954); Morris et al., PRC 92, 034331 (2015)

- I classical formulation of flow equation impractical for treatment of several different observables (energies, radii, E2, M1,...)
- formulation of flow-equation for Magnus operator $\Omega(s)$

$$U(s) = e^{-\Omega(s)} \qquad \qquad \frac{d}{ds}\Omega(s) = \sum_{k=0}^{\infty} \frac{B_k}{k!} \left[\Omega(s), \eta(s)\right]_k$$

transformation of observables via Baker-Campbell-Hausdorff series

$$O(s) = e^{+\Omega(s)} O e^{-\Omega(s)} = \sum_{n=0}^{\infty} \frac{1}{n!} [\Omega(s), O]_n$$

computational benefits

- system of ODEs only for Magnus operator, reduces computational cost significantly
- extraction of evolved observables is simple post-processing step
- nested commutator series converge quickly
- necessity for treatment of non-scalar operators (elmag. multipole operators)

In-Medium NCSM: Refinements

Vobig et al., in preparation

optimized decoupling pattern

- standard generators also induce a decoupling within the reference space
- include full reference space into diagonal part, no decoupling of excitations within reference space
- eliminates anomalies in large-s regime

particle-attached particle-removed scheme

- angular-momentum-coupled formulation of flow equations needs scalar density matrix (J=0 reference state) to be efficient
- odd-A nuclei cannot be targeted directly, therefore...
 - use adjacent even-A parent nucleus for definition of reference state and solution of flow equations (with odd-A prefactors in Hamiltonian)
 - perform final NCSM calculation for odd-A target nucleus
- monitor *N*_{max} convergence for different possible parent nuclei

In-Medium NCSM: Uncertainties

IM-SRG evolution induces additional uncertainties due to the truncation of all normal-ordered operators at the two-body level...

```
...NO2B, IM-SRG(2), IM-SRG(M2)
```

- explicit inclusion of normal-ordered three-body terms is prohibitive for realistic applications
- probe accuracy of NO2B approximation through variation of flow parameter & reference space truncation

uncertainty quantification protocol: perform IM-NCSM calculation for...

- different reference space truncations: $N_{\text{max}}^{\text{ref}} = 0, 2, 4$
- different flow parameters: *s*_{sat}, *s*_{sat}/2
- different model-space truncations: $N_{\text{max}} = 0, 2, 4, 6, \dots$

...maximum difference to next-smaller control parameters gives estimate for many-body uncertainty

Applications with Nonlocal NN+3N Interactions

Nonlocal Interactions

Hüther et al.; PLB 808, 135651 (2020)

PRC 96, 024004 (2017)

start from chiral NN interaction by Entem, Machleidt & Nosyk

- LO to N3LO
- non-local regulator
- cutoff 450, 500, 550 MeV
- accurate reproduction of NN scattering data up to $\sim 300 \text{ MeV}$

supplement non-local 3N interaction at N2LO and N3LO

- N2LO or N3LO
- non-local regulator, compatible with NN interaction
- cutoff 450, 500, 550 MeV, same as NN interaction

determine 3N low-energy constants

- *c*_E fit to triton binding energy
- determine *c*_D from ¹⁶O ground-state energy in IM-SRG

Medium-Mass Nuclei

Hüther et al.; PLB 808, 135651 (2020)

IM-SRG(M2), natural orbitals, $\hbar\Omega = 20$ MeV, a = 0.04 fm⁴, $e_{max} = 12$, $E_{3max} = 16$ Robert Roth - Institut für Kernphysik - TU perforabands 2show interaction + many-body uncertainties

Oxygen Isotopic Chain

Hüther et al.; PLB 808, 135651 (2020)

IM-NCSM, natural orbitals, $\hbar\Omega = 20$ MeV, a = 0.04 fm⁴, $e_{max} = 12$, $E_{3max} = 14$, $N_{ref} = 2$ Robert Roth - Institut für Kernphysik - TU **Derforabands** show interaction + many-body uncertainties

p-Shell Spectra

Hüther et al.; PLB 808, 135651 (2020)

NCSM/IM-NCSM, Λ =500 MeV, $\hbar\Omega$ =20 MeV error bands show interaction uncertainties

