Wavelet methods in field theory

W. N. Polyzou* - The University of Iowa

Fatih Bulut - Inönü University

* Research supported by the in part by the US DOE Office of Science

$$
\text { May 21, } 2013
$$

What are wavelets?

- They are orthonormal basis functions that are used in data compression algorithms.
- JPEG digital images are tables of expansion coefficients in a wavelet basis.
- FBI fingerprint files are stored as expansion coefficients in a wavelet basis.
- They are fractal valued.

Outline

- Summary of useful properties (for field theories)
- Construction of the basis
- Properties of the basis
- Multi-scale fields
- Renormalization group
- Symmetries and partitions of unity
- Truncations and approximations

Useful properties of wavelet bases (for field theory)

- They are a basis for $L^{2}(\mathbb{R})$.
- Fields can be expressed exactly as linear combinations of discrete field operators and known coefficient functions.
- They have compact support.
- The discrete fields form a local algebra of operators.
- Natural separation of scales
- Natural resolution and volume cutoffs.
- The basis functions are related to fixed points of a renormalization group equation.
- The basis is natural for formulating renormalization group transformations.
- The basis naturally separates physics associated with different scales.
- The basis contains partitions of unity on all scales.
- The partitions of unity are natural for studying how truncations violate Poincaré invariance.
- The basis functions are differentiable; finite difference approximations can be replaced by derivatives.
- Quadratures needed for field theory applications can be computed exactly using renormalization group methods.

Basis construction

operators

$$
\underbrace{(D f)(x)=\sqrt{2} f(2 x)}_{\text {scale change }} \quad \underbrace{(T f)(x)=f(x-1)}_{\text {translation }} .
$$

scaling equation

$$
\begin{gathered}
s(x)=D\left(\sum_{l=0}^{2 K-1} h_{l} T^{l} s(x)\right) \quad \int s(x) d x=1 \\
h_{l} \quad \text { fixed constants }
\end{gathered}
$$

$$
s(x):=\text { scaling function }
$$

Renormalization group transformation

$$
f_{n}(x)=\underbrace{D \underbrace{\left(\sum_{l=0}^{2 K-1} h_{l} T^{\prime} f_{n-1}(x)\right)}_{\text {block average }}}_{\text {rescale }}
$$

$s(x)$ is a fixed point of this Renormalization group transformation!

The h_{n} are solutions to (for each K)

$$
\begin{gathered}
\sum_{n=0}^{2 K-1} h_{n}=\sqrt{2} \quad \text { existence } \\
\sum_{n=0}^{2 K-1} h_{n} h_{n-2 m}=\delta_{m 0} \quad\left(\int s(x-n) s(x)=\delta_{n 0}\right) \\
\sum_{n=0}^{2 K-1} n^{m}(-l)^{n} h_{2 K-1-n}=0 \quad m<K \\
\left(x^{m}=\sum_{n} c_{n}(m) s(x-n) \quad m<K\right)
\end{gathered}
$$

Equations fix h_{n} up to reflection, $h_{n} \rightarrow h_{n}^{\prime}=h_{2 K-1-n}$

Solutions: Daubechies' scaling coefficients, $K=1,2,3$

h_{1}	$\mathrm{~K}=\mathbf{1}$	$\mathrm{K}=\mathbf{2}$	$\mathrm{K}=\mathbf{3}$
h_{0}	$1 / \sqrt{2}$	$(1+\sqrt{3}) / 4 \sqrt{2}$	$(1+\sqrt{10}+\sqrt{5+2 \sqrt{10}}) / 16 \sqrt{2}$
h_{1}	$1 / \sqrt{2}$	$(3+\sqrt{3}) / 4 \sqrt{2}$	$(5+\sqrt{10}+3 \sqrt{5+2 \sqrt{10}}) / 16 \sqrt{2}$
h_{2}	0	$(3-\sqrt{3}) / 4 \sqrt{2}$	$(10-2 \sqrt{10}+2 \sqrt{5+2 \sqrt{10}}) / 16 \sqrt{2}$
h_{3}	0	$(1-\sqrt{3}) / 4 \sqrt{2}$	$(10-2 \sqrt{10}-2 \sqrt{5+2 \sqrt{10}}) / 16 \sqrt{2}$
h_{4}	0	0	$(5+\sqrt{10}-3 \sqrt{5+2 \sqrt{10}}) / 16 \sqrt{2}$
h_{5}	0	0	$(1+\sqrt{10}-\sqrt{5+2 \sqrt{10}}) / 16 \sqrt{2}$

