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S. G lazek and A. Trawiński, University of Warsaw preprint IFT/13/04



Abstract

Quantum field theory in the front form of dynamics [Dirac 1949] has been linked
to the classical field theory in the 5-dimensional anti-deSitter (AdS) gravitational
background by Brodsky and Teramond [Brodsky and Teramond 2008; Teramond
and Brodsky 2009] in terms of the formula for a form factor of a hadron. We
shall discuss the corresponding equations of motion and formulas for form factors
in a model framework in which all these equations are analogs of the Ehrenfest
equations of quantum mechanics. The required expectation values are obtained
by integrating over relative motion variables and summing over quantum numbers
of spectators. The AdS modes dual to the incoming and outgoing hadrons thus
appear to be the parton Ehrenfest functions for the constituents that are struck
by external probes.



Introduction I
I Representation of physical states in the FF Fock space

∣∣Hadron:P+,P⊥
〉

=
∑
n

∫
[x,p⊥] ψ

(n)
P (x,p⊥;λ)

×
∣∣n : xP+,p⊥;λ

〉
.

I We shall omit all except momentum quantum numbers.

I In the proton: |uud〉, |uudg〉, |uudqq̄〉, |uudgg〉, . . .
I ψ

(n)
P - wave functions of n-th Fock sector.

I λ - renormalization group (RG) scale.

I This state satisfies the FF Schrödginger eigenvalue equation.



Introduction II

I The Ehrenfest equation[
~k 2 +M2 + Ueff

]
ψ(~k ) = M2ψ(~k ) ,

I is another description of a hadron (Newton ← Schrödinger),

I ψ(~k ) - the Ehrenfest function.

I ψ(~k ) describes the motion of an averaged active parton with respect
to spectators.

I The Ehrenfest equation does not depend on λ (quantum RG
parameter).

I Our point: (Newton ←→
Ehrenfest Schrödinger) ⇔ (AdS/QFT duality)
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The Ehrenfest equation I

∣∣Hadron:P+,P⊥
〉

=
∑
n

∫
[x,p⊥] ψ

(n)
P (x,p⊥;λ)

∣∣n : xP+,p⊥;λ
〉

I The hadron state FF wave functions depend on the ratios of
longitudinal momenta of constituents to the hadron longitudinal
momentum, x = (xi )i=1,...,n, xi = p+

i /P
+,

I and transverse momenta of the constituents, p⊥ = (p⊥i )i=1,...,n.

∫
[p⊥] =

∏
i

∫
d2p⊥i
(2π)2

and

∫
[x] =

∏
i

∫
dp+

i

(2π)2p+
i

.



The Ehrenfest equation II
I Our model of a hadron state is normalized〈

Hadron:P ′+,P ′⊥|Hadron:P+,P⊥
〉

= 2P+(2π)3δ(P ′+ − P+) δ(2)(P ′⊥ − P⊥) ,

I and the relative momenta k⊥ = (k⊥i )i=1,...,n and k⊥i = p⊥i − xiP
⊥

are separated from the total hadron momentum by writing

ψ
(n)
P (x,p⊥;λ) = 2(2π)3δ

( n∑
i=1

xi − 1
)
δ(2)
(
P⊥ −

n∑
i=1

p⊥i

)
× ψ(n)(x, k⊥;λ) ,

I
∑n

i=1 k
⊥
i = 0.



The Ehrenfest equation III
I The FF Hamiltonian P̂− in a QFT determines the structure of a

composite system through the eigenvalue equation in which the
eigenvalue is expressible in terms of the kinematical momenta, P+

and P⊥, and mass squared, M2, of the system

P̂−
∣∣Hadron:P+,P⊥

〉
=

M2 + (P⊥)2

P+

∣∣Hadron:P+,P⊥
〉
.

I In every sector, we will distinguish one constituent and we will
focus on description of its motion with respect to other
constituents.

I The selected constituent will be called active, and it will be
described using variables without subscripts.

I The other constituents will be called spectators or a core, depending
on the context.



The Ehrenfest equation IV

I We can write the expectation value of P+P̂− − (P⊥)2 in a hadron
in the form

M2 =

∫
d2k⊥ dx

2(2π)3x(1− x)

∑
n

∫
[x,κ⊥]

× 2(2π)3δ
( n−1∑

j=1

xj − 1
)
δ(2)
( n−1∑

j=1

κ⊥j

)

× ψ
†(n)
k,x

[
(k⊥)2

x(1− x)
+

m2

x
+

m̂2

1− x

]
ψ

(n)
k,x

+ (interactions) ,

I The functions ψ
(n)
k,x depend on x and k⊥ separately from the core

internal motion variables x and κ⊥ (actually, n − 1 3-dim variables).



