Renormalization of nuclear chiral EFT

A. M. Gasparyan, Ruhr-Universität Bochum
in collaboration with E. Epelbaum

August 24, 2022, LENPIC Workshop

Outline

\rightarrow Explicit renormalization: motivation
\rightarrow NN chiral EFT. Finite cutoff. NLO: perturbative renormalization
\rightarrow Cutoff dependence
\rightarrow Non-perturbative renormalization
\rightarrow Infinite cutoff scheme
\rightarrow Summary

$$
\left.\begin{array}{rl}
\text { Expansion parameter: (soft scale)/(hard scale) } & Q \\
\qquad q \in\left\{|\vec{p}|, M_{\pi}\right\}, & \Lambda_{b}
\end{array}\right) M_{\rho}
$$

"Perturbative" calculation of the S-matrix, spectrum, etc.

EFT: systematic expansion.
 Power counting. Theoretical error estimation.

$$
\begin{aligned}
\text { Expansion parameter: (soft scale)/(hard scale) } Q & =\frac{q}{\Lambda_{b}} \\
q \in\left\{|\vec{p}|, M_{\pi}\right\}, & \Lambda_{b}
\end{aligned} \sim M_{\rho}
$$

"Perturbative" calculation of the S-matrix, spectrum, etc.

$$
\mathcal{L}_{\text {eff }}=\mathcal{L}_{\pi}^{(2)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{N N}^{(0)}+\mathcal{L}_{N N}^{(2)}+\ldots
$$

Contains bare parameters
Renormalization: power counting for renormalized quantities

Explicit renormalization of nuclear chiral EFT is a complicated matter. Non-perturbative effects.

EFT: systematic expansion.
 Power counting. Theoretical error estimation.

$$
\begin{aligned}
\text { Expansion parameter: (soft scale)/(hard scale) } Q & =\frac{q}{\Lambda_{b}} \\
q \in\left\{|\vec{p}|, M_{\pi}\right\}, & \Lambda_{b}
\end{aligned} \sim M_{\rho}
$$

"Perturbative" calculation of the S-matrix, spectrum, etc.

Contains bare parameters
Renormalization: power counting for renormalized quantities

Explicit renormalization of nuclear chiral EFT is a complicated matter. Non-perturbative effects.

Recent progress: NN EFT at NLO

Power counting for NN chiral EFT

Weinberg, S., NPB363, 3 (1991)

For potential (2N-irreducible) contributions:

$$
D=2 L+\sum_{i=\text { vertices }}\left(d_{i}+\frac{n_{i}}{2}-2\right)
$$

d_{i} - number of derivatives and quark masses
n_{i} - number of nucleon fields, L - number of loops

Power counting for NN chiral EFT

For potential (2N-irreducible) contributions:

$$
D=2 L+\sum_{i=\text { vertices }}\left(d_{i}+\frac{n_{i}}{2}-2\right)
$$

d_{i} - number of derivatives and quark masses
n_{i} - number of nucleon fields, L - number of loops

$\mathcal{O}\left(Q^{2}\right)$

Enhancement due to the infrared singularity: V_{0} must be iterated

$$
\longrightarrow \begin{aligned}
& T_{0}=V_{0}+V_{0} G V_{0}+V_{0} G V_{0} G V_{0}+\ldots \\
& T_{2}=V_{2}+V_{2} G V_{0}+V_{0} G V_{2}+V_{2} G V_{0} G V_{0}+\ldots
\end{aligned}
$$

Regularization

Divergent:

$$
\begin{aligned}
& T_{0}=V_{0}+V_{0} G V_{0}+V_{0} G V_{0} G V_{0}+\cdots=\sum_{n=0}^{\infty} T_{0}^{[n]}, \quad T_{0}^{[n]} \sim p^{n} \\
& T_{2}=\sum_{m, n=0}^{\infty}\left(V_{0} G\right)^{m} V_{2}\left(G V_{0}\right)^{n}=\sum_{m, n=0}^{\infty} T_{2}^{[m, n]}, \quad T_{2}^{[m, n]} \sim p^{m+n+2}
\end{aligned}
$$

