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Introduction

• Generalized parton distributions (GPDs) are important objects containing
essential information about the hadronic structure.

• Unfortunately, given the non perturbative nature of these functions, it is
not possible to calculate them directly from Quantum Chromodynamics,
and this situation has motivated the development of other ways to access
the GPDs

• Principal ways to access to GPDs are: extraction from the experimental
measurements, direct calculation using lattice QCD, and different phe-
nomenological models.

• The last procedure is based on parametrizations of the quark wave function
or directly the GPDs, using constrains imposed by sum rules, which relate
the parton distribution functions to nucleon electromagnetic form factors.
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Introduction

• Within the phenomenological models used recently in hadronic physics,
some are based on the gauge/gravity duality (for example AdS / QCD
models).

• They suppose the existence of a gravity theory dual to QCD, and are
divided into two classes, the top-down approach (where we start from
a string theory leading to a low energy gauge theory with some QCD
properties) and the bottom-up models (phenomenological approach where
the geometry of an AdS space and bulk fields are specified in order to
incorporate some basic properties of QCD).

• In turn, these last ones are divided into hard wall models and soft wall
models, depending on the way conformal invariance in the AdS side is
broken.

• The bottom-up soft wall models have proven to be quite useful because of
their simplicity and variety of successful applications.
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Generalities about GPDs models

We start with reminding the relations between the nucleons Dirac FN
1 and

Pauli FN
2 form factors, the form factors of valence quarks in nucleons (F q

1 and
F q

2 , q = u, d) and the valence quark GPDs (Hq and Eq) 1:

F
p(n)
i (Q2) = 2

3F
u(d)
i (Q2)− 1

3F
d(u)
i (Q2)

and

F q
1 (Q2) =

∫ 1

0
dx Hq(x ,Q2)

F q
2 (Q2) =

∫ 1

0
dx Eq(x ,Q2).

At Q2 = 0 the GPDs Hq and Eq reduce to the valence quark qv (x) and
magnetic Eq(x) densities

Hq(x , 0) = qv (x) , Eq(x , 0) = Eq(x) ,

1
See for example M. Guidal, M. V. Polyakov, A. V. Radyushkin and M. Vanderhaeghen, Phys. Rev. D 72, 054013

(2005); O. V. Selyugin and O. V. Teryaev, Phys. Rev. D 79, 033003 (2009).
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Generalities about GPDs models

Hq(x , 0) and Eq(x , 0) are normalized to the number of valence u and
d quarks in the proton (in case of qv distributions) and to the anomalous
magnetic moment of quark (in case of Eq distributions), respectively:

1∫
0

dxuv (x) = 2 ,

1∫
0

dx dv (x) = 1,

κq =
1∫

0

dx Eq(x) .

The constants κq are related to the anomalous magnetic moments of
nucleons kN = FN

2 (0):

κu = 2κp + κn = 1.673 , κd = κp + 2κn = −2.033 .
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Generalities about GPDs models

? GPDs and hadronic wave functions.
The two body contribution to form factors can be written as

F (2)(q2) =
∫ 1

0
dxd2k⊥Ψ∗(x , k⊥ + (1− x)q)Ψ(x , k⊥).

If we use a gaussian ansatz for LFWF

Ψ(x , k⊥) = exp

[
− k2

⊥
2x(1−x)λ2

]
,

we get a nonforward parton density like

Hq
G (x , t) = q(2)(x)e(1−x)t/4xλ2

,

where q(2)(x) is the two body part in quark density q(x).
The drawback with this is that form factor F1 decay quickly for large

momentum transfer.
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Generalities about GPDs models

In order to improve results that you can obtain with the gaussian ansatz
exist several parametrizations2, thats in general looks like

Hq(x , t) = q(x)ef (x)t ,

where in general quarks densities used for q(x) are parametrizations for fit

data.

2
For a brief summary see for example M. Guidal, M. V. Polyakov, A. V. Radyushkin and M. Vanderhaeghen, Phys.

Rev. D 72, 054013 (2005) [hep-ph/0410251]; O. V. Selyugin and O. V. Teryaev, Phys. Rev. D 79, 033003 (2009)
[arXiv:0901.1786 [hep-ph]].
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GPDs and Holographical models

• The bottom-up soft wall models have proven to be quite useful because of
their simplicity and variety of successful applications.

• Here we like to discuss in a brief way a couple of posibilities to use ideas
based in holographical correspondence to calculate nucleonic GPDs

• One posibility is use calculations of form factors in AdS side and try com-
pare with QCD expresions (using a matching procedure similar to used in
LFH to get LFWF)

• Other alternative is to use a holographical wave function in some phe-
nomenological models.
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GPDs and Holographical models

? Approach to GPDs with a matching procedure3.