Daubechies' $\mathrm{K}=3$ scaling function

Properties of the scaling function $s(x)$

1. Reality

$$
s(x)=s^{*}(x)
$$

2. Partition of unity

$$
1=\sum_{n=-\infty}^{\infty} s(x-n)=\sum_{n=-\infty}^{\infty}\left(T^{n} s\right)(x)
$$

3. Compact support

$$
\operatorname{support}[s(x)]=[0,2 K-1]
$$

5. Differentiability $(\mathrm{K}>2)$

$$
\frac{d s(x)}{d x} \quad \text { exists } \quad C^{1}(\mathbb{R}) \quad \text { for } \quad K=3
$$

6. Orthonormality

$$
\left(T^{m} s, T^{n} s\right)=\delta_{m n}
$$

7. Pointwise low-degree polynomial representation

Partition of unity

Resolution $1 / 2^{k}$ spaces

$$
s_{n}^{k}(x):=\left(D^{k} T^{n} s\right)(x)=\sqrt{2^{k}} s\left(2^{k}\left(x-n / 2^{k}\right)\right)
$$

Resolution $1 / 2^{k}$ subspace \mathcal{S}_{k}

$$
\mathcal{S}_{k}:=\left\{\left.f(x)\left|f(x)=\sum_{n=-\infty}^{\infty} c_{n} s_{n}^{k}(x), \quad \sum_{n=-\infty}^{\infty}\right| c_{n}\right|^{2}<\infty\right\}
$$

The scaling equation implies

$$
L^{2}(\mathbb{R}) \supset \cdots \supset \mathcal{S}_{k+1} \supset \mathcal{S}_{k} \supset \mathcal{S}_{k-1} \supset \cdots
$$

Properties of $s_{n}^{k}(x)$

1. Reality:

$$
s_{n}^{k}(x)=s_{n}^{k *}(x)
$$

2. Partition of unity:

$$
\frac{1}{\sqrt{2^{k}}} \sum_{n=-\infty}^{\infty} s_{n}^{k}(x)=\sum_{n=-\infty}^{\infty} s\left(2^{k} x-n\right)=1
$$

3. Compact support:

$$
\operatorname{support}\left[s_{n}^{k}(x)\right]=\left[\frac{n}{2^{k}}, \frac{n+2 K-1}{2^{k}}\right]
$$

4. Differentiability (continuous for $K \geq 3$):

$$
\begin{gathered}
\frac{d s_{n}^{k}(x)}{d x}=2^{k} D^{k} T^{n} \frac{d s}{d x} \\
\frac{d}{d x} D=2 D \frac{d}{d x} \quad \frac{d}{d x} T=T \frac{d}{d x}
\end{gathered}
$$

5. Orthonormality:

$$
\left(s_{m}^{k}, s_{n}^{k}\right)=\delta_{m n}
$$

6. Approximation:

$$
\lim _{k \rightarrow \infty} \mathcal{S}_{k}=L^{2}(\mathbb{R})
$$

7. Normalization (scale fixing):

$$
\int s_{n}^{k}(x) d x=\frac{1}{\sqrt{2^{k}}}
$$

8. Pointwise low-degree polynomial

$$
x^{m}=\sum_{n} c_{n}^{k}(m) s_{n}^{k}(x) \quad m<K
$$

Multi-scale decomposition of $L^{2}(\mathbb{R})$

$$
\begin{gathered}
m>n \Rightarrow \mathcal{S}_{m} \supset \mathcal{S}_{n} \\
L^{2}(\mathbb{R}) \supset \cdots \supset \mathcal{S}_{n+1} \supset \mathcal{S}_{n} \supset \mathcal{S}_{n-1} \supset \cdots \supset \emptyset \\
\mathcal{S}_{n+1}=\mathcal{S}_{n} \oplus \mathcal{W}_{n} \\
\Downarrow \\
\mathcal{S}_{n}=\mathcal{W}_{n-1} \oplus \mathcal{W}_{n-2} \oplus \cdots \oplus \mathcal{W}_{n-m} \oplus \mathcal{S}_{n-m} \\
\lim _{n \rightarrow \infty} \mathcal{S}_{n}=L^{2}(\mathbb{R}) \\
L^{2}(\mathbb{R})=\bigoplus_{n=-\infty}^{\infty} \mathcal{W}_{n}=\mathcal{S}_{m} \oplus\left(\bigoplus_{n=m}^{\infty} \mathcal{W}_{n}\right)
\end{gathered}
$$