Regularization

Divergent:

$$
\begin{aligned}
& T_{0}=V_{0}+V_{0} G V_{0}+V_{0} G V_{0} G V_{0}+\cdots=\sum_{n=0}^{\infty} T_{0}^{[n]}, \quad T_{0}^{[n]} \sim p^{n} \\
& T_{2}=\sum_{m, n=0}^{\infty}\left(V_{0} G\right)^{m} V_{2}\left(G V_{0}\right)^{n}=\sum_{m, n=0}^{\infty} T_{2}^{[m, n]}, \quad T_{2}^{[m, n]} \sim p^{m+n+2}
\end{aligned}
$$

\longrightarrow Regulator: cutoff \wedge

Regularization

Divergent:

$$
\begin{aligned}
& T_{0}=V_{0}+V_{0} G V_{0}+V_{0} G V_{0} G V_{0}+\cdots=\sum_{n=0}^{\infty} T_{0}^{[n]}, \quad T_{0}^{[n]} \sim p^{n} \\
& T_{2}=\sum_{m, n=0}^{\infty}\left(V_{0} G\right)^{m} V_{2}\left(G V_{0}\right)^{n}=\sum_{m, n=0}^{\infty} T_{2}^{[m, n]}, \quad T_{2}^{[m, n]} \sim p^{m+n+2}
\end{aligned}
$$

\longrightarrow Regulator: cutoff \wedge

Infinite number of counter terms to absorb positive powers of \wedge

Two intuitive approaches: Infinite cutoff $\left(\Lambda \gg \wedge_{b}\right)$ scheme, "RG invariant"

All positive powers of \wedge cancel
A. Nogga, R. Timmermans,
U. van Kolck, PRC72, 054006 (2005)
B. Long, C. Yang, PRC85, 034002 (2012)
B. Long, C. J. Yang, PRC84, 057001 (2011)

$$
T \approx 1+\Lambda+\Lambda^{2}+\cdots=\frac{1}{1-\Lambda}
$$

Two intuitive approaches:
 Infinite cutoff $\left(\wedge \gg \wedge_{b}\right)$ scheme, "RG invariant"

All positive powers of \wedge cancel
A. Nogga, R. Timmermans,
U. van Kolck, PRC72, 054006 (2005)
B. Long, C. Yang, PRC85, 034002 (2012)
B. Long, C. J. Yang, PRC84, 057001 (2011)

$$
T \approx 1+\Lambda+\Lambda^{2}+\cdots=\frac{1}{1-\Lambda}
$$

W. Frank, D. J. Land and R. M. Spector, Rev. Mod. Phys. 43, 36 (1971)

Two intuitive approaches: Infinite cutoff ($\wedge \gg \wedge_{b}$) scheme, "RG invariant"

All positive powers of \wedge cancel
A. Nogga, R. Timmermans,
U. van Kolck, PRC72, 054006 (2005)
B. Long, C. Yang, PRC85, 034002 (2012)
B. Long, C. J. Yang, PRC84, 057001 (2011)

$$
T \approx 1+\Lambda+\Lambda^{2}+\cdots=\frac{1}{1-\Lambda}
$$

W. Frank, D. J. Land and R. M. Spector, Rev. Mod. Phys. 43, 36 (1971)
Motivation: singular potentials

Two intuitive approaches: Finite cutoff

$\Lambda \approx \Lambda_{b}$

Cutoff dependence gets weaker when chiral order increases

Two intuitive approaches: Finite cutoff

$\Lambda \approx \Lambda_{b}$
Cutoff dependence gets weaker when chiral order increases

Phenomenological success (NN): $\geq \mathrm{N}^{4} \mathrm{LO}$
P. Reinert, H. Krebs, and E. Epelbaum, EPJA54, 86 (2018)
D. R. Entem, R. Machleidt, and Y. Nosyk, PRC96, 024004 (2017)

Explicit renormalization: power counting?

Power counting. Leading order. Perturbative case.

