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Apply chiral perturbation theory (ChPT), as the low-energy 
EFT of QCD, to derive nuclear forces

• Self-consistently include many-body forces  

• Systematically improve order by order (in heavy baryon ChPT) 

• Scattering amplitude obtained by solving the Schrödinger equation 
(or the integral equations in momentum space)

Nuclear forces — Weinberg’s seminal work

S. Weinberg, PLB251(1990)288-292; NPB363(1991)3-18

ViN = VLO
iN + VNLO

iN + VNNLO
iN + ⋯

Provide a systematic and solid theoretical approach to 
study the few-nucleon scattering 

V = V2N + V3N + V4N + ⋯

(
A

∑
i=1

−
∇2

i

2mN ) + V2N + V3N + V4N + … |Ψ⟩ = E |Ψ⟩
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• Leading order NN potential  

• Iterated one-pion exchange potential (ladder diagrams) for  

Renormalization issue of NN scattering

WPC is inconsistent with renormalization, even at LO!

Iteration of the chiral truncated NN potential within LSE

T(p′�, p) = V(p′�, p) + ∫
∞

0

k2dk
(2π)3

V(p′�, k)
mN

p2 − k2 + iϵ
T(k, p) .

➡ Generated UV divergencies cannot be absorbed by contact terms!

VLO = CS + CT ⃗σ 1 ⋅ ⃗σ 2 −
g2

A

4f 2
π

τ1 ⋅ τ2
⃗σ 1 ⋅ ⃗q ⃗σ 2 ⋅ ⃗q

⃗q 2 + m2
π

k → ∞

M. Savage_arXiv:nucl-th/9804034

Logarithmic Divergence

cannot be absorbed by CS, CT

∼ (QmN)n
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Possible solutions (still controversial…) 

• Keep cutoff lower than hard scale: !   
✓ WPC is consistent    

✓ Achieve great successes 

Λ < ΛχPT ∼ 1 GeV

Deal with the renormalization issue

G.P. Lepage, nucl-th/9706029. E.Epelbaum, J.Gegelia, Ulf-G. Meißner, NPB925(2017)161
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✓ Achieve great successes  

• Kaplan, Savage, and Wise (KSW) power counting  

✓ Treat the exchange of pions perturbatively  

✓ Fail to converge in certain spin-triplet channels  

✓ Recently, some improvements of KSW proposed by Kaplan 

• Modified WPC with renormalization group invariance (RGI) 
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✓ Fail to converge in certain spin-triplet channels  

✓ Recently, some improvements of KSW proposed by Kaplan 

• Modified WPC with renormalization group invariance (RGI) 

✓ Rearrange the higher order contact terms to the lower chiral order  

• Lorentz invariant framework to reformulate chiral force  

✓ The fundamental symmetry of our nature
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 Modified Weinberg approach  

• Based on the Lorentz invariant chiral Lagrangians  

• Adopt Weinberg power counting to expand the NN potential and 
the relativistic corrections are perturbatively included  

✓ Leading order (same as the non-rel. case):  

• Use the Kadyshevsky equation to calculate the scattering T-matrix 

✓ Milder ultraviolet behavior than in Lippmann-Schwinger equation


• Result in a renormalizable framework! 
✓ LO potential: non-perturbatively and renormalizable (except 3P0 channel) 

✓ Higher order: perturbatively  

Chiral forces in Lorentz invariant framework
E. Epelbaum and J. Gegelia, PLB716(2012)338-344

u = u0 + u1 + u2 + ⋯V(p′�, p) = ū1ū2 𝒜 u1u2 with

T(p′�, p) = V(p′�, p) + ∫
k2dk
(2π)3

V(p′�, k)
m2

N

2(k2 + m2
N)

1

p2 + m2
N − k2 + m2

N + iϵ
T(k, p) .
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This idea has not been systematically explored, 

especially beyond leading order!  