Wavelets

\mathcal{W}_{n} are wavelet spaces

$$
w(x):=D\left(\sum_{l=0}^{2 K-1}(-)^{\prime} h_{2 K-I-1} T^{\prime} s(x)\right)=D\left(\sum_{l=0}^{2 K-1} g_{l} T^{\prime} s(x)\right)
$$

$w(x)$ is called the "Mother" wavelet

$$
w_{l}^{n}(x):=D^{n} T^{\prime} w(x)
$$

Daubechies' $K=3$ mother wavelet

Properties of wavelets

- support $\left[w_{m}^{k}(x)\right]=$ support $\left[s_{m}^{k}(x)\right]$
- $\int w_{m}^{k}(x) x^{n} d x=0 \quad 0 \leq n \leq K-1$
- $\int w_{m}^{k}(x) w_{n}^{\prime}(x) d x=\delta_{k l} \delta_{m n}$
- $\int s_{m}^{k}(x) w_{n}^{k+I}(x) d x=0 \quad I \geq 0$

Multi-resolution basis

$$
\left\{s_{n}^{k}(x)\right\}_{n=-\infty}^{\infty} \cup\left\{w_{n}^{k+1}(x)\right\}_{n=-\infty}^{\infty} l_{=0}^{\infty}
$$

All functions have compact support.

The basis is orthonormal.

Multidimensional basis functions are products of one-dimensional basis functions.

Change of scale (orthogonal transformation relating fine scale scaling functions to coarse scale scaling functions and wavelets):

$$
\begin{gathered}
\mathcal{S}_{k}=\mathcal{W}_{k-1} \oplus \mathcal{S}_{k-1} \\
s_{n}^{k-1}(x)=\underbrace{\sum_{l=0}^{2 K-1} h_{l} s_{2 n+l}^{k}(x)}_{\text {wavelet block-spin average }}
\end{gathered}
$$

$$
w_{n}^{k-1}(x)=\underbrace{\sum_{l=0}^{2 K-1} g_{l} s_{2 n+l}^{k}(x)}_{\text {lost short-distance information }}
$$

$$
g_{I}=(-)^{\prime} h_{2 K-1-I}
$$

Inverse relations

Reconstruct fine resolution scaling functions from coarse resolution scaling functions and wavelets

$$
s_{n}^{k}(x)=\sum_{m} h_{n-2 m} s_{m}^{k-1}(x)+\sum_{m} g_{n-2 m} w_{m}^{k-1}(x)
$$

Wavelet localized fields (scale \mathbf{k} - one dimension for illustration)

$$
\begin{gathered}
\boldsymbol{\Phi}(x, t), \quad \boldsymbol{\Pi}(x, t) \\
\boldsymbol{\Phi}_{s}^{k}(n, t):=\int s_{n}^{k}(x) \boldsymbol{\Phi}(x, t) d x \\
\boldsymbol{\Phi}_{w}^{\prime}(n, t):=\int w_{n}^{\prime}(x) \boldsymbol{\Phi}(x, t) d x \\
\boldsymbol{\Pi}_{s}^{k}(n, t):=\int s_{n}^{k}(x) \boldsymbol{\Pi}(x, t) d x \\
\boldsymbol{\Pi}_{w}^{\prime}(n, t):=\int w_{n}^{\prime}(x) \boldsymbol{\Pi}(x, t) d x
\end{gathered}
$$

Commutation relations (fixed scale k)