Perturbative: the series in V_{0} is convergent, but the number of terms is arbitrary
$T_{0}^{[n]}=V_{0}\left(G V_{0}\right)^{n} \sim \mathcal{O}\left(Q^{0}\right)$
$\Lambda \approx \Lambda_{b}: \int \frac{p^{n-1} d p}{\left(\Lambda_{\mathrm{V}}\right)^{n}} \sim\left(\frac{\Lambda}{\Lambda_{V}}\right)^{n} \sim\left(\frac{\Lambda_{b}}{\Lambda_{b}}\right)^{n} \sim \mathcal{O}\left(Q^{0}\right)$
G. P. Lepage, nucl-th/9706029
J. Gegelia, JPG25, 1681 (1999)

Power counting. Leading order. Perturbative case.

Perturbative: the series in V_{0} is convergent,
but the number of terms is arbitrary
$T_{0}^{[n]}=V_{0}\left(G V_{0}\right)^{n} \sim \mathcal{O}\left(Q^{0}\right)$
$\Lambda \approx \Lambda_{b}: \int \frac{p^{n-1} d p}{\left(\Lambda_{\mathrm{V}}\right)^{n}} \sim\left(\frac{\Lambda}{\Lambda_{V}}\right)^{n} \sim\left(\frac{\Lambda_{b}}{\Lambda_{b}}\right)^{n} \sim \mathcal{O}\left(Q^{0}\right)$
G. P. Lepage, nucl-th/9706029
J. Gegelia, JPG25, 1681 (1999)

Rigorously proved
under rather general conditions on V_{0}
if T_{0} is perturbative
(P-waves and higher except for ${ }^{3} \mathrm{P}_{0}$): $\quad \mathrm{T}_{0}=\sum_{n=0}^{\infty} T_{0}^{[n]}$

$$
T_{0}^{[n]} \leq \mathcal{M}_{1}\left(\mathcal{M}_{2} \frac{\Lambda}{\Lambda_{V}}\right)^{n} \quad \mathcal{M}_{1}, \mathcal{M}_{2} \sim 1
$$

AG, E.Epelbaum,
PRC 105, 024001 (2022)

Renormalization at NLO. Perturbarive case

Renormalization: power counting in terms of renormalized quantities

$$
T_{2}^{[m, n]}=\left(V_{0} G\right)^{m} V_{2}\left(G V_{0}\right)^{n} \sim \mathcal{O}\left(Q^{0}\right) \neq \mathcal{O}\left(Q^{2}\right)
$$

Power-counting violating contributions from momenta:

$$
p \sim \Lambda, p^{\prime} \sim \Lambda \text { in } V_{2}\left(p^{\prime}, p\right)
$$

Renormalization at NLO. Perturbarive case

Renormalization: power counting in terms of renormalized quantities

$$
T_{2}^{[m, n]}=\left(V_{0} G\right)^{m} V_{2}\left(G V_{0}\right)^{n} \sim \mathcal{O}\left(Q^{0}\right) \neq \mathcal{O}\left(Q^{2}\right)
$$

$$
\text { Power-counting violating contributions from momenta: } p \sim \Lambda, p^{\prime} \sim \Lambda \text { in } V_{2}\left(p^{\prime}, p\right)
$$

Can be absorbed by LO contact interactions?

$$
\mathbb{R}\left(T_{2}^{[m, n]}\right) \sim \frac{q^{2}}{\Lambda_{b}^{2}}\left(\frac{\Lambda}{\Lambda_{V}}\right)^{m+n}
$$

Does it work for NN?

What is different from the standard renormalization procedure in QFT (BPHZ etc.)?

Does it work for NN?

What is different from the standard renormalization procedure in QFT (BPHZ etc.)?

We do not subtract all positive powers of the cutoff Only those that are not compensated by the hard scale

Does it work for NN?

What is different from the standard renormalization procedure in QFT (BPHZ etc.)?

We do not subtract all positive powers of the cutoff Only those that are not compensated by the hard scale

3-dimensional (p_{0} is integrated out)+various forms of a regulator

Does it work for NN?

What is different from the standard renormalization procedure in QFT (BPHZ etc.)?

We do not subtract all positive powers of the cutoff Only those that are not compensated by the hard scale

3-dimensional (p_{0} is integrated out)+various forms of a regulator

Infinite number of terms. How do prefactors depend on $n ? \operatorname{Exp}(n)$ or $n!?$

Does it work for NN?

What is different from the standard renormalization procedure in QFT (BPHZ etc.)?