The Ehrenfest equation V
I ψ

(n)
k,x are eigenfunctions of the free invariant mass-squared operator

m̂2 for the spectators, with eigenvalue

m2
n−1 =

n−1∑
j=1

(κ⊥j )2 + m2

xj
.

I Since

m2

x
+

m̂2

1− x
=

[m̂ x −m (1− x)]2

x(1− x)
+ (m + m̂)2 ,

I we introduce the third component of relative momentum of the
active constituent with respect to the core by writing

k3 = m̂ x −m (1− x) .



The Ehrenfest equation VI
I We now introduce

~k = (kx , ky , kz) =
(k⊥, k3)√
x(1− x)

.

I Consequently, the Schrödinger expectation value equation becomes
our Ehrenfest expectation value equation.

I Their free parts match each other according to the correspondence
QM-CM formula〈∫

d3k ψ
†(n)
~k

[
~k 2 + (m + m̂)2

]
ψ

(n)
~k

〉
=

∫
d3k ψ(~k )†

[
~k 2 +M2

]
ψ(~k ) ,

I ψ(~k ) is our Ehrenfest function.



The Ehrenfest equation VII
I The averaging that is denoted by brackets 〈 〉 satisfies conditions

κ2 =
〈
κ2
n

〉
,

M2 =
〈
(m + mn−1)2

〉
,

Ueff = 〈potential〉 .

I The κ2 corresponds to the half-width of the Ehrenfest function

ψ(~k ), whereas κ2
n corresponds to the half-width of ψ

(n)
~k

.

I M2 is the expectation value of the combined mass squared of the
active constituent and core, averaged over spectators’ relative
dynamics in the core and the sectors that form the hadron of mass
M.

I The mass of a hadron M differs form M by the biding energy
caused by the effective potential Ueff.



The Ehrenfest equation VIII

I Variation of the Ehrenfest expectation value equation with respect
to ψ(~k ), keeping the norm fixed (total charge), yields the Ehrenfest
equation,

[
~k 2 +M2 + Ueff

]
ψ(~k ) = M2ψ(~k ) .



Form factors I
I Now we repeat our procedure for the form factor of a hadron, F (q2),

that is another observable.

I We do this, following Brodsky and Teramond, using our Ehrenfest
function.

I We suggest that the Brodsky-Teramond holographic density
corresponds to the modulus squared of our Ehrenfest function.

I The form factor defined in terms of a matrix element of the current
Ĵ+(x = 0) with q+ = 0 is〈

Hadron:P+,P⊥+q⊥
∣∣Ĵ+(0)

∣∣Hadron:P+,P⊥
〉

= QHadron 2P+ F (q2) ,

I where QHadron denotes the relevant charge of the hadron and
F (0) = 1.



Form factors II
I The form factor formula reads [Drell and Yan 1970; West 1970]

F (q2) =
∑
n

∫
[x,p⊥]

n∑
j=1

ej

× 2(2π)3δ
( n∑

i=1

xi − 1
)
δ(2)
( n∑

i=1

p⊥i − P⊥
)

× ψ†(n)(p⊥j − xP ′⊥, x;λ)ψ(n)(p⊥ − xP⊥, x;λ) ,

I where ej is the fraction of hadron charge carried by the active
constituent.

I p⊥j = (p⊥i + δij q
⊥)i=1,...,n, and P ′⊥ − P⊥ = q⊥.

I For simplicity, we assume that ψ(n) is a symmetric function of
momenta.

I Then it is easy to see that one can choose a value of j , for instance
n, and carry out the summation over active constituents, which
produces

∑
j ej = 1 in each Fock sector.



Form factors III

I So, the Fourier transform in k⊥ gives

F (q2) =

∫
d2η⊥ dx

4πx(1− x)

∑
n

∫
[x,κ⊥]

× 2(2π)3δ
(∑

j

xj − 1
)
δ(2)

(∑
j

κ⊥j

)
× e i(1−x)η⊥q⊥

∣∣∣ψ̃(n)
η,x

(
κ⊥, x;λ

)∣∣∣2 ,
I where

∣∣ψ̃(n)
η,x

∣∣2 is the Brodsky-Teramond density, which can be
alternatively described in terms of our Ehrenfest function.



Model of AdS/QFT duality I
We now describe a simple model that illustrates the Ehrenfest
interpretation of the Brodsky-Teramond holography:

I We assume that each constituent is attracted by some force to the
core formed by other constituents.

