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1. INTRODUCTION



Jet quenching

Jet quenching was first observed at RHIC and then confirmed at LHC.

This phenomenon happens when a very energetic quark or gluon, Q≫ T , which in
vacuum would manifest itself as a jet, going through a strongly coupled plasma loses
sufficient energy that few high momentum hadrons are seen in the final state.



Jet quenching



Jet quenching

Jet quenching manifests itself in many observables.

In particular, the hard partons produced in the collision

• lose energy;

• change direction of their momenta: transverse momentum broadening.

beam beam

jet

je t

k

k  = transverse momentum with respect to the original hard parton direction



Jet quenching parameter q̂

P (k⊥) is the probability that after propagating through the medium for a distance L the
hard parton acquires transverse momentum k⊥,

∫

d2k⊥
(2π)2

P (k⊥) = 1

q̂ is the jet quenching parameter, i.e. the mean square transverse momentum picked up
by the hard parton per unit distance traveled,

q̂ =
〈k2⊥〉
L

=
1

L

∫

d2k⊥
(2π)2

k2⊥ P (k⊥)



Jet quenching: early literature

There has been a long-time effort to determine q̂ from QCD.

• The relation of q̂ to the expectation value of two Wilson lines oriented along one of
the light-cone directions has been established over the last fifteen years.

◦ Baier Dokshitzer Mueller Peigne Schiff NP B483 (1997) 291

Zakharov JETPL 63 (1996) 952

Casalderrey-Solana Salgado APP B38 (2007) 3731

Liang Wang Zhou PR D77 (2008) 125010

• Effective field theories (EFTs) taking advantage in a systematic way of the many
scales involved in the problem have been used more recently.

◦ D’Eramo Liu Rajagopal PR D84 (2011) 065015

Ovanesyan Vitev JHEP 1106 (2011) 080



Energy scales: kinematics and medium

A highly energetic parton, Q > 100 GeV, propagates along the light-cone direction n̄.

q =Q(0,1,0)
0

q=(q ,q ,q  )+ _

q+ = n̄ · q n̄ = (1, 0, 0,−1)/
√
2

q− = n · q n = (1, 0, 0, 1)/
√
2

q2 = 2q−q+ − q2⊥

In a medium characterized by a scale (e.g. temperature) T ≪ Q:

λ ≡ T

Q
≪ 1

λ will be the relevant expansion parameter.



Energy scales: collinear partons

We consider partons that undergo a transverse momentum broadening of order Qλ:

q =Q(0,1,0)
0

• if q = Q(λ, 1, λ), the parton is off shell by ∼ Q2λ: the parton is hard-collinear;

• if q = Q(λ2, 1, λ), the parton is off shell by ∼ Q2λ2: the parton is collinear.



Energy scales: Glauber gluons

We consider the transverse momentum broadening of a collinear parton:

q =Q(0,1,0)
0

2

It may happen through

• fragmentation into collinear partons (gluons, quarks) of momentum q = Q(λ2, 1, λ);
• scattering by soft gluons of momentum q = Q(λ, λ, λ);
• scattering by Glauber gluons of momentum q = Q(λ2, λ, λ) or q = Q(λ2, λ2, λ).

◦ Idilbi Majumder PR D80 (2009) 054022



Degrees of freedom

The relevant degrees of freedom are:

2

2 22

2 2 2

n

Glauber gluons  A   

c

Ultrasoft gluons  A   

n

Soft gluons  A   



Soft Collinear Effective Theory (SCET)

SCET is the suitable EFT for processes that involve a large energy transfer
(larger than any other scale including masses).