We do not subtract all positive powers of the cutoff Only those that are not compensated by the hard scale

3-dimensional (p_{0} is integrated out)+various forms of a regulator

Infinite number of terms. How do prefactors depend on n ? $\operatorname{Exp}(n)$ or $n!?$

Non-perturbative effects?

Renormalization of NLO amplitude to arbitrary order in V_{0}.
 $B P H Z$ subtraction scheme

N. N. Bogoliubov, O. S. Parasiuk, AM97, 227 (1957); K. Hepp, CMP2, 301 (1966); W. Zimmermann, CMP15, 208 (1969)

Subtraction operation:

$$
\mathbb{T}(X)\left(p^{\prime}, p, p_{\mathrm{on}}\right)=X\left(p^{\prime}=0, p=0, p_{\mathrm{on}}=0\right)
$$

Renormallized amplitude (forest formula):

$$
\mathbb{R}\left(T_{2}^{[m, n]}\right)=T_{2}^{[m, n]}+\sum_{U_{k} \in \mathcal{F}^{m, n}} \prod_{\left(m_{i}, n_{i}\right) \in U_{k}}\left(-\mathbb{T}^{m_{i}, n_{i}}\right) T_{2}^{[m, n]}
$$

$$
U_{k}=\left(\left(m_{k, 1}, n_{k, 1}\right),\left(m_{k, 2}, n_{k, 2}\right), \ldots\right), \quad m \geq m_{k, i+1} \geq m_{k, i} \geq 0, n \geq n_{k, i+1} \geq n_{k, i} \geq 0
$$

Power counting in the perturbative case, NLO

AG, E.Epelbaum, PRC 105, 024001 (2022)

Convergent series in $\mathrm{V}_{0}: \quad \mathbb{R}\left(T_{2}\right)=\sum_{m, n=0}^{\infty} \mathbb{R}\left(T_{2}^{[m, n]}\right)$

$$
\left|\mathbb{R}\left(T_{2}^{[m, n]}\right)(p)\right| \leq \mathcal{M}_{1}\left(\mathcal{M}_{2} \frac{\Lambda}{\Lambda_{V}}\right)^{m+n} \frac{p^{2}}{\Lambda_{b}^{2}} \log \Lambda / M_{\pi}
$$

$$
\mathcal{M}_{1}, \mathcal{M}_{2} \sim 1
$$

Power counting in the perturbative case, NLO

AG, E.Epelbaum, PRC 105, 024001 (2022)

Convergent series in V_{0} :

$$
\mathbb{R}\left(T_{2}\right)=\sum_{m, n=0}^{\infty} \mathbb{R}\left(T_{2}^{[m, n]}\right)
$$

$$
\begin{aligned}
& \left|\mathbb{R}\left(T_{2}^{[m, n]}\right)(p)\right| \leq \mathcal{M}_{1}\left(\mathcal{M}_{2} \frac{\Lambda}{\Lambda_{V}}\right)^{m+n} \frac{p^{2}}{\Lambda_{b}^{2}} \log \Lambda / M_{\pi} \\
& \mathcal{M}_{1}, \mathcal{M}_{2} \sim 1
\end{aligned}
$$

Cutoff dependence. Systematic study.

Regulated potential: $\quad V_{0} \equiv V_{\Lambda}=V_{\Lambda=\infty}+\delta V_{\Lambda}$

Perturbative inclusion of $\delta V_{\Lambda}: \delta T_{2}^{\Lambda}=\left(1+T_{0} G\right) \delta V_{0}^{\Lambda}\left(1+G T_{0}\right) \sim \mathcal{O}\left(Q^{0}\right)$

After renormalization: $\quad \mathbb{R}\left(\delta T_{2}^{\Lambda}\right) \sim \mathcal{O}\left(Q^{2}\right)$

Removing \wedge-dependence perturbatively

Cutoff dependence: P and D-waves.

