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Recent progress: NN EFT at NLO
AG, Epelbaum, PRC105, 024001 (2022),
  PoS PANIC2021, 371 (2022), In preparation (2022)
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V
D2

V
D1 Enhancement due to the infrared singularity: V0 must be iterated
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Divergent:

Regulator: cutoff Λ

Infinite number of counter terms to absorb positive powers of  Λ
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Explicit renormalization: power counting?
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Cutoff dependence gets weaker when chiral order increases
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Power counting. Leading order. Perturbative case.Power counting. Leading order. Perturbative case.

G. P. Lepage, nucl-th/9706029
  J. Gegelia, JPG25, 1681 (1999)

Rigorously proved 
under rather general conditions on V0

if T0 is perturbative
(P-waves and higher except for 3P0):

AG, E.Epelbaum, 
PRC 105, 024001 (2022)

Perturbative: the series in V0 is convergent, 
but the number of terms is arbitrary
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Renormalization at NLO. Perturbarive caseRenormalization at NLO. Perturbarive case

Power-counting violating contributions from momenta:

Can be absorbed by LO contact interactions? ?

Renormalization: power counting in terms of renormalized quantities
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Does it work for NN?Does it work for NN?

Infinite number of terms. How do prefactors depend on n? Exp(n) or n! ?

Non-perturbative effects?

3-dimensional (p0 is integrated out)+various forms of a regulator

We do not subtract all positive powers of the cutoff
Only those that are not compensated by the hard scale

What is different from the standard renormalization procedure in QFT (BPHZ etc.)?



Renormalization of NLO amplitude Renormalization of NLO amplitude 
to arbitrary order in Vto arbitrary order in V0.0.

BPHZ subtraction schemeBPHZ subtraction scheme

V
2

V
0

V
0

V
0

V
0

V
0

V
0

V
0

 N. N. Bogoliubov, O. S. Parasiuk, AM97, 227 (1957); K. Hepp, CMP2, 301 (1966); W. Zimmermann, CMP15, 208 (1969)

Subtraction operation:

Renormallized amplitude 
(forest formula):
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Power counting in the perturbative case, NLOPower counting in the perturbative case, NLO
AG, E.Epelbaum, AG, E.Epelbaum, PRC 105PRC 105, 024001 (2022), 024001 (2022)  

Convergent series in V0 :

☺



Cutoff dependence. Systematic study.Cutoff dependence. Systematic study.

Regulated potential:

Perturbative inclusion of           :

Removing Λ-dependence perturbatively 

After renormalization:



Cutoff dependence: P and D-waves. Cutoff dependence: P and D-waves. 
Uncoupled perturbative channels Uncoupled perturbative channels 

LO

NLO

Cutoff dependence with         is weaker

AG, E.Epelbaum, AG, E.Epelbaum, PRC 105PRC 105, 024001 (2022), 024001 (2022)



S-waves. Non-perturbative LO. Fredholm formulaS-waves. Non-perturbative LO. Fredholm formula

Convergent series in V0 :

(Quasi-) bound state:

Enhancement at threshold:



NLO. Using Fredholm formula.NLO. Using Fredholm formula.

Convergent series in V0 :

The same for the counter terms:
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S-waves. NLO. S-waves. NLO. 
Subtractions in the non-perturbative caseSubtractions in the non-perturbative case

The series for R(TR(T
22

[m,n][m,n]) )  can be summed explicitly

Potentially problematic factor

Renormalizability constraints
on the the short-range part

of the LO potential:

AG, E.Epelbaum, PoS PANIC2021, 
371 (2022), In preparation (2022)

More constraints at higher orders! 



Infinite cutoff (“RG-invariant”) scheme.  LO. Infinite cutoff (“RG-invariant”) scheme.  LO. 33PP00

A. Nogga, R. Timmermans, 
U. van Kolck, PRC72, 054006 (2005)

Renormalization condition:

Cutoff independence for each chiral order individually!



Infinite cutoff scheme at NLO. Infinite cutoff scheme at NLO. 33PP00

B. Long, C. J. Yang, PRC84, 057001 (2011)

Non-perturbative NLO leads to problems:
Repulsive singular two-pion-exchange potential

Perturbative NLO:

Additional renormalization conditions:

M. P. Valderrama, E. R. Arriola,
PRC74, 054001 (2006)
C. Zeoli, R. Machleidt, D. R. Entem,
Few Body Syst. 54, 2191 (2013)



Infinite cutoff scheme at NLO. Infinite cutoff scheme at NLO. 33PP00

B. Long, C. J. Yang, PRC84, 057001 (2011)

EElablab=130 MeV=130 MeVEElablab=40 MeV=40 MeV EElablab=80 MeV=80 MeV

Non-perturbative NLO leads to problems:
Repulsive singular two-pion-exchange potential

Perturbative NLO:

M. P. Valderrama, E. R. Arriola,
PRC74, 054001 (2006)
C. Zeoli, R. Machleidt, D. R. Entem,
Few Body Syst. 54, 2191 (2013)



33PP0 0 NLO phase shiftNLO phase shift at E at Elablab=130 MeV=130 MeV

“Exceptionial cutoffs” 

AG, E.Epelbaum, In preparation (2022)



33PP0 0 pphase shifts hase shifts 

LO

NLO

Typical cutoff

“Exceptional” cutoff
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Renormalization conditions:

The system of equations
is 

inconsistent!

is multiplied with an arbitrarily large number



““Exceptional” cutoffsExceptional” cutoffs

“RG-invariance” requires independence of the amplitude 
from the form of a regulator and the value of the cutoff

For a sufficiently general regulator,
There always exist “exceptional” cutoffs

Renormalization does not work



SummarySummary

✔ Renormalization of  NN Chiral EFT with a finite cutoff at NLO in the chiral 
expansion  is understood

✔ Power-counting breaking contributions at NLO can be absorbed 
by the  renormalization of the LO contact interactions 
for perturbative LO under rather general conditions

✔ Cutoff dependence can be studied systematically

✔ In the case of non-perturbative LO, 
the requirement of renormalizability  
imposes certain constraints on the LO potential

✔ In the infinite cutoff scheme, renormalization at NLO does not work:
“exceptional” cutoffs

✔ Other systems (few- and many nucleon, electroweak currents) and higher 
orders should be possible to analyze in a similar fashion
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