• B decays by weak interactions:
B → Xuℓν̄, B → Dπ, B → K∗γ, B → πℓν, B → Xsγ, B → ργ, B → ργ,
B → ρρ, B → ππ, B → D∗η′, B → Kπ, B → γℓν̄, Υ → Xγ, ...
Ex. B → Dπ

pµπ ≈ (2.3GeV, 0, 0,−2.3GeV) ∼ Qn̄µ ∼ Q(0, 1, 0)

Q≫ Λ, hence λ ∼ Λ/Q

• soft constituent (of B and D): pµs ∼ (Λ,Λ,Λ) ∼ Q(λ, λ, λ)

• collinear constituent (after boost): pµc ∼ (Λ2/Q,Q,Λ) ∼ Q(λ2, 1, λ)

◦ Bauer Fleming Pirjol Stewart PR D63 (2001) 114020



Soft Collinear Effective Theory (SCET)

• High-energy collisions and jets:
e−p→ e−X, pp̄→ Xe+e−, e−γ → e−π0, e−e+ → jets, pp̄→ jets,
e−e+ → J/ψX, ...
Ex. e−e+ → jets

Q≫ ∆, hence λ ∼ ∆/Q

• Jet constituents: pµ ∼ (∆2/Q,Q,∆) ∼ Q(λ2, 1, λ)



2. GAUGE INVARIANTP (k⊥)



SCET for transverse momentum broadening

The EFT that describes the propagation of a collinear quark in the n̄-direction is
SCET coupled to collinear, soft, Glauber and ultrasoft gluons:

Ln̄ = ξ̄n̄ in/ n̄ ·D ξn̄ + ξ̄n̄ iD/⊥
1

2in ·D iD/⊥ n/ ξn̄

We will consider now the contribution of soft, Glauber and ultrasoft gluons only and

rescale ξ̄n̄ → e−iQx+

ξ̄n̄. The Lagrangian, organized as an expansion in λ, is then

Ln̄ = ξ̄n̄ in/ n̄ ·D ξn̄ + ξ̄n̄
D2

⊥
2Q

n/ ξn̄ + ξ̄n̄ i
gFµν

⊥
4Q

γµγν n/ ξn̄ + . . .

◦ Idilbi Majumder PR D80 (2009) 054022



Power-counting in covariant gauges

In a covariant gauge and in the presence of covariant soft sources, it is (q+ ∼ Qλ2)

A+ ∼ A⊥ ∼ Qλ2

which follows from the equation of motion of a collinear parton and Lorentz symmetry.
• Note, however, that the fields are not homogeneous in the energy scales.

For ∂⊥ ∼ λ (when acting on collinear quarks), the leading order Lagrangian in λ is

Ln̄ = ξ̄n̄ in/ n̄ ·D ξn̄ + ξ̄n̄
∂2⊥
2Q

n/ ξn̄



Decoupling of ultrasoft gluons

• Ultrasoft gluons decouple at lowest order from collinear quarks trough

ξn̄ → P exp

{

ig

∫ x−

−∞
dy n̄ ·Aus(x

+, y, x⊥)

}

ξn̄

• The field redefinition works for ultrasoft gluons because, at lowest order, the kinetic
energy, ∇2

⊥/(2Q), commutes with ultrasoft gluons. For the opposite reason, the
field redefinition would not decouple, even at lowest order, Glauber gluons from
collinear quarks.

• We may consider in the Lagrangian soft and Glauber gluons only.

◦ Bauer Pirjol Stewart PR D65 (2002) 054022



Jet broadening in covariant gauges

Only one relevant vertex

A+
= igTan̄µn/

for the scattering amplitude

q =Q(0,1,0)
0

q =Q(0,1,0)
0

(k  ,k  ,k  )+ _

= P (k⊥)

for k⊥ 6= 0 and normalizing by the number of particles in the medium (= ∆t/L).