I More or less like an electron is attracted to the center of positive
charge distribution in the Thomson model of an atom, except that
we have to average over various numbers of constituents.

I Quite generally, one can assume that an active constituent is
attracted to a minimum of the effective potential that by necessity is
a quadratic function of the distance between the active constituent
and the core center.



Model of AdS/QFT duality II
I If an absolute transverse position of i-th constituent is denoted by

r⊥i , then the position of a hadron is

R⊥ =
n∑

i=1

xi r
⊥
i ,

I and the position of the center of mass of the core is

R⊥j =

∑
i 6=j xi r

⊥
i∑

i 6=j xi
.

I One denotes by η⊥i the relative distance between i-th constituent
and the position of the hadron,

η⊥i = r⊥i − R⊥

= (1− xi )(r⊥i − R⊥i ) .

I Relative momenta k⊥ = (k⊥i )i,...,n are canonically conjugated to the
η⊥ = (η⊥i )i,...,n.



Model of AdS/QFT duality III
I In position variables, the FF wave function of or model state is

ψ̃(n)(η⊥, x;λ) = κ n
n Ãn

(
λ/ΛQFT

)
× exp

{
−1

4

n∑
i=1

[
(η⊥i )2 xi κ2

n +
m2

xi
/κ2

n

]}
.

I On the other hand, in momentum space,

ψ(n)(k⊥, x;λ) =
An

(
λ/ΛQFT

)
κ n
n

× exp

{
−1

4

n∑
i=1

[
m2 + (k⊥i )2

xi

]
/κ2

n

}
.

I κ2
n = κ2

n(λ) are the widths of the Fock Gaussian wave functions.



Model of AdS/QFT duality IV
I The normalization condition gives

1 =

∫
d2k⊥ dx

2(2π)3x(1− x)

∑
n

|An|2

κ 2n
n

∫
[x,κ⊥]

× 2(2π)3δ
( n−1∑

j=1

xj − 1
)
δ(2)
( n−1∑

j=1

κ⊥j

)
× exp

{
−1

2

[
(k⊥)2

x(1− x)
+

m2

x
+

m2
n−1

1− x

]
/κ2

n

}
.

I So instead of integration over all x and κ⊥ one can integrate over a
single variable m2 together with density ρn,

ρn
(
m2
)

=
1

κ 2(n−1)
n

∫
[x,κ⊥] 2(2π)3δ

(∑
j

xj − 1
)
δ(2)
(∑

j

κ⊥j

)
× δ
(
m2 −m2

n−1(x,κ⊥)
)
.



Model of AdS/QFT duality V

I Finally, we are able to write explicitly the expectation value of a
quantity X in our model state as

〈X 〉 =
∑
n

∫
dm2 ρn(m2)

∂(k1, k2, x)

∂(kx , ky , kz)

(κn

2

)
× |An|2 e−(m+m)2/4κ2

n X e−(m+m)2/4κ2
n ,

I where X can be any function of m or n.

I The Ehrenfest expectation value equation for the free part of the FF
Hamiltonian, in this case mass squared, reads〈∫

d3k

(2π)3

e−
~k 2/4κ̂2

√
κ̂

3

[
~k 2 + (m + m̂)2

]e−~k 2/4κ̂2

√
κ̂

3

〉

=

∫
d3k

(2π)3

e−
~k 2/4κ2

√
κ 3

[
~k 2 +M2

] e−
~k 2/4κ2

√
κ 3 .



Model of AdS/QFT duality VI

I Thus, we find that the Ehrenfest function (with proper
normalization) is

ψ(~k ) =

(
2π

κ2

)3/4

e−
~k 2/4κ2

,

I and it by necessity satisfies the Ehrenfest equation with a harmonic
oscillator potential,

Ûeff = −κ4

(
∂

∂~k

)2

.



Conclusion

I We have shown on the model example that the QFT Schrödginger
equation can be quite generally expected to yield the Ehrenfest
equation with a harmonic oscillator potential.

I Our usage of a factorized, i.e., Gaussian FF wave functions of
perpendicular and longitudinal variables gives

M2 φ̃(ζ) =

[
M2 −

(
∂

∂ζ

)2

− 1

ζ

∂

∂ζ
+

1

ζ2
l2z

+ (2L + 1)κ2 + κ4ζ2

]
φ̃(ζ) ,

I where ζ is the length of a position vector canonically conjugated to
momentum (kx , ky ) and lz is angular momentum projection on
z-axis.

I In this form, our Ehrenfest equation resembles the ones used in
AdS/QFT duality calculations, where ζ is associated with the 5-th
dimension z and modified metric with a soft-wall potential.
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