$$
\begin{gathered}
{[\phi(\mathbf{x}, t), \pi(\mathbf{y}, t)]=i \delta(\mathbf{x}-\mathbf{y})} \\
\Downarrow \\
{\left[\boldsymbol{\Phi}_{s}^{k}(m, t), \boldsymbol{\Phi}_{s}^{k}(n, t)\right]=0 \quad\left[\boldsymbol{\Pi}_{s}^{k}(m, t), \boldsymbol{\Pi}_{s}^{k}(n, t)\right]=0} \\
{\left[\boldsymbol{\Phi}_{s}^{k}(m, t), \boldsymbol{\Pi}_{s}^{k}(n, t)\right]=i \delta_{m n}} \\
{\left[\boldsymbol{\Phi}_{w}^{k}(m, t), \boldsymbol{\Phi}_{w}^{\prime}(n, t)\right]=0 \quad\left[\boldsymbol{\Pi}_{w}^{k}(m, t), \boldsymbol{\Pi}_{w}^{\prime}(n, t)\right]=0} \\
{\left[\boldsymbol{\Phi}_{w}^{k}(m, t), \boldsymbol{\Pi}_{w}^{\prime}(n, t)\right]=i \delta_{m n} \delta_{k l}} \\
{\left[\boldsymbol{\Phi}_{w}^{k}(m, t), \boldsymbol{\Phi}_{s}^{k}(n, t)\right]=0 \quad\left[\boldsymbol{\Pi}_{w}^{k}(m, t), \boldsymbol{\Pi}_{s}^{k}(n, t)\right]=0} \\
{\left[\boldsymbol{\Phi}_{w}^{k}(m, t), \boldsymbol{\Pi}_{s}^{k}(n, t)\right]=0}
\end{gathered}
$$

- Two-kinds of fields: scaling function fields, $\boldsymbol{\Phi}_{s}^{k}(n, t)$, and wavelet fields, $\boldsymbol{\Phi}_{w}^{\prime}(n, t)$.
- Scaling function fields encode scale $\frac{1}{2^{k}}$ physics.
- Wavelet fields encode fine resolution physics $\left(\frac{1}{2^{\prime}} l \geq k\right)$.
- Limiting / gives a short-distance cutoff.
- Limiting $-N \leq n \leq N$ gives a volume cutoff.
- Wavelet + scaling function fields form a local algebra.

Exact multi-resolution representation of field

$$
\boldsymbol{\Phi}(x, t)=\sum_{n=-\infty}^{\infty} \boldsymbol{\Phi}_{s}^{k}(n, t) s_{n}^{k}(x)+\sum_{n=-\infty}^{\infty} \sum_{l=k}^{\infty} \boldsymbol{\Phi}_{w}^{\prime}(n, t) w_{n}^{\prime}(x)
$$

$$
\boldsymbol{\Pi}(x, t)=\sum_{n=-\infty}^{\infty} \boldsymbol{\Pi}_{s}^{k}(n, t) s_{n}^{k}(x)+\sum_{n=-\infty}^{\infty} \sum_{l=k}^{\infty} \boldsymbol{\Pi}_{w}^{\prime}(n, t) w_{n}^{\prime}(x)
$$

Resolution $1 / 2^{m}(m>k)$ field operators

$$
\begin{gathered}
\boldsymbol{\Phi}^{m}(x, t)=\sum_{n=-\infty}^{\infty} \boldsymbol{\Phi}_{s}^{m}(n, t) s_{n}^{m}(x)= \\
\sum_{n=-\infty}^{\infty} \boldsymbol{\Phi}_{s}^{k}(n, t) s_{n}^{k}(x)+\sum_{n=-\infty}^{\infty} \sum_{l=k}^{m-1} \boldsymbol{\Phi}_{w}^{l}(n, t) w_{n}^{l}(x) \\
\boldsymbol{\Pi}^{m}(x, t)=\sum_{n=-\infty}^{\infty} \boldsymbol{\Pi}_{s}^{m}(n, t) s_{n}^{k}(x)= \\
\sum_{n=-\infty}^{\infty} \Pi_{s}^{k}(n, t) s_{n}^{k}(x)+\sum_{n=-\infty}^{\infty} \sum_{l=k}^{m-1} \boldsymbol{\Pi}_{w}^{l}(n, t) w_{n}^{l}(x)
\end{gathered}
$$

Creation and annihilation operators are associated with each type of field

$$
\begin{aligned}
& \mathbf{a}_{s}^{k}(n, t):=\frac{1}{\sqrt{2}}\left(\sqrt{\gamma} \boldsymbol{\Phi}_{s}^{k}(n, t)+i \frac{1}{\sqrt{\gamma}} \boldsymbol{\Pi}_{s}^{k}(n, t)\right) \\
& \mathbf{a}_{w}^{k}(n, t):=\frac{1}{\sqrt{2}}\left(\left(\sqrt{\gamma} \boldsymbol{\Phi}_{w}^{k}(n, t)+i \frac{1}{\sqrt{\gamma}} \boldsymbol{\Pi}_{w}^{k}(n, t)\right)\right.
\end{aligned}
$$