Glauber and soft gluons in covariant gauge

• Glauber gluon propagators may be approximated by (e.g. in Feynman gauge)

Dµν(k) = D(k2)gµν ≈ D(k2⊥)gµν

• This implies that the scattering amplitude has the form

∫

∏

i

d4qi

(2π)4
· · · iQn̄/

2Qq+
2

− q2
2⊥ + iǫ

A+(q2 − q1)n/
iQn̄/

2Qq+
1

− q2
1⊥ + iǫ

A+(q1 − q0)n/ ξn̄(q0)

≈
∫

dy+d2y⊥
∏

i

dy−i · · · θ(y−
3

− y−
2
)A+(y+, y−

2
, y⊥) θ(y−

2
− y−

1
)A+(y+, y−

1
, y⊥)ξn̄(q0)

where n̄/ ξn̄(q0) = 0 and ξ†n̄(q0) ξn̄(q0) =
√
2Q.

• The same result holds if one considers the interaction of soft gluons with collinear
and hard-collinear quarks. In this case, one has to recall that the hard-collinear

quark propagator reads
i

2q+ + iǫ
n̄/.



Jet broadening in covariant gauges

P (k⊥) =
1

Nc

∫

d2x⊥e
ik⊥·x⊥

〈

Tr
{

W †[0+, x⊥]W [0+, 0⊥]
}〉

where 〈. . . 〉 is a medium average

and W [0+, x⊥] = P exp

{

ig

∫ L/
√
2

−L/
√
2

dx− A+(0+, x−, x⊥)

}

, for L→ ∞.

x− = −∞ x− = ∞

0⊥

x⊥ • The fields are path ordered (P)
but not time ordered;

• the expression is not gauge invariant
(e.g. for A+ = 0, W = 1).

◦ Baier et al NP B483 (1997) 291, Zakharov JETPL 63 (1996) 952

Casalderrey-Solana Salgado APP B38 (2007) 3731

D’Eramo Liu Rajagopal PR D84 (2011) 065015



Power-counting in light-cone gauge

Consider the light-cone gauge A+ = 0:

Dµν(k) = D(k2)

(

gµν − kµn̄ν + kν n̄µ

[k+]

)

for Glauber gluons k⊥/[k+] ∼ 1/λ, which leads to on enhancement of order λ in the
singular part of the propagator.

Moreover, because of the k⊥/[k+] singularity,

A⊥(x+, x−, x⊥) = Acov
⊥ (x+, x−, x⊥)+θ(x−)A⊥(x+,∞−, x⊥)+θ(−x−)A⊥(x+,−∞−, x⊥)

where Acov
⊥ vanishes at infinity and A⊥(x+,±∞−, x⊥) = ∂⊥φ±(x+, x⊥):

• A⊥ does not vanish at infinity where it becomes pure gauge,

• but the field tensor does (because the energy of the gauge field is finite).

◦ Belitsky Yuan NP B656 (2003) 165

Garcia-Echevarria Idilbi Scimemi PR D84 (2011) 011502



Power-counting in light-cone gauge

In the A+ = 0 light-cone gauge, the scaling of the Glauber fields appearing in the
Lagrangian goes like

A+ = 0 Acov
⊥ ∼ Qλ2 ∂⊥φ

± ∼ Qλ

The leading order Lagrangian in λ is

Ln̄ = ξ̄n̄ in/ n̄ · ∂ ξn̄ + ξ̄n̄
(∂⊥ − igθ(x−)∂⊥φ+ − igθ(−x−)∂⊥φ−)2

2Q
n/ ξn̄



Jet broadening in light-cone gauge

The relevant vertices are two

A

q q’

= −ig
q′⊥ ·A⊥(q′ − q) +A⊥(q′ − q) · q⊥

2Q
n/

AA

q q’’

= − ig
2

2Q

∫

d4q′

(2π)4
Ai

⊥(q′′ − q′)Ai
⊥(q′ − q)n/



Jet broadening in light-cone gauge

From the vertices one constructs the amplitude (on the left of the cut)

q =Q(0,1,0)
0

1 2 3 4 5 n−1 n

(k  /2Q,k  ,k  )
_2

= Gn(k−, k⊥)

Gn is a convolution of G+

n−j , which involves only fields at x− = ∞ and G−
j , which

involves only fields at x− = −∞:

Gn(k
−, k⊥) =

n
∑

j=0

∫

d4q

(2π)4
G+

n−j(k
−, k⊥, q)

iQ n̄/

2Qq+ − q2⊥ + iǫ
G−

j (q)



Jet broadening in light-cone gauge

The computation is done by

• solving recursively (analogously for G+
n (q))

G−
n (q) =

∫

d4q′

(2π)4
G−

n−1
(q′)

q ’ q

+

∫

d4q′′

(2π)4
G−

n−2
(q′′)

q’’ q

• writing the differential amplitude as

1

L3
√
2Q

∫

dk+

2π

∫

dk−

2π
2πQδ(2Qk+−k2⊥) ξ̄n̄(q0)G

†
m(k−, k⊥)n̄/Gn(k

−, k⊥) ξn̄(q0)

• eventually summing over all m and n.



Jet broadening in light-cone gauge

P (k⊥) =
1

Nc

∫

d2x⊥e
ik⊥·x⊥

〈

Tr
{

T †[0+,−∞−, x⊥]T [0+,∞−, x⊥]

× T †[0+,∞−, 0⊥]T [0+,−∞−, 0⊥]
}〉

where T [0+,±∞−, x⊥] = P exp

{

−ig
∫

0

−L/
√

2

ds l⊥ ·A⊥(0+,±∞−, x⊥ + sl⊥)

}

◦ Benzke Brambilla Escobedo Vairo JHEP 1302 (2013) 129

The relevance of the Wilson line T in light-cone gauge SCET has been discussed in
◦ Idilbi Scimemi PL B695 (2011) 463



Jet broadening in light-cone gauge

x⊥

0⊥

−∞⊥

x− = −∞ x− = ∞



The gauge-invariant expression of P (k⊥)

The gauge invariant expression of P (k⊥) then reads

P (k⊥) =
1

Nc

∫

d2x⊥e
ik⊥·x⊥

〈

Tr
{

T †[0+,−∞−, x⊥]W †[0+, x⊥]T [0+,∞−, x⊥]

× T †[0+,∞−, 0⊥]W [0+, 0⊥]T [0+,−∞−, 0⊥]
}〉

The path ordering prescription implies that fields in the first line are anti-time ordered
while fields in the second line are time ordered.

◦ Benzke Brambilla Escobedo Vairo JHEP 1302 (2013) 129



The gauge-invariant expression of P (k⊥)

x⊥

0⊥

−∞⊥

x− = −∞ x− = ∞

• Note that the Wilson lines at x− = ∞ are contiguous while those at x− = −∞ are not.
This is because the fields are not time ordered.



The gauge-invariant expression of P (k⊥)

The expression of P (k⊥) may be simplified because:

• contiguous adjoint (unitary) lines cancel;

• fields separated by space-like intervals commute;

• the cyclicity of the trace.

x⊥

0⊥

−∞⊥

x− = −∞ x− = ∞

• Note that the fields in (0+,−∞−, 0⊥) are not contiguous.



Gauge invariance

Under a gauge transformation Ω

Tr
{

T †[0+,−∞−, x⊥]W †[0+, x⊥] · · ·T [0+,−∞−, 0⊥]
}

−→ Tr
{

Ω(0+,−∞−,−∞ l⊥)T †[0+,−∞−, x⊥]W †[0+, x⊥] · · ·

×T [0+,−∞−, 0⊥]Ω†(0+,−∞−,−∞ l⊥)
}

= Tr
{

T †[0+,−∞−, x⊥]W †[0+, x⊥] · · ·T [0+,−∞−, 0⊥]
}

for the fields in Ω(0+,−∞−,−∞ l⊥) commute with all the others (space-like
separations) and the cyclicity of the trace.