We proposed a systematic framework within the time-ordered 
perturbation theory using the Lorentz invariant chiral 
Lagrangians   

• Derive the rules of time-ordered diagrams, especially for the rules 
with spin-1/2 fermion (as far as we know, there was no such rules in the literature) 

• Formulate the nucleon-nucleon interaction up to next-to-next-to-
leading order 

✓ Calculate the two-pion-exchange contributions at one-loop level  

✓ Describe the partial wave phase shifts 

In this work

V. Baru, E. Epelbaum, J. Gegelia, XLR, Phys. Lett. B 798 (2019) 134987

XLR, E.Epelbaum, J.Gegelia, Phys. Rev. C 101 (2020) 034001

XLR, E. Epelbaum, J. Gegelia, arXiv: 2202.04018, PRC in press

XLR, PoS(CD2021)007
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Follow the standard procedure of formulating chiral forces in 
time-ordered perturbation theory 

Theoretical framework

S. Weinberg, PLB1990, NPB1991;  
C. Ordóñez, U. van Kolck PLB(1992) …

Non-relativistic  
(Heavy-baryon)

Manifestly Lorentz 
invariant

Chiral Lagrangians

Potential  
TOPT diagrams

Scattering equations 
(T = V + VGT)

Lippmann-Schwinger eq. Kadyshevsky eq.

Power counting Weinberg p.c. Weinberg p.c.

N† [i(v ⋅ D) + gA(S ⋅ u)] N

−
1
2

CS (N†N) (N†N) −
1
2

CT (N† ⃗σ N) (N† ⃗σ N) + ⋯

Ψ̄N {iγμDμ − mN +
1
2

gAψ γ5} ΨN

+
1
2 [CS(Ψ̄N ΨN )(Ψ̄N ΨN ) + CA (Ψ̄N γ5ΨN) (Ψ̄N γ5ΨN)

+CV (Ψ̄N γμΨN) (Ψ̄N γμΨN) + CAV (Ψ̄N γμγ5ΨN) (Ψ̄N γμγ5ΨN)
+CT (Ψ̄N σμνΨN) (Ψ̄N σμνΨN)] + . . .

1/mN
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Lorentz-invariant effective Lagrangians  

• Purely pionic sector 

• One-nucleon sector  

• Two-nucleon sector 

Chiral Lagrangian up to NNLO

! , !  
!  are determined by !  scattering

fπ = 92.4 MeV gA = 1.267
c1,2,3,4 πN

J.Gasser, H. Leutwyler, Ann.Phys.(1984)

N.Fettes, U.-G. Meißner, S. Steininger, NPA(1998)

J. Gasser, M. E. Sainio, and A. Svarc, NPB(1988)

Yang Xiao, Li-Sheng Geng, XLR, PRC(2019)
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Diagrammatic rules in TOPT 

‣ Interaction vertices: the standard Feynman rules

• Take care of zeroth components of integration momenta p0 → − ω(p, m)
p0 → ω(p, m)✓ particle   

✓ antiparticle  

10



Two-nucleon irreducible time-ordered diagrams 

• Use the obtained TOPT rules to evaluate these diagrams 

• Apply Weinberg power counting to organize 


✓ Expand the nucleon energy appearing in the numerator 

Nucleon-nucleon potential in TOPT 11



Following the above diagrammatic rules of TOPT, we obtain 
the scattering equations  

• Two-nucleon Green function   

✓ This is the Kadyshevsky propagator of NN scattering  

✓ SELF-CONSISTENTLY obtained in TOPT 

✓ Milder UV behaviour than the Lippmann-Schwinger equation 

Scattering equations in TOPT

G(E) =
m2

N

ω2(k, mN)
1

E − 2ω(k, mN) + iϵ

V. Kadyshevsky, NPB (1968)

Kady. !    vs.   LS  !
1
k3

1
k2Green function  G k⟶∞
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Contact nucleon-nucleon interaction  

• According to our TOPT rules  

• Contain higher order contributions according to Weinberg P.C.  

• Perform the expansion for the nucleon energies 

✓ Two independent parameters to be fixed 

✓ Consistent with the non-relativistic contact terms

Leading order potentials 

S. Weinberg, PLB251(1990)288-292

ω(p, mN) + mN = 2mN + 𝒪(p2)

V0,C = CS(ū3 u1)(ū4 u2) + CA(ū3 γ5 u1)(ū4γ5u2) + CV(ū3 γμ u1)(ū4 γμ u2)
+CAV(ū3 γμγ5 u1)(ū4 γμγ5 u2) + CT(ū3 σμν u1)(ū4 σμν u3)

13



One-pion-exchange (OPE) potential  

• According to our TOPT rules  

• Contains higher order contributions according to Weinberg P.C.  