The coefficients γ are fixed by the requirement that the annihilation operators annihilate the vacuum:

$$
\langle 0| \mathbf{a}_{s}^{k \dagger}(n, t) \mathbf{a}_{s}^{k}(n, t)|0\rangle=0
$$

$$
\langle 0| \mathbf{a}_{w}^{k \dagger}(n, t) \mathbf{a}_{w}^{k}(n, t)|0\rangle=0
$$

$$
\langle 0| \mathbf{a}_{s}^{k}(n, t) \mathbf{a}_{s}^{k \dagger}(n, t)|0\rangle=1
$$

$$
\langle 0| \mathbf{a}_{w}^{k}(n, t) \mathbf{a}_{w}^{k \dagger}(n, t)|0\rangle=1
$$

Resolution k operator products

$$
\begin{gathered}
\int d x \boldsymbol{\Phi}^{k}(x) \boldsymbol{\Phi}^{k}(x) \boldsymbol{\Phi}^{k}(x) \boldsymbol{\Phi}^{k}(x)= \\
\sum \boldsymbol{\Phi}_{s}^{k}\left(n_{1}, t\right) \boldsymbol{\Phi}_{s}^{k}\left(n_{2}, t\right) \boldsymbol{\Phi}_{s}^{k}\left(n_{3}, t\right) \boldsymbol{\Phi}_{s}^{k}\left(n_{4}, t\right) \Gamma_{n_{1} n_{2} n_{3} n_{4}}^{k} \\
\text { where } \\
\Gamma_{n_{1} n_{2} n_{3} n_{4}}^{k}:=\int s_{n_{1}}^{k}(x) s_{n_{2}}^{k}(x) s_{n_{3}}^{k}(x) s_{n_{4}}^{k}(x) d x \\
\text { and } \\
\int d x \frac{\partial}{\partial x} \boldsymbol{\Phi}^{k}(x) \frac{\partial}{\partial x} \boldsymbol{\Phi}^{k}(x)=\sum \boldsymbol{\Phi}_{s}^{k}\left(n_{1}, t\right) \boldsymbol{\Phi}_{s}^{k}\left(n_{2}, t\right) D_{n_{1} n_{2}}^{k} \\
\text { where } \\
D_{m n}^{k}=\int d x \frac{\partial}{\partial x} s_{m}^{k}(x) \frac{\partial}{\partial x} s_{n}^{k}(x)
\end{gathered}
$$

Numerical coefficients have simple scaling properties

$$
\begin{gathered}
\Gamma_{n_{1} \cdots n_{m}}^{k}=2^{k(m-2) / 2} \Gamma_{n_{1} \cdots n_{m}}^{0} \\
D_{m n}^{k}=2^{k} D_{m n}^{0}
\end{gathered}
$$

$\Gamma_{n_{1} \cdots n_{m}}^{0}$ and $D_{m n}^{0}$ generated using translational invariance from solutions of a finite linear systems with known coefficients.

RG computation of Γ and D

$$
\begin{gathered}
\Gamma_{0 n_{2} n_{3}}^{0}=\sqrt{2} \sum h_{l_{1}} h_{l_{2}} h_{l_{3}} \Gamma_{02 n_{2}+l_{2}-l_{1}, 2 n_{3}+l_{3}-l_{1}}^{0} \\
\sum \Gamma_{0 n_{2} n_{3}}^{0}=\delta_{n_{2} 0} \\
D_{0, n_{1}}^{0}=\sum 4 h_{l_{1}} h_{l_{2}} D_{0, l_{2} n_{2}+l_{2}-l_{1}}^{0}
\end{gathered}
$$

Hamiltonian

$$
\begin{gathered}
H= \\
\frac{1}{2} \int:\left(\boldsymbol{\Pi}(x)^{2}+\nabla \boldsymbol{\Phi}(x) \cdot \nabla \boldsymbol{\Phi}(x)+\mu^{2} \boldsymbol{\Phi}(x)^{2}+\lambda \boldsymbol{\Phi}(x)^{4}\right): d x
\end{gathered}
$$