◦ Benzke Brambilla Escobedo Vairo JHEP 1302 (2013) 129



3. DISCUSSION



Jet quenching: recent literature

• One can express P (k⊥) as a two particle (time ordered) Wilson loop by modifying
the partition function according to the Keldysh–Schwinger contour and by
identifying the anti-time ordered fields with fields on the imaginary time line of the
Keldysh–Schwinger contour.
◦ D’Eramo Liu Rajagopal PR D84 (2011) 065015

• q̂ may be written in terms of field correlators as

q̂ =

∫ kmaxd2k⊥
(2π)2

∫

d2x⊥ eik⊥·x⊥

∫

dx−

×
√
2

Nc

〈

Tr

{

[0, x⊥]−U†
x⊥

[x−,−∞] gF+i
⊥ (0, x−, x⊥)

×U†
x⊥

[∞, x−][x⊥, 0]+U0⊥
[∞, 0] gF+i

⊥ (0, 0, 0)U0⊥
[0,−∞]

}〉

where Qλ <∼ kmax ≪ Q and Ux⊥
[x−, y−] = P exp

[

ig

∫ x−

y−

dz− A+(0, z−, x⊥)

]

.



Jet quenching: recent literature

• Similar (but not gauge invariant) expressions can be found in the literature.

E.g. ◦ Majumder arXiv:1202.5295

They seem to require kmax → ∞, which is only justified, under some
circumstances, in dimensional regularization. In this case, the gauge invariant
expression reads

q̂ =

∫

dx−
√
2

Nc

〈

Tr
{

U0⊥
[−∞, x−] gF+i

⊥ (0, x−, 0)

× U0⊥
[x−, 0] gF+i

⊥ (0, 0, 0)U0⊥
[0,−∞]

}

〉

0

x 
_

0  
_



The contribution from the scale g2T

The gauge invariant expression of q̂ allows for the use of lattice data.

E.g. Suppose a weakly coupled plasma characterized by the thermodynamical scales:

T ≫ gT ≫ g2T (non-perturbative)

At relative order g2

• one can analytically continue from Minkowski to Euclidean space-time;

• time ordering is irrelevant;

• the partition function at the energy scale g2T is described by an EFT (MQCD) that
is three-dimensional SU(3) (with coupling g2T ).

◦ Caron-Huot PR D79 (2009) 065039

The contribution from the scale g2T may be extracted from the behaviour of the Wilson
loop, ∼ e−LV , in three-dimensional QCD.

◦ Laine EPJ C72 (2012) 2233



The contribution from the scale g2T at large distances

At large distances, r >∼ r0 = 2.2/(g2T ),

1.0 1.5 2.0
x

1.6

1.7

1.8

1.9

2.0

2.1

2.2

r0
2 V ¢ H r0 x L

V (r) =
1

r0

(

a
r

r0
− b

r0

r
+ . . .

)

a ≈ 1.5, b = π/24 ≈ 0.13

this implies δq̂ =
aq∗

r2
0

+
b(q∗)3

3
+ . . .

where kmax ≫ gT ≫ 1/r0 >∼ q∗

is the cut off in the k⊥ integration.

For αs ≈ 0.5 and T ≈ 300 MeV, δq̂ ≈ 5 GeV2/fm.

◦ Lüscher Weisz JHEP 0207 (2002) 049 (for the lattice data)

see also Mykkanen JHEP 1212 (2012) 069 (for new lattice data)

and Pineda Stahlhofen PR D81 (2010) 074026 (for PT)



Conclusions and outlook

A systematic treatment of a complex phenomenon like jet quenching is possible in an
EFT framework owning to the hierarchy of scales that characterize the system. These
are the typical SCET scales, Q, Qλ, Qλ2, with λ = T/Q, which characterize the
propagation of a very energetic parton in the medium and the thermal scales that
characterize the medium itself, T , mD , magnetic mass.

Many contributions still need to be computed both on the SCET side and on the thermal
side of the theory. Work in progress includes:

• inclusion of collinear gluons;
◦ D’Eramo Liu Rajagopal JP G38 (2011) 124162

• extended perturbative analysis of the thermal bath.
◦ Benzke Brambilla Escobedo Vairo TUM-EFT 32/12
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