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® Path-integral approach for derivation of nuclear forces
® Symmetry preserving regularization

® Status report on construction of 3N interactions & currents



Path-Integral Framework
for Derivation of Nuclear Forces



Why a new Framework?

Difficulties in formulation of regularized chiral EFT

® Regularization should preserve chiral and gauge symmetries
® Regularization should not affect long-range pion physics

Pion-propagator in euclidean space: g° = qg + q12 + q22 + %2
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all 1/A-corrections are short-range interactions

qo - dependence in exponential requires second and higher order time-derivatives
In pion field in the chiral Lagrangian

~>» Canonical guantization of the regularized theory becomes difficult
(Ostrogradski - approach, Constrains, ...)



Canonical vs Path-Integral Quantization
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Canonical Quantization of QFT
Hamiltonian & Hilbert space

Creation/annihilation operators

Time-ordered perturbation theory
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Path-Integral Quantization of QFT
Lagrangian & action
Summation over all classical paths

Loop expansion & Feynman rules

~
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® Path-Integral approach was a natural choice in pionic and single-nucleon sector

Gasser, Leutwyler, Annals Phys. 158 (1984) 142;
Bernard, Kaiser, MeiBner, Int. J. Mod. Phys. E 4 (1995)193

® In two - and more - nucleon sector Weinberg used canonical quantization language

Weinberg Nucl. Phys. B 362 (1991) 3

In using old-fashioned perturbation theory we must work with the Hamil-

tonian rather than the Lagrangian. The application of the usual rules of

canonical quantization to the leading terms in (1) and (9) yields the total

Can we choose a formulation where we can work with the Lagrangian?



Lagrangian Formulation of Chiral EFT

Lagrangian formulation of chiral EFT so far

® Lagrangian formulation with subtractions: diagrammatic approach

Kaiser, Brockmann, Weise, Nucl. Phys. A 625 (1997) 758

—>» Less transparent in quantification of off-shell ambiguities

the box diagram

---------------- B E Irreducible part of }

® Lagrangian formulation with instant subtractions: T - matrix approach

Gasparyan, Epelbaum, Phys. Rev. C 105 (2022) 2, 024001

® Nucleon-field transformation in a derivation of isospin violating nuclear forces

Friar, van Kolck, Rentmeester, Timmermans, Phys. Rev. C 70 (2004) 044001

® Path-integral formulation of chiral EFT with instant interactions on the lattice
Borasoy, Epelbaum, HK, Lee, MeiBner, EPJA 31 (2007)105

® Instant interactions generate only iterative part of the NN amplitude



Path-Integral over Nucleons and Pions

We start with generating functional:

Zn",nl = J[DNT][DN] [Drlexp <i Jd“x(sz + 7T (XON(x) + N’f(x)n(x))>

Yukawa toy-model:
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® Perform a Gaussian path-integral over the pion fields

Znt,nl = [ [DN'][DN lexp <i Sy +i [d‘*x(;ﬂ(x)N(x) + N (on(x)) >

2
Sy = Jd4x NT(x)<i i + V_>N(x) — Vyy €= !\Ion-ins_tant one-pion-exchange
oxy 2m Interaction
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with non-instant pion propagator: Ax(x) = [



Instant Interactions from Path-Integral
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A general interaction /7, = [d4x’d4xd4y’d4y NT(xNAN(x) F(x', x,y",y) N'(y")BN(y) with
A & B some spin-isospin matrices is called instant if

F(x',x,y,y) ~ 6(xy — x9)0(y — Yp)O(xg — ¥p)
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Viy = — = Jd4x d'yV - [NT() G| N Ap(x = ») V- [NT(») 52| N(y) is not instant

8F2

To transform V,,, into an instant form we rewrite a pion propagator
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In coordinate space this corresponds to A (x) = Ay(x) — ﬁAFS(x) with
X0
d3q eiﬁ"?

2n)}  w;

d4c] e—iq-x
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2n)* wi(q5 — 0g)

Ag(x) = — J = - 5(XO)J ,  Apg(x) = J



Generalization of Static Decompaosition

2
® The decomposition A .(x) = A(x) — %AFS(x) IS not only valid for pion propagator
X0

Assume that G(x) is a quadrate-integrable function with its Fourier representation

d* . - L .
G(x) = J % 6)14e‘lq'xG(6]§, ¢*) and G(q3, ¢*) is differentiable at gy = 0
T
4q . ~ 3 — =~
If we define Gy(x) = J e 19%G(0,9°) = 5(xO)J e' 7" *G(0,4°) and
m)* (27)’
d* G2, g% — G(0,g°
Grg(x) = [ e et 90-9°) 0.7 is well defined due to existence
(2m)* 93

