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o partial derivatives
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0 0 0
a - 5 0, = ) ai =] -
T ot Ox~ Oxt’
light-front hypersurface = null plane I
Qo
xt=0, x=(",x1).

° [ x* light-front time parameter ]
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o two generators of the Poincaré group have spectra bounded from below

P, =P >0, P_=P">0;

P is kinematical i.e., mass and interaction independent at LF I

(]
o the maximal number (7 out of 10) of the Poincaré generators are
kinematical at LF

P+~,Pi7 ‘]+—7J—i7 J!j l:1~27

° a null plane field theory is dilatation invariant in the null plane
even if it has a mass

E.Robhrlich, Acta Physica Austriaca, Suppl.VIII, 227-322 (1971) - lecture given at
the X Internationale Univerititswochen fiir Kernphysik, Schladming, 1971
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o let us consider the massive scalar hermitian field ¢(x) with self-interaction

1, ., m, ‘
L= Ea#@a“@ — 7@‘ — V9|

o LF canonical quantization gives the LF commutator

[6(0,5),6(0,9)] = — sn(x —y7) 8(xs ~ 1),

o c-numbered commutator leads to the relation for the 2-point Wightman
function (2-WF)

(016(0,7) 9(0.5)/0) — (016(0,5) 6(0,9)[0) = — sgnx™ —y) *(x. y.)
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L= 50#@0“@ — 7@‘ — V9|

o LF canonical quantization gives the LF commutator

[6(0.%),6(0,3)] = ~ g sgnlx™ ) 8xs ¥,

o c-numbered commutator leads to the relation for the 2-point Wightman
function (2-WF)

NP N i — NS
o from the hermiticity one finds

(016(0.5) 6(0,%)[0) = (01$(0.%) (0,3)[0)"
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o let us consider the massive scalar hermitian field ¢(x) with self-interaction

2

1 Can Mo, )
L= 50#@0“@ — 7@‘ — V9|

o LF canonical quantization gives the LF commutator

[6(0.%),6(0,3)] = ~ g sgnlx™ ) 8xs ¥,

o c-numbered commutator leads to the relation for the 2-point Wightman
function (2-WF)

NP N i — NS
o from the hermiticity one finds

(016(0.5) 6(0,%)[0) = (01$(0.%) (0,3)[0)"

o therefore one gets only [lhc imaginary part of 2—WF]

3(016(0,5) 9(0,5)10) = — g sgn(x —y) F¥x. — ¥.)
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invariant

(0l6(x) ¢()[0) = (0]¢(x — y) $(0)[0) = Wz ()

o the unitary operator U(A) generates the Lorentz transformation

U(R) 6(0) U™ (A) = 6(¥) % 6(x) + 5 0" (5,0, — 5,8,)6(0)
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©

if the vacuum state is Poincaré invariant, then 2-WF is translationally
invariant

(0l6(x) ¢()[0) = (0]¢(x — y) $(0)[0) = Wz ()

©

the unitary operator U(A) generates the Lorentz transformation
1
U(AN) p(x) U (A) = p(¥) = ¢(x) + 3 W (x,0, — x,0,) P ()

where Ay, = 0, + wp With wy, = —wy,
this leads to

©

| 30— %.0,)(0]6(x) (0)[0) =0 |

Jerzy Przeszo



Definitions and basic assumptions about the light front
2-point Wightman function

Distributional solution

Conclusions and prospects

©

©

©

©

if the vacuum state is Poincaré invariant, then 2-WF is translationally
invariant

(0l¢(x) (y)|0) = (0o (x — y) $(0)|0) = Wiz (x)
the unitary operator U(A) generates the Lorentz transformation
1
U(A) o(x) UM (A) = (%) = o(x) + 5 W (x,0, — x,0,) P ()

where Ay, = 0, + wp With wy, = —wy,
this leads to

| 30— %.0,)(0]6(x) (0)[0) =0 |

or in the LC coordinates
X O Wy (x,X) + ¥ 0_Wo) (xF,%) =0, <
X O Wy (x", %) + X, Wy (x*,%) =0, =
X0, Wiy (xT, %) — x 0_Wo)(x*,%) =0, =
(X8 — ¥0;) Wy (xF,%) = 0, <=
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o the analyticity in x~ and the Lorentz transformation with J_; leads to