F
q
1 (Q2) =

∫ 1
0 dxHq(x,Q2) F

q
2 (Q2) =

∫ 1
0 dx Eq(x,Q2).

The Form Factors in AdS / QCD4.

F
p
1 (Q2) = C1(Q2) + ηpC2(Q2) Fn

1 (Q2) = ηpC3(Q2) F
p
2 (Q2) = ηnC2(Q2) Fn

2 (Q2) = ηnC3(Q2)

where

C1(Q2) =
∫
dze−Φ V (Q, z)

2z3
(ψ2

L(z) + ψ2
R (z)) C2(Q2) =

∫
dze−Φ V (Q, z)

2z2
(ψ2

L(z)− ψ2
R (z))

C3(Q2) =
∫
dze−Φ 2mNV (Q, z)

2z3
(ψ2

L(z)ψ2
R (z))

We can compare if we use a integral representation for V (Q, z) like

V (Q, z) = Γ

(
1 +

Q2

4κ2

)
U

(
Q2

4κ2
, 0, κ2z2

)
= κ2z2 ∫ 1

0

dx

(1− x)2
x

Q2

4κ2 e
−κ

2z2x
(1−x)

3
A. V, I. Schmidt, T. Gutsche and V. E. Lyubovitskij, Phys. Rev. D 83, 036001 (2011).

4
Z. Abidin and C. E. Carlson, Phys. Rev. D79, 115003 (2009)
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GPDs and Holographical models

So the summary of Results in Soft Wall case is

Hq
v (x ,Q2) = q(x)xa and E q

v (x ,Q2) = e(x)xa,

where

a = Q2/(4κ2); q(x) = αqγ1 + βqγ2; e(x) = βqγ3,

and

αu = 2 , αd = 1 , βu = 2ηp + ηn , β
d = ηp + 2ηn

γ1 =
1

2
(5 + 8x + 3x2) γ1 = 1− 10x + 21x2 − 12x3 γ1 =

6mN

√
2

κ
(1− x)2

? Parameters involved.

κ = 350MeV , ηp = 0.224 , ηn = −0.239

fixed to reproduce mass and anomalous magnetic moment of nucleons.
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GPDs and Holographical models

? Approach to GPDs in a quark-diquark model plus a LFWF5.

We consider a model where the Dirac and Pauli quark form factors are
defined in terms of LFWFs as

F
q
1 (Q2) =

1∫
0
dx
∫ d2k⊥

16π3

[
ψ+ ∗
q+ (x, k′⊥)ψ+

q+(x, k⊥) + ψ+ ∗
q− (x, k′⊥)ψ+

q−(x, k⊥)

]

F
q
2 (Q2) = − 2MN

q1−iq2

1∫
0
dx
∫ d2k⊥

16π3

[
ψ+ ∗
q+ (x, k′⊥)ψ−q+(x, k⊥) + ψ+ ∗

q− (x, k′⊥)ψ−q−(x, k⊥)

]

where MN is the nucleon mass, ψλN

λqq
(x , k⊥) are the LFWFs with specific

helicities of nucleon λN = ± and struck quark λq = ±, where plus and minus
correspond to +1/2 and −1/2, respectively.

The LFWFs ψλN

λqq
(x , k⊥) are defined as

ψ+
+q(x, k⊥) =

m1q+xMN
x

ϕq(x, k⊥) ψ+
−q(x, k⊥) = − k1+ik2

x
(1− x)µq ϕq(x, k⊥)

ψ−+q(x, k⊥) = k1−ik2

x
(1− x)µq ϕq(x, k⊥) ψ−−q(x, k⊥) =

m1q+xMN
x

ϕq(x, k⊥)

5
A. V, I. Schmidt, T. Gutsche and V. E. Lyubovitskij, in preparation.
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GPDs and Holographical models

where m1q is the mass of struck quark. The wave function ϕq(x , k⊥) is given
by the product of transverse and longitudinal wave functions6

ϕq(x , k⊥) = Nq

√
log(1/x) xβ1q (1 − x)β2q+1 exp

[
−M

2

2κ2 x log(1/x)

]
,

where

M2 =M2
0 +

k2
⊥

x(1−x)
=

k2
⊥+m2

1
x

+
k2
⊥+m2

2
1−x

is the invariant mass, and

Nq = 4π
κMN

[ 1∫
0
dx x

2β1q (1− x)
3+2β2qRq(x) e−M

2
0/κ

2
]−1/2

, Rq(x) =
(

1 +
m1q
xMN

)2
+
κ2µ2

q

M2
N

(1−x)3

x2

is the normalization constant and β1q and β2q are the parameters depending
on flavor (quark masses). The parameters µq (q = u, d) are fixed in from
description of nucleon magnetic moments.