. 0 -~

of a derivative —G(¢Z,¢% at ¢p =0
g3
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""> G(X) — GS(X) — ﬁGFS(X)
10

We can always decompose a function G(x) into its instant part G(x) and into
a time-derivative of a function Ggq(x)




Instant Interactions from Path-Integral

Perform an instant decomposition of the pion propagator A .(x) = A(x) — ﬁAFS(x)

X
) 0

Voy = — % J'd4x d4yvx : lNT(X)?T] Nx) Ap(x —y) Vy : [NT(y)E’T] N(y)

> Vv = Vorg + Vis

2
Vopg = — % [d“x d*yV - [N T7|Nx) Agx —y) V- [NT(y)o'r| N(y) is instant
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Vis = Py Jd4x d*yV, - |N'(x) oz N(X)%Am(x -V, - [N'() 57| N() is non-instant

Vi IS time-derivative dependent and thus can be eliminated
by a non-polynomial field redefinition

2 . 0 .,
N(x) - N'(x) = N(x) +1 % [d“y [6N(X)] - [ ngAFS(x -V, -IN "(y) T TN(y)]
0

/ g2 — — 0
N'@) > N'(x) = N'(x) — i—= [d“yv - [INT) TNV ) —Apg(y = 0] - [IN'(x) 57]
8F2 Y Y ay()



Instant Interactions from Path-Integral

2
— a —
NG) = N'(x) = Nx) + z‘% Jd“y (TN - [V~ —Aps(x =]V, - IN' ()TN
0

generate time-derivative dependent three-nucleon interactions.
These contributions can be eliminated by similar field transformations

S(NT,N")
S(NT,N)
S(NT, N
S(NT,N)

~1
ZlnT,nl = J[DNT] [DN] [det < >] exp <i Sy +i [d“x(;ﬂ(x)zv’(x) + N (0nx)) )

—1
~ J[DNT][DN] [det < )] exp <i Sy +i Jd“x(qT(x)N(x) + NT(x)n(x)) >

Equivalence theorem: nucleon pole-structure is unaffected by the field-transf.
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Instant one-pion-exchange interaction



One-Loop Corrections to Interaction

One loop corrections to NN & NNN interaction come from functional determinant

[ <5(N’T N') )‘ - < S(N'f ,N'>>
det =exp| — Trlog
S(NT,N) S(NT,N)
.
ON',N )> 41
S(NT,N)

Due to non-polynomial structure of field transformations det (

One-loop corrections to NN interaction are local but not instant

Vi 0% = Jd“x d*yV - [N' ()| N@) Lp(x =) V , - [NF() 2] N + ...
82
Perform an instant decomposition of the loop function L;(x) = Ly(x) — ﬁLFS(x)
X0

Vaw " = Jd“x AV, - [N )TN Ly =)V, - [N )T NO) + ... is instant

Non-instant part is proportional to time-derivative and can be eliminated by
an appropriate field transformation



Generalization to Chiral EFT

We start with generating functional:

ZIn',n) = J[DN?‘] [DN][Drlexp <i Jd“x(fzﬂ + Lon+ Ly + Ly +1TON@) + N (x0n(x)) )

® Integrate over pion fields via loop-expansion of the action

—» expansion of the action around the classical pion solution

® Perform instant decomposition of the remaining interactions between nucleons

® Perform nucleon-field redefinitions to eliminate non-instant part of the interaction

® Calculate functional determinant to get one-loop corrections to few-nucleon forces

® Perform instant decomposition of the one-loop corrections

® Perform field redefinitions to eliminate non-instant part the one-loop corrections



Connection to Unitary Transformations

Previous derivation of nuclear forces was based on unitary transformation technique

path-integral approach canonical quantization approach

Field transformations (FT) within , ? . Unitary transformations (UT) within
>

® Interactions generated by FT have ® Interactions generated by UT can be
always a form of heavy-baryon like matched by 4-dim loop-integrals,
tree-level or 4-dim loop-integrals only if some unitary phases are fixed

—>» UT technique is more flexible

In practical calculation we do not want to explore the flexibility of UT in constructing
non-renormalizable nuclear forces

® FT which don’t generate interactions ® Allows to study unitary ambiguities
with time-derivatives describe off-shell of e.qg. relativistic corrections
ambiguities

[UT & FT path-integral approach lead to the same chiral EFT nuclear forces up to N4LOj

Fazit: Path-integral formulation of nuclear forces is as powerful as UT technique,
however it allows consideration of a wider class of theories