• Perform the expansion for the nucleon energies in numerator  

✓ Keep the nucleon energies in denominator (consistent with Kadyshevsky eq.)  

Leading order potentials 

It has a milder UV behaviour than the non-relativisitc OPEP

ω(p, mN) + mN = 2mN + 𝒪(p2)

14



UV Behavior of the long-range potential
One-loop integral ! : 

Iteration of our OPEP 

• Scattering amplitude from OPEP is cutoff independent

V G V

k → ∞

Ultraviolet convergent!

Ultraviolet divergent!

k → ∞
Finite diagram!

TOPE = VOPE + VOPE G TOPE Renormalizable!

{
Our: 

NR: 

15



Phase shifts: cutoff-independent
• NN couple channels: e.g. 3S1  • NN single channel: e.g. 1S0  

1S0 3S1

✤ Our LO potential is perturbatively renormalizable!

• All divergences appearing from its iterations can be absorbed in the 

coupling constant of the contact interaction


• Scattering equation has unique solutions for all partial waves 


• Avoid finite-cutoff artefacts inherent to the conventional non-relativistic 
framework

16



Phase shifts at LO with cutoff → !  
• Two LECs are fixed by the scattering lengths of 1S0 and 3S1

∞
Phase shifts of NN scattering 

✓ Provides a reasonable description of the empirical phase shifts 
✓ 1S0 and 3P0:  Large deviation


➡Part of the subleading corrections must be treated non-perturbatively Beyond LO

17

Phys. Lett. B 798 (2019) 134987



Two strategies to include higher orders  

• Restricting the non-perturbative treatment to the (non-singular) LO 
potential and higher-order interactions are treated perturbatively 

✓ Systematically remove all divergences from the amplitude 

• Full effective potential (LO + higher orders) are treated non-
perturbatively   

✓ Milder UV behavior offers a larger flexibility regarding admissible cutoff 

✓ Direct input for few-/many-body problems  

Here, we focus on the second strategy (as a first step) 

• Since the derivation of higher order contributions is computationally 
more demanding 

• Formulate the chiral nuclear potential up to NLO and NNLO  

• Calculate the two-pion exchange contribution at one-loop level

Beyond Leading order studies 

XLR, E. Epelbaum, J. Gegelia, 2022.04018, PRC in press
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Time ordered diagrams up to NLO

Study of NLO potential in TOPT 19



LO contact term (5 LECs) 

• Expand the nucleon energy up to !  / NLO 

✓ For simplicity, we include higher orders !  for LO contact terms 

➡ Keep the full form of Dirac spinors

𝒪(p2)

𝒪(p4)

Contact terms up to NLO

VLO = CS(ū3 u1)(ū4 u2) + CA(ū3 γ5 u1)(ū4γ5u2) + CV(ū3 γμ u1)(ū4 γμ u2)

+CAV(ū3 γμγ5 u1)(ū4 γμγ5 u2) + CT(ū3 σμν u1)(ū4 σμν u3)

ω(p, mN) + mN = 2mN +
p2

4 2 m3/2
N

+ 𝒪(p4)

NLO contact term 
• Expand the nucleon energy  

• Same form as the non-relativistic case with 7 LECs

ω(p, mN) + mN = 2mN + 𝒪(p2)

20



J=0: 1S0 and 3P0 partial waves  

J=1: 1P1, 3P1, 3S1-3D1 partial waves  

J=2: 3P2 partial wave 

Finally, we have 

Partial wave decomposition for contact terms

Same number of contact terms as the non-relativistic NLO case 

9 LECs to be fixed: CLO
1S0

, CLO
3S1

, C̃1S0
, C̃3P0

, C̃1P1
, C̃3P1

, C̃3S1
, C̃3D1−3S1

, C̃3P2

21



OPE potential  

• Expand the nucleon energy expansion for OPEP at NLO 

✓ For simplicity, we include higher orders !  for OPE potential 

➡ Keep the full form of Dirac spinors   

• Eliminate the energy dependence of OPEP (avoid the pole contribution) 