Uncoupled perturbative channels

with δV_{Λ}

with δV_{Λ}

$\mathrm{E}_{\text {lab }}[\mathrm{MeV}]$
$F_{\Lambda}=\frac{\Lambda_{\pi}^{2}-M_{\pi}^{2}}{\Lambda_{\pi}^{2}+\vec{q}^{2}}$
$\Lambda_{\pi} \in(300,800) \mathrm{MeV}$

Cutoff dependence with δV_{Λ} is weaker

S-waves. Non-perturbative LO. Fredholm formula

$T_{0}=V_{0} R=\bar{R} V_{0} \quad R=\frac{1}{\mathbb{1}-G V_{0}}=\frac{N}{D}, \bar{R}=\frac{1}{\mathbb{1}-V_{0} G}=\frac{\bar{N}}{D}$

Convergent series in $\mathrm{V}_{0}: \quad N=\sum_{i=0}^{\infty} N^{[i]}, D=\sum_{i=0}^{\infty} D^{[i]}$
(Quasi-) bound state: $\quad D(p) \sim \frac{p}{M_{\pi}}$

Enhancement at threshold: $\quad T_{0}(p)=\frac{N_{0}(p)}{D(p)} \sim \mathcal{O}\left(Q^{-1}\right)$

NLO. Using Fredholm formula.

$$
T_{2}(p)=\left(1+T_{0} G\right) V_{2}\left(1+G T_{0}\right)=\frac{N_{2}(p)}{D(p)^{2}}
$$

Convergent series in V_{0} :

$$
N_{2}=\sum_{i=0}^{\infty} N_{2}^{[i]}, D=\sum_{i=0}^{\infty} D^{[i]}
$$

The same for the counter terms:

$$
\delta T_{2}=\left(1+T_{0} G\right) \delta V_{0}^{c t}\left(1+G T_{0}\right)
$$

S-waves. NLO.

Subtractions in the non-perturbative case

The series for $\boldsymbol{R}\left(\boldsymbol{T}_{2}^{[m, n]}\right)$ can be summed explicitly

$$
\mathbb{R}\left(T_{2}\right)(p)=\sum_{m, n=0}^{\infty} \mathbb{R}\left(T_{2}^{[m, n]}\right)(p)=T_{2}(p)-T_{2}(p=0)\left[\frac{\psi_{p}(0)}{\psi_{p=0}(0)}\right]^{2}
$$

S-waves. NLO.

Subtractions in the non-perturbative case

The series for $\boldsymbol{R}\left(\boldsymbol{T}_{2}^{[m, n]}\right)$ can be summed explicitly

$$
\mathbb{R}\left(T_{2}\right)(p)=\sum_{m, n=0}^{\infty} \mathbb{R}\left(T_{2}^{[m, n]}\right)(p)=T_{2}(p)-T_{2}(p=0)\left[\frac{\psi_{p}(0)}{\psi_{p=0}(0)}\right]^{2}
$$

$\mathbb{R}\left(T_{2}\right)(p=0)=0$

S-waves. NLO.

Subtractions in the non-perturbative case

The series for $\boldsymbol{R}\left(\boldsymbol{T}_{2}^{[m, n]}\right)$ can be summed explicitly

$$
\mathbb{R}\left(T_{2}\right)(p)=\sum_{m, n=0}^{\infty} \mathbb{R}\left(T_{2}^{[m, n]}\right)(p)=T_{2}(p)-T_{2}(p=0)\left[\frac{\psi_{p}(0)}{\psi_{p=0}(0)}\right]^{2}
$$

Potentially problematic factor

S-waves. NLO.

Subtractions in the non-perturbative case

The series for $\boldsymbol{R}\left(T_{2}^{[m, n]}\right)$ can be summed explicitly

$$
\left.\mathbb{R}\left(T_{2}\right)(p)=\sum_{m, n=0}^{\infty} \mathbb{R}\left(T_{2}^{[m, n]}\right)(p)=T_{2}(p)-T_{2}(p=0) \frac{\psi_{p}(0)}{\psi_{p=0}(0)}\right]^{2}
$$

Potentially problematic factor

Renormalizability constraints on the the short-range part of the LO potential:

$$
\psi_{p=0}(0) \not \approx 0
$$

AG, E.Epelbaum, PoS PANIC2021, 371 (2022), In preparation (2022)

More constraints at higher orders!
$\Lambda \rightarrow \infty$: Cutoff independence for each chiral order individually!

$$
\mathrm{V}^{(0)}\left(p^{\prime}, p\right)=V_{1 \pi}\left(p^{\prime}, p\right)+C_{0}^{(0)}(\Lambda) p^{\prime} p
$$