1
lJrimO)Ci((),W(z)(er,;V) = X707W<2)(0,X) = 7*()2(XL) 7& 0
FFr= 4
o according to the conventional wisdom
Joo =xtP — / ExTH X
is a kinematical generator, because it LF limit is
: _ Bebt— _ 0
XIJTOJJF, = 7‘/ ExTHx =J)_
o but
= x~0_W3)(0,X) = 0 « incorrect

° [thus we need to use the complete J+,]

1.
lim x*0, Wy (x*,%) = lim x~0_W) (x*, %) = 74—02()&) £0.
xt—0 ’ T

xt—0

‘for xt ~ 0, W) (x*, %) has a logarithmic dependence on x* and x~ along a light-like direction I
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U) 6(x) U™ () = 76(1) = 9(0) — e(1 +29,)6()

where [ =1+ ¢
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o the unitary operator U([) generates the scale (dilatation)
transformation

U() 90 U~ (1) = 6(00) % 6(x) — (1 + ¥0,)0()

where [ =1+ ¢
o for the dilatationally invariant vacuum state

10) = U~ (1)[0)

one obtains

(2 4+ %9,)(0[(x)$(0)|0) = 0
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where [ =1+ ¢
o for the dilatationally invariant vacuum state

10) = U~ (1)[0)

one obtains
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o or in the LC coordinates
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the unitary operator U(l) generates the scale (dilatation)
transformation

U() 90 U~ (1) = 6(00) % 6(x) — (1 + ¥0,)0()

where [ =1+ ¢
for the dilatationally invariant vacuum state

10) = U~ (1)[0)

one obtains
(2 +x*0,,)(0|¢(x)¢(0)[0) = O

or in the LC coordinates

| @+x0_+270. +28)(0/6(x)9(0)[0) =0. |

remember that the Lorentz transformation gives

(-0 —x9,)(06(x)6(0)]0) = 0.
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(2+ 270 +X0,) (016 (x)6(0)[0) = 0

or equivalently

| 260.(09(x)9(0)[0) + & [x'{0](x)9(0) 0)] = 0.

which is a truly kinematical relation
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or equivalently

\ 2x~0_(0]¢(x)$(0)[0) + & [x(0]¢(x)$(0)|0)] =

which is a truly kinematical relation
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dilatation + Lorentz (with J,_) symmetry lead to '

Qo

(24 2x70_ +x'9,)(0]|¢(x)(0)|0) = 0

or equivalently

\ 2x~0_(0]¢(x)$(0)[0) + & [x(0]¢(x)$(0)|0)] =

which is a truly kinematical relation
o at LF one obtains

2x~0_W3)(0,X) + 0; [x¥'W(5)(0,%)] =0

o since [x 0_W2)(0,%) = —3= 52(XL)} then we obtain
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from distributions S’(R?) we have
D; (x'/x1) = 2m8*(x1),

where D; is the distributional derivative, thus equation

3 1
8,~ [XIW(z)(O,x” = ﬁOZ(XL),
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from distributions S’(R?) we have
D; (x'/x1) = 2m8*(x1),

where D; is the distributional derivative, thus equation

0, [¥Wio)(0,9)] = 5-8(x.),
can be solved as
: 1 X
X’W(Q)(O,X) = ——
472 X%
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from distributions S’(R?) we have
D; (x'/x1) = 2m8*(x1),
where D; is the distributional derivative, thus equation
O W (0,0)] = A= 8?(x.),
21

can be solved as

i

; N 1 x
X W(g)(O,x) = @g

for x'W(2)(0,x) and [x‘ O-W(2(0,x) = — ﬁéz(xl)} one checks the relation

| AW (0,5)] + 200 0Wp(0.5) =0 |
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Wi (0,%) = — =
(0,%) 472 x?
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472 x?
but one should not conclude that
1 1 5
W2)(0,%) = —— + C*(x1)