Applications: Neon Isotopes

Ground-State Energies

Mongelli et al., in preparation

- ²⁰Ne ¹⁸Ne -125 *E* [MeV] -150 $N_{\text{max}}^{\text{ref}} = 0$ $N_{\text{max}}^{\text{ref}} = 2$ -175 ²⁴Ne ²²Ne -150 *E* [MeV] -175 -200 ²⁶Ne ²⁸Ne -175E [MeV] -200 -225 ³⁰Ne ³²Ne -100E [MeV] -200 $\Lambda = 500 \text{ MeV}$ $\alpha = 0.04 \text{ fm}^4$ $\hbar\Omega = 20 \text{ MeV}$ ³⁴Ne ³⁶Ne -100 $e_{\rm max} = 12$ E [MeV] NAT basis -200 $N_{\rm max}^{\rm ref} = 0, 2$ $N_{\rm max} = 4$ N³LO N³LO N²LO N²LO LO LO NLO NLO **Chiral Order Chiral Order**
 - amazing reproduction of experimental energies for all isotopes
 - uncertainties under control

error bars: 68% interaction uncertainties

error bands: interaction + many-body uncertainties

Charge Radii

Mongelli et al., in preparation

- excellent description of radii, slight underestimation for light isotopes
- stable results in N²LO and N³LO

error bars: 68% interaction uncertainties

error bands: interaction + many-body uncertainties

Excitation Energies

10

5

0

E* [MeV]

¹⁸Ne

excellent description of excitation spectra

²⁰Ne

6⁺₁

01

²²Ne ²⁴Ne [ме/] 2.5 -"д 0.0 ²⁶Ne ²⁸Ne 5.0 E* [MeV] 2⁺ 2⁺ 2.5 0.0 ³⁰Ne ³²Ne 10 E* [MeV] 2⁺ 4⁺ $\Lambda = 500 \text{ MeV}$ error bars: 68% interaction $\alpha = 0.04 \text{ fm}^4$ 0 uncertainties $\hbar\Omega = 20 \text{ MeV}$ ³⁶Ne ³⁴Ne 2^{+}_{2} $e_{max} = 12$ E* [MeV] error bands: NAT basis 2 interaction + $N_{\rm max}^{\rm ref} = 2$ many-body 21 $N_{max} = 4$ uncertainties 0^{+}_{1} 0 N³LO N³LO NLO N²LO Exp NLO N²LO Exp Chiral Order Chiral Order

B(E2, $2^+ \rightarrow 0^+$) Transition Strength

¹⁸Ne

Mongelli et al., in preparation

significant underestimation of *B*(E2) all over the place

²⁰Ne

- hierarchy inversion
- missing 'collectivity'

 $N_{\rm max}^{\rm ref} = 0$

= 2

N^{ref}_{max}

B(E2) [e²fm⁴]

50

25

Hierarchy Inversion

Mongelli et al., in preparation

IM-SRG evolution of E2 operator generates dominant (induced) two-body contribution... what about three-body and beyond?

not a problem, if reference space contains the relevant static correlations

Next Stage: Active-Space IM-CI

Imitations of IM-NCSM setup

- beyond ⁴⁰Ca, the HO-based *N*_{max} truncation does not make sense
- benefit from optimization of reference space to accommodate specific correlations

adopt a more general CI strategy for the definition of the reference space

- quantum chemistry: restricted active-space CI methods
- partitioning of single-particle orbits: hole active particle
- truncate many-body basis w.r.t. number of particle and hole states

perturbative corrections to account for complete particle space

- use second-order MCPT with CI eigenstate as 'unperturbed' reference
- demonstrated successfully with the NCSM-PT [Tichai et al., PLB 786, 448 (2018)]

thanks to my group and my collaborators

- M. Knöll, L. Mertes, T. Mongelli, J. Müller, D. Rodriguez, C. Walde, L. Wagner, C. Wenz, T. Wolfgruber
 & K. Hebeler, A. Tichai Technische Universität Darmstadt
- T. Duguet & friends CEA Saclay
- P. Navrátil TRIUMF, Vancouver
- H. Hergert NSCL / Michigan State University
- J. Vary, P. Maris Iowa State University
- E. Epelbaum, H. Krebs & the LENPIC Collaboration Universität Bochum, ...

Deutsche Forschungsgemeinschaft

DFG

Exzellente Forschung für Hessens Zukunft

Bundesministerium für Bildung und Forschung