Renormalization condition: $\quad \delta^{(0)}\left(E_{0}\right)=\delta_{\exp }\left(E_{0}\right), \quad E_{0}=50 \mathrm{MeV}$

A. Nogga, R. Timmermans,
U. van Kolck, PRC72, 054006 (2005)

Infinite cutoff scheme at NLO. ${ }^{3} \mathrm{P}_{0}$

```
B. Long, C. J. Yang, PRC84, 057001 (2011)
```

$$
\mathrm{V}^{(2)}\left(p^{\prime}, p\right)=V_{2 \pi}\left(p^{\prime}, p\right)+C_{0}^{(2)}(\Lambda) p^{\prime} p+C_{2}^{(2)}(\Lambda) p^{\prime} p\left(p^{2}+p^{2}\right)
$$

$$
\text { Perturbative NLO: } \quad \mathrm{T}^{(2)}=\left[\mathbb{1}+T^{(0)} G\right] V^{(2)}\left[\mathbb{1}+G T^{(0)}\right]
$$

Non-perturbative NLO leads to problems: Repulsive singular two-pion-exchange potential
M. P. Valderrama, E. R. Arriola, PRC74, 054001 (2006)
C. Zeoli, R. Machleidt, D. R. Entem, Few Body Syst. 54, 2191 (2013)

Additional renormalization conditions:
$\delta^{(2)}\left(E_{0}\right)=0$,
$E_{0}=50 \mathrm{MeV}$
$\delta^{(2)}\left(E_{1}\right)=\delta_{\exp }\left(E_{1}\right)-\delta^{(0)}\left(E_{1}\right), \quad E_{1}=25 \mathrm{MeV}$

Infinite cutoff scheme at NLO. ${ }^{3} P_{0}$

B. Long, C. J. Yang, PRC84, 057001 (2011)
$\mathrm{V}^{(2)}\left(p^{\prime}, p\right)=V_{2 \pi}\left(p^{\prime}, p\right)+C_{0}^{(2)}(\Lambda) p^{\prime} p+C_{2}^{(2)}(\Lambda) p^{\prime} p\left(p^{2}+p^{\prime 2}\right)$
Perturbative NLO:
$\mathrm{T}^{(2)}=\left[\mathbb{1}+T^{(0)} G\right] V^{(2)}\left[\mathbb{1}+G T^{(0)}\right]$

Non-perturbative NLO leads to problems: Repulsive singular two-pion-exchange potential
M. P. Valderrama, E. R. Arriola,

PRC74, 054001 (2006)
C. Zeoli, R. Machleidt, D. R. Entem, Few Body Syst. 54, 2191 (2013)

${ }^{3} P_{0}$ NLO phase shift at $E_{\text {lab }}=130 \mathrm{MeV}$

"Exceptionial cutoffs"

"Exceptional" cutoff $\bar{\Lambda} \approx 12 \mathrm{GeV}$

"Exceptional" cutoffs

$$
\begin{aligned}
T^{(2)}(E) & =T_{2 \pi}(E)+C_{0}^{(2)} T_{\mathrm{ct}, 0}(E)+C_{2}^{(2)} T_{\mathrm{ct}, 2}(E) \\
T_{\mathrm{ct}, 0}(E) & =\psi_{\Lambda}(E)^{2} \\
T_{\mathrm{ct}, 2}(E) & =2 \psi_{\Lambda}\left(p_{\mathrm{on}}\right) \psi_{\Lambda}^{\prime}(E),
\end{aligned}
$$

Renormalization conditions:

$\delta^{(2)}\left(E_{0}\right)=0$,
$E_{0}=50 \mathrm{MeV}$
$\delta^{(2)}\left(E_{1}\right)=\delta_{\exp }\left(E_{1}\right)-\delta^{(0)}\left(E_{1}\right), \quad E_{1}=25 \mathrm{MeV}$
ψ_{Λ} and ψ_{Λ}^{\prime} oscillate with Λ

$$
\left.\begin{array}{ll}
\psi_{\bar{\Lambda}}\left(E_{0}\right) & \psi_{\bar{\Lambda}}^{\prime}\left(E_{0}\right) \\
\psi_{\bar{\Lambda}}\left(E_{1}\right) & \psi_{\bar{\Lambda}}^{\prime}\left(E_{1}\right)
\end{array} \right\rvert\,=0
$$

The system of equations is
inconsistent!