Symmetry Preserving Regulator



Call for Consistent Regularization

Violation of chiral symmetry due to different regularizations: Dim. reg. vs cutoff reg.
Epelbaum, HK, Reinert, Front. in Phys. 8 (2020) 98
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“T1 Perr 101 €= 1/m - corrections to TPE 3NF ~ g2
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Naive local cut-off regularization of the current and potential
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No such D-like term in chiral Lagrangian / |»X

qs3

The problematic divergence is canceled by the one V5,1, if calculated via cutoff regularization

In dim. reg. Vor_1r = }» #J + ... is finite




Higher Derivative Lagrangian

To construct a parity-conserving regulator it is convenient to work with building-blocks

| .
Uy, = z'uTVuUuT, D,=0,+1,, T,= 5 [uT,a,Lu] - %uTrﬂu - iul#uT

x+ =u'xul ux'u, x=2B(s+ip), u=+U, adaB = [A, B]

1

Possible ansatz for higher derivative pion Lagrangian

B adD“ad p,—l—lX+ N
(2) (2) F2 1 — exp ( AD2 2 )
P =£® + T |[EOM : EOM
’ 4 adDMadDu + §X_|_
L2 = F—2Tr [u,ut 4+ x4 ] — uy o ! G
= u X+ EOM = — [D,,, v"] + g X— — ZTr (x-)

v~ Leads to regularized nuclear forces up to N4LO

® Leads to unregularized nuclear currents starting from N3LO

—>» We need a better formalism



Gradient-Flow Equation
Yang-Mills gradient flow in QCD: Liischer, JHEP 04 (2013) 123
6TBM = DyGW with Bﬂ |T=O = Aﬂ & GW = OﬂBy — OVBM + [BM,BD]
Bﬂ is a regularized gluon field

® Apply this idea to ChPT (Proposed in various talks by D. Kaplan for nuclear forces)

Introduce a smoothed pion field W with W|__ = U satisfying gradient-flow equation

{aTW = i wEOM(z) w with w = /W and EOM = [D,, w,] + % P iTr( ;(_)}

w, = i(w*(dﬂ —ir,)w—w(d, — ilﬂ)wT), v =wiyw"—wy'w, y=2B(s+ip)

T °
Solution of 1/F - expanded gradient flow equation: W = exp <i F¢>

T
Q¢ = e~ WM ey { ds =) (=0+M) <2BFpC —Fo,a, ) + O(n?, w source)
0



Regularization of Forces and Currents

To regularize long-range part of the nuclear forces and currents
® Leave pionic Lagrangians % & Y unregularized

® Replace all pion fields in pion-nucleon Lagrangians EZE;\),, e 3;‘2: U—->W

1
For 7 = W this regulator reproduces SMS regularization of OPE

Check of chiral symmetry:

® We checked infinitesimal chiral transformation property of W up to four pions and
one external source: W — RWL"if U - RUL"

The check requires construction of W - field up to six pions and two sources



Status Report on 3N & Currents



Status Report on 3N & Currents

® Integration over pion-fields up to one-loop in the action in momentum space v

Non-zero contributions to 3N only at N4LO: expressed in terms of 2-dim integrals

6122+M3)

One of two-pion-one-pion 3¢, exp( -
exchange contributions > o 02 00 At T T,

T

FTwoP174Strl + ...

AL AM23 4+ A+ w2+ ) — (1 + w2 + D)g? + 4wgs + 4(1 —w)gs <2 TNV
FTwoP174Str] = JdWJ dA exp<_ x( wZ+4) —( )2 + gj 7 +4( )q3> VA Y2+
0 0

324/2732 @ 82 (1 + w22 + A2

Checks: .® Large cut-off expansion: to be done

® Passarino-Veltman reduction: to be done

S(NT, N
S(Nt,N

9

® Momentum space calculation of det < >: almost done

® Transformation of two-pion and two-pion-one-pion exchange contributions
to coordinate space: to be done



Work Flow for Development of 3N

Bochum/Bonn/Paris

Derive chiral NN + 3N interactions
complete through N3LO

Krakow/Darmstadt/Bochum/Jiilich

Partial wave decomposition of the 3N force

Krakow/Jilich/Bochum

Determination of the low-energy constants in the 3N force

Darmstadt/

Ohio Darmstadt
SRG evolve in Transform to relative HO basis;
p-space basis SRG evolve in relative HO basis

Transform to relative
HO basis

Darmstadt

Transform to lab coordinates

Bochum/Krakow/Kitakyushu lowa/Darmstadt

3N continuum calculations Solve finite nuclei for selected observables



Summary

® Path-integral approach for derivation of nuclear forces
has been developed

® Applicable for EFT’s with interactions involving
second or higher number of time-derivatives

® All results from unitary transformation technique
are reproduced within path-integral approach

® Symmetry preserving regularization

® Pion fields which couple to nucleons are smoothed
within a gradient-flow equation approach

® Status report on construction of 3N interactions & currents