B2
4m? x7
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FW2)(0,%) = 5
472 x?
but one should not conclude that
_ 1 1 2
W2)(0,%) = mx—i +Co°(x1)

‘ because 1/x] ¢ S'(R?) .‘it has no Fourier transform '

o in the sense of distributions S'(R?)

g 1l D xfl 1 X
x'— —SInx, | =-—=
a2\ 5% : 472 x2
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FW)(0,x) = — u

but one should not conclude that

_ 11 .
W2 (0,%) = preye +C8%(xy)

because 1/x] ¢ S'(R?) .‘it has no Fourier transform '

o in the sense of distributions S'(R?)

g 1l D xfl 1 X
xX— —Inx, | = —
a2\ 5% : 4

2 42
T X

o thus we have

1
W2)(0,x) = —D,

x o,
a2 (XT'”M> +C(x7)0%(x1)
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but one should not conclude that

3 1 X
‘W2 (0 =
X (h)( ,X) ) xi
— l <2
W (0,5) = g +Co*(xu)
1

because 1/x3 ¢ S'(R

. ‘ it has no Fourier transform '

o in the sense of distributions S'(R?)

o thus we have

W2)(0,%) =

1
472

o the Fourier transform exists

2
dx, ik, x

(2m)?

/
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by applying 0, one finds

2 (X+(7+(r‘)i + 0; + x’D,éL) W(z)(x) =0
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Starting from the Lorentz transformation (with J_;)
2 (x’ 0; + xia,) Wy(x) =0
by applying 0, one finds
2 (x+0+a,- + 0; + x’DjL) Wy(x) =0
and then by rearranging terms

AL[X’.W(Z) (X)] + 2X+8+01W(2)<X) +x [2(9,0+ = AL} W(z)(.x) =0
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Starting from the Lorentz transformation (with J_;)
2 (x’ 0; + xia,) Wy(x) =0
by applying 0, one finds
2 (x+0+a,- + 0; + x’DjL) Wy(x) =0
and then by rearranging terms
A X Wy (x)] + 257010 Way(x) + X [20_0+ — A 1] Wiay(x) = 0

thus at LF one finds

‘ Al [xiW(z) (O,J_C)] aF 2x*6_8,-W(2)(0,)‘c) ‘ +x' YlJriElU [28,& = AL] W(z) (x) =0
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Starting from the Lorentz transformation (with J_;)
2 (x’ 0; + xia,) Wy(x) =0
by applying 0, one finds
2 (x+0+a,- + 0; + x’DjL) Wy(x) =0
and then by rearranging terms
A X Wy (x)] + 257010 Way(x) + X [20_0+ — A 1] Wiay(x) = 0

thus at LF one finds
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thus
* lim OWp)(x) =0 0=20_0, — A,

xt—0

Jerzy Przeszowski



Definitions and basic assumptions about the light front
2-point Wightman function

Distributional solution
Conclusions and prospects

Starting from the Lorentz transformation (with J_;)
2 (x’ 0; + xia,) Wy(x) =0
by applying 0, one finds
2 (x+0+a,- + 0; + x’DjL) Wy(x) =0
and then by rearranging terms
A X Wy (x)] + 257010 Way(x) + X [20_0+ — A 1] Wiay(x) = 0

thus at LF one finds

‘ Al [xiW(z) (O,J_C)] aF 2x*6_8,-W(2)(0,)‘c) ‘ +x' YlJriElU [28,& = AL] W(z) (x) =0

thus
* lim OWp)(x) =0 0=20_0, — A,

xt—0

it is LF restriction of Weinberg’s equation

¥’0G(x) = 0, G(x) = Wiy (x)
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PHYSICAL REVIEW D 86, 105015 (2012)
Minimal fields of canonical dimensionality are free