"Exceptional" cutoffs

$$
\begin{aligned}
T^{(2)}(E) & =T_{2 \pi}(E)+C_{0}^{(2)} T_{\mathrm{ct}, 0}(E)+C_{2}^{(2)} T_{\mathrm{ct}, 2}(E) \\
T_{\mathrm{ct}, 0}(E) & =\psi_{\Lambda}(E)^{2} \\
T_{\mathrm{ct}, 2}(E) & =2 \psi_{\Lambda}\left(p_{\mathrm{on}}\right) \psi_{\Lambda}^{\prime}(E),
\end{aligned}
$$

Renormalization conditions:

$\delta^{(2)}\left(E_{0}\right)=0$,
$E_{0}=50 \mathrm{MeV}$
$\delta^{(2)}\left(E_{1}\right)=\delta_{\exp }\left(E_{1}\right)-\delta^{(0)}\left(E_{1}\right), \quad E_{1}=25 \mathrm{MeV}$
ψ_{Λ} and ψ_{Λ}^{\prime} oscillate with Λ

$$
\left.\begin{array}{ll}
\psi_{\bar{\Lambda}}\left(E_{0}\right) & \psi_{\bar{\Lambda}}^{\prime}\left(E_{0}\right) \\
\psi_{\bar{\Lambda}}\left(E_{1}\right) & \psi_{\bar{\Lambda}}^{\prime}\left(E_{1}\right)
\end{array} \right\rvert\,=0
$$

The system of equations is
inconsistent!

"Exceptional" cutofís

$$
\begin{aligned}
T^{(2)}(E) & =T_{2 \pi}(E)+C_{0}^{(2)} T_{\mathrm{ct}, 0}(E)+C_{2}^{(2)} \\
T_{\mathrm{ct}, 0}(E) & =\psi_{\Lambda}(E)^{2} \\
T_{\mathrm{ct}, 2}(E) & =2 \psi_{\Lambda}\left(p_{\mathrm{on}}\right) \psi_{\Lambda}^{\prime}(E),
\end{aligned}
$$

Renormalization conditions:

$\delta^{(2)}\left(E_{0}\right)=0$,
$E_{0}=50 \mathrm{MeV}$
$\delta^{(2)}\left(E_{1}\right)=\delta_{\exp }\left(E_{1}\right)-\delta^{(0)}\left(E_{1}\right), \quad E_{1}=25 \mathrm{MeV}$
ψ_{Λ} and ψ_{Λ}^{\prime} oscillate with Λ

$$
\left.\begin{array}{ll}
\hline \psi_{\bar{\Lambda}}\left(E_{0}\right) & \psi_{\bar{\Lambda}}^{\prime}\left(E_{0}\right) \\
\psi_{\bar{\Lambda}}\left(E_{1}\right) & \psi_{\bar{\Lambda}}^{\prime}\left(E_{1}\right)
\end{array} \right\rvert\,=0
$$

The system of equations is inconsistent!
$\delta T_{\mathrm{ct}, i} \sim \frac{1}{\Lambda^{\alpha}}$ is multiplied with an arbitrarily large number

"Exceptional" cutofifs

"RG-invariance" requires independence of the amplitude from the form of a regulator and the value of the cutoff

For a sufficiently general regulator, There always exist "exceptional" cutoffs

Renormalization does not work

Summary

\checkmark Renormalization of NN Chiral EFT with a finite cutoff at NLO in the chiral expansion is understood
\checkmark Power-counting breaking contributions at NLO can be absorbed by the renormalization of the LO contact interactions for perturbative LO under rather general conditions
\checkmark Cutoff dependence can be studied systematically
\checkmark In the case of non-perturbative LO, the requirement of renormalizability imposes certain constraints on the LO potential
\checkmark In the infinite cutoff scheme, renormalization at NLO does not work: "exceptional" cutoffs
\checkmark Other systems (few- and many nucleon, electroweak currents) and higher orders should be possible to analyze in a similar fashion