6
S. J. Brodsky and G. F. de Teramond, arXiv:0802.0514 [hep-ph]; S. S. Chabysheva and J. R. Hiller, arXiv:1207.7128

[hep-ph]; T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. V, Phys. Rev. D 87, 056001 (2013).
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GPDs and Holographical models

Our results for the quark Dirac and Pauli form factor are

F
q
1 (Q2) = Cq

1∫
0
dxx

2β1q (1− x)
3+2β2q Rq(x,Q2) exp

[
− Q2

4κ2 log(1/x) (1− x)

]
exp

[
−
M2

0
κ2 x log(1/x)

]
,

F
q
2 (Q2) = Cq

1∫
0

2dx
x
µq

(
1 +

m1q
xMN

)
x

2β1q (1− x)
5+2β2q exp

[
− Q2

4κ2 log(1/x) (1− x)

]
exp

[
−
M2

0
κ2 x log(1/x)

]
,

where

Cq =

[ 1∫
0
dx x

2β1q (1− x)
3+2β2q Rq(x) e−M

2
0/κ

2
]−1

and Rq(x,Q2) = Rq(x)− Q2

4M2
N

µ2
q (1−x)4

x2

It means that the nonforward parton densities are given by

Hq(x,Q2) = Cqx
2β1q (1− x)

3+2β2q Rq(x,Q2) exp

[
− Q2

4κ2 log(1/x) (1− x)

]
exp

[
−
M2

0
κ2 x log(1/x)

]

Eq(x,Q2) = Cq
2
x
µq

(
1 +

m1q
xMN

)
x

2β1q (1− x)
5+2β2q exp

[
− Q2

4κ2 log(1/x) (1− x)

]
exp

[
−
M2

0
κ2 x log(1/x)

]
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GPDs and Holographical models

Redefining index, quarks densities are

qv (x) = Cq x
ρ1q (1− x)ρ2q Rq(x) e−

M2
0

κ2 x log(1/x),

Eq(x) = Cq x
ρ1q (1− x)2+ρ2q Pq(x) e−

M2
0

κ2 x log(1/x),

Rq(x) =
(

1 +
m1q
xMN

)2
+
κ2µ2

q

M2
N

(1−x)3

x2 and Pq(x) =
2µq
x

(
1 +

m1q
xMN

)
.

We consider three models with some usual values for quark and diquark
masses.

• Model I: quarks massless.

• Model II: Struck quark with current mass.

• Model III: Struck quark with constituent mass.
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GPDs and Holographical models

Table: Parameters used for three different fits in parton distributions qu(x).
In all cases we consider κ = 350 MeV.

Model mq [MeV] mD [MeV] Cq ρ1 ρ2

I 0 0 4.76 -0.18 2.56
II 7 100 189.24 1.86 6.11
III 300 600 55.86 1.14 2.50

Table: Parameters used for three different fits in parton distributions qd(x).
In all cases we consider κ = 350 MeV.

Model mq [MeV] mD [MeV] Cq ρ1 ρ2

I 0 0 2.87 -0.21 3.76
II 7 100 27.94 1.91 4.66
III 300 600 28.15 1.25 3.14
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GPDs and Holographical models
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Figure: Comparison between parton distributions. The thick continuous line
corresponds to the MRST global NNLO fit at the scale µ2 = 1 GeV2, while
the dashed line corresponds to the parton distributions given using Fit I, thin
continuous line correspond to Fit II and dotted line is for Fit III.
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GPDs and Holographical models

And using a standard representation to Eq(x)7.

Eu(x) = ku
Nu

(1− x)κ1 u(x) and Ed (x) =
kd
Nd

(1− x)κ2 d(x).

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

x

E
u

HxL

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

x
-

E
d

HxL

Figure: The thick continuous line corresponds to the form suggested with
MRST global NNLO fit at the scale µ2 = 1 GeV2. Dashed line corresponds
to Fit I, thin continuous line correspond to Fit II and dotted line is for Fit III.

7
M. Guidal, M. V. Polyakov, A. V. Radyushkin and M. Vanderhaeghen, Phys. Rev. D 72, 054013 (2005).
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Conclusions

• It is possible to use AdS / QCD ideas to calculate GPDs.

• Starting with a AdS / QCD form factor, we can use a matching procedure
to get GPDs. Actually this approach need some improvements to reproduce
quarks densities.

• Starting from a light-front quark - diquark model, and using a holograph-
ical LFWF, we derive the nucleon non forward densities and get parton
densities.

• In general, works that consider parametrizations for GPDs usually pay at-
tention to justify the Q behavior, and put by hand some popular fit to
parton densities, and here we present a models that offer expressions for
these functions.
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That’s all Folks!
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