✓ Expand E at ! , then, we obtain contribution of OPEP at NLO 

𝒪(p4)

ωp + ω′�p

One-Pion exchange potential up to NLO 

LO correction

NLO correction

22

ω(p, mN) + mN = 2mN +
p2

4 2 m3/2
N

+ 𝒪(p4)



Follow our TOPT rules: 
• Football diagram  

• Triangle diagrams  

• Planar and crossed box diagrams 

Two-pion exchange potential at NLO 

Energy denominator

Energy denominator of football diagram

UV Divergent terms and power counting breaking terms are removed by using the subtractive renormalization

23
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Time ordered diagrams up to NNLO

Study of NNLO potential in TOPT

No contact term, contribution fixed!

24
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Follow our TOPT rules:  

• Football diagrams  

• Triangle diagrams 

Two-pion exchange potential at NNLO

No contribution! 

- UV Divergent terms  
- Power-counting breaking terms  
- are removed by using the 

subtractive renormalization
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Prediction for peripheral phases 
(D, F, … waves) 

XLR, E. Epelbaum, J. Gegelia, arXiv:2022.04018, PRC in press



On-shell T-matrix: Born series truncated at one-loop order  

• D, F and higher partial waves: no contact-interaction contributions 

Phase shifts and mixing angles of the partial waves 

• Phase shifts: !  

• Higher order: !  depends on the method of unitarizing, but 
negligible!

δ = δ(ν=0) + δ(ν=2) + δ(ν=3) + δ𝒪(ν=3)

δ𝒪(ν=3)

T-matrix and phase shifts

J. Gasser and U.-G. Meißner, PLB 258, 219 (1991).
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For D, F waves, since no contact terms contribution, it 
provides a good chance to check our TPEP 

• Our TPEP obtained using the subtractive renormalization  

• Non-relativistic TPEP calculated using the DimReg + MS 

• Use the same parameters: 


• Achieve the same results when mN is taken to infinity

Consistency check of the TPEP 27

c1 = − 0.74, c2 = 1.81, c3 = − 3.61, c4 = 2.17 GeV−1

fπ = 92.4 MeV, gA = 1.29
D. Siemens, et al., 1610.08978



Prediction for the D, F, G partial waves  

• Improve the description of D waves, especially for 3D3  

• Give the globally similar results for F, G waves 

✓ 3G5: non-rel. result is accidental,  effect (N4LO) is large.ci /mN

Peripheral phase shifts 28

D. Entem, et al., 1411.5335



Low phases and the deuteron

XLR, E. Epelbaum, J. Gegelia, in progress



We proposed a systematic framework to formulate the NN 
interactions based on the time-ordered perturbation theory 
using the manifestly Lorentz invariant effective Lagrangian  

• Obtained the rules of time-ordered diagrams with spin-1/2 fermions  

• Derived the Kadyshevsky equation self-consistently 

✓ Effective potential and the scattering equation are obtained within the same 
framework  

• Obtained non-singular LO potential, which is perturbatively 
renormalizable 

✓ Avoid finite-cutoff artefacts and take cutoff !  

• Formulated the chiral potential up to NNLO  

✓ Calculated the complicated two-pion-exchange potential at one-loop level  

✓ Achieved a rather reasonable description of peripheral shifts 

Λ → ∞

Summary 29



Investigate the energy-independent potential at NNLO 

• Follow the idea of energy-independent OPEP  

• Can be applied to the whole two-pion-exchange potentials  

• This will be more convenient for many-body calculations 

Perturbatively include NLO/NNLO contributions  

• Based on our non-singular LO potential, all divergences of the 

amplitude can be systematically removed ( ! ) 

In the long run, apply symmetry preserving regularization 
to investigate the chiral potential  
• e.g. preserve chiral symmetry  

Λ ∼ ∞

Future perspectives

J. Behrendt, E. Epelbaum, J. Gegelia, U.-G. Meißner and A. Nogga, Eur. Phys. J. A 52,296 (2016).

30
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Thank you for your attention!