Steven Weinberg*

Theory Group, Department of Physics, University of Texas, Austin, Texas 78712, USA
(Received 10 September 2012; published 8 November 2012)

It is shown that in a scale-invariant relativistic field theory, any field ¢, belonging to the (j, 0) or (0, j)
representations of the Lorentz group and with dimensionality d = j + 1 is a free field. For other field
types there is no value of the dimensionality that guarantees that the field is free. Conformal invariance is

not used in the proof of these results, but it gives them a special interest
here in the appendix, the only fields in a conformal field theory that can describe mass

already known and as shown
ss particles belong

to the (j, 0) or (0, j) representations of the Lorentz group and have dimensionality d = j + 1. Hence in

conformal field theories massless particles are free.

DOI: 10.1103/PhysRevD.86.105015

This note will show that in a scale-invariant relativistic
field theory, any fields that belong to the minimal 2j +
1-component (j, 0) or (0, j) representations of the Lorentz
group (where j is an integer or half-integer) and have
canonical dimensionality d = j + 1 are necessarily free
fields. This conclusion is already known for j =0 [1];
here it is extended to all spins. Although conformal invari-
ance is not used here, this result gains interest from the fact
[2] that in conformal theories the only primary fields that
can describe massless particles belong to the (j, 0) and (0, j)
representations of the Lorentz group and have canonical
dimensionality. An elementary proof of this theorem is
given in the Appendix. It follows that, according to the
mam result ot the plesent paper massless particles in a

PACS numbers: 11.10.Kk, 11.25.Hf

The point of this exercise is that by elementary commu-
tations of derivatives and coordinates, one can derive the
identity

BPLE = —27°00 + 28% — 48, )
where [J = Hz/ﬁzpiiz/, is the usual d’ Alembertian, and S is
the scale transformation operator

J

9z

§=—z (6)
[This is analogous to the identity in three dimensions that
can be used to show that the Laplacian of the spherical
polynomial ¢ Y}(6, ¢) vanishes.] We will use Egs. (4)—(6)
to show that if & belongs to the (/. 0) or (0. /) representa-
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dimensionality. An elementary proof of this theorem is
given in the Appendix. It follows that, according to the
main result of the present paper, massless particles in a
conformally invariant field theory must be free particles.

To begin, consider a field ¢,(x) belonging to any
representation of the Lorentz group. Poincaré invariance
tells us that

£15G,n(@) = =Y [T poduiGin(@) + 3 G T S din,
1 1

(6]
where G is the vacuum expectation value
Gunlx = y) = 01, ()10, @

L, are the differential operators

po

Ly, =—iF —+iz"—, 3)

e Az, az,

and [J p(,]”,,, are the matrices representing the generators
of the Lorentz group in the representation furnished by the
field ¢ (x). Iteration of Eq. (1) gives (suppressing matrix
indices)

Lr7L,,G(2) = T T oG + GT 77 Ty
—2JP°G T b @

*weinberg @physics.utexas.edu

[This is analogous to the identity in three dimensions that
can be used to show that the Laplacian of the spherical
polynomial ¢ Y7'(0, ¢) vanishes.] We will use Egs. (4)—(6)
to show that if ¢ belongs to the (j, 0) or (0, j) representa-
tions of the Lorentz group and has canonical dimension-
ality then 0y = 0.

If 4 (x) belongs to the (j, 0) representation of the Lorentz
group, then

Jij= €T I = =tdp (7)

where J; are the Hermitian matrices representing the
generators of the rotation group in its spin j representation.
It follows that

1 47n 5
37799 sG =27,9:G = 2j(j + )G

1

EGJWJL, =26J17} =2+ DG @®)

TP°GThe = 0.

Also, if ¢ has dimensionality d (counting powers of
momentum) then in a scale-invariant theory

SG(z) = 2dG(z). (&)
So for these fields, Eq. (4) reads
—2220G(z) + 8d*G(z) — 8dG(z) = 8j(j + 1)G(z), (10)

and in particular, ford = j + 1,
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our solution for a free massive scalar field

(O + m?)¢(x)
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