Resolution $1 / 2^{k}$ Hamiltonian

$$
\boldsymbol{\Phi}(x) \rightarrow \boldsymbol{\Phi}_{s}^{k}(x) \quad \boldsymbol{\Pi}(x) \rightarrow \boldsymbol{\Pi}_{s}^{k}(x)
$$

$$
H^{k}=
$$

$$
\frac{1}{2} \sum:\left(\boldsymbol{\Pi}_{s}^{k}(n, 0)^{2}+D_{m n}^{k} \boldsymbol{\Phi}_{s}^{k}(n, 0) \boldsymbol{\Phi}_{s}^{k}(m, 0)+\mu^{2} \boldsymbol{\Phi}_{s}^{k}(n, 0)^{2}+\right.
$$

$$
\left.\lambda \Gamma_{n_{1} n_{2} n_{3} n_{4}}^{k} \boldsymbol{\Phi}_{s}^{k}\left(n_{1}, 0\right) \boldsymbol{\Phi}_{s}^{k}\left(n_{2}, 0\right) \boldsymbol{\Phi}_{s}^{k}\left(n_{3}, 0\right) \boldsymbol{\Phi}_{s}^{k}\left(n_{4}, 0\right)\right):
$$

Two scale Hamiltonian

$$
\begin{gathered}
\boldsymbol{\Phi}_{s}^{k+1}(n, 0)=\sum_{m}\left(h_{n-2 m} \boldsymbol{\Phi}_{s}^{k}(n, 0)+g_{n-2 m} \boldsymbol{\Phi}_{w}^{k}(n, 0)\right) \\
\Gamma_{n_{1} n_{2} n_{3} n_{4}}^{k} \rightarrow \Gamma_{n_{1} n_{2} n_{3} n_{4}}^{k+1}=2 \Gamma_{n_{1} n_{2} n_{3} n_{4}}^{k} \\
D_{m n}^{k} \rightarrow D_{m n}^{k+1}=2 D_{m n}^{k}
\end{gathered}
$$

This leads to separation of scales $1 / 2^{k+1}$ and $1 / 2^{k}$ and a coupling term

$$
\begin{gathered}
H_{s}^{k+1}\left(\mathbf{a}_{s}^{k+1}, \mathbf{a}_{s}^{k+1 \dagger}\right)= \\
H_{s}^{k}\left(\mathbf{a}_{s}^{k}, \mathbf{a}_{s}^{k \dagger}\right)+H_{w}^{k}\left(\mathbf{a}_{w}^{k}, \mathbf{a}_{w}^{k \dagger}\right)+H_{s w}^{k}\left(\mathbf{a}_{s}^{k}, \mathbf{a}_{s}^{k \dagger}, \mathbf{a}_{w}^{k}, \mathbf{a}_{w}^{k \dagger}\right)
\end{gathered}
$$

RG

- H^{k} and H^{k+1} have the same form with rescaled coefficients.
- Eliminating the wavelet degrees of freedom gives a new $H^{k}(1)$ involving the same parameters and same scale $1 / 2^{k}$ degrees of freedom including effects eliminated scale $1 / 2^{k+1}$ degrees of freedom.
- Readjust parameters to fix scale $1 / 2^{k}$ observables.
- Rescaling the coefficients $\Gamma^{k} \rightarrow \Gamma^{k+1}, D^{k} \rightarrow D^{k+1}$ gives scale $H^{k+1}(1)$ Hamiltonian including effects of eliminated scale $k+2$ degrees of freedom.
- This process can be repeated to determine evolution of bare coupling constants as a function of resolution k.

Elimination can be performed using the similarity renormalization group method.

$$
\frac{d H(\lambda)}{d \lambda}=\left[H(\lambda),\left[H(\lambda), H_{s}^{k}+H_{w}^{k}\right]\right]
$$

Approximations can be made because the size of all coefficients are known

Partitions of unity and symmetries

$$
\begin{aligned}
& {\left[O^{a}(x), O^{b}(y)\right]=i \delta(x-y) f^{a b c} O^{c}(y)} \\
& 1=\left(2^{-k / 2} \sum_{n} s_{n}^{k}(x)\right)\left(2^{-k / 2} \sum_{m} s_{m}^{k}(y)\right) \\
& 1=\left(2^{-k / 2} \sum_{n} s_{n}^{k}(x)\right)
\end{aligned}
$$

$$
\begin{gathered}
O_{n}^{a k}:=2^{k / 2} \int O^{a}(x) s_{n}^{k}(x) d x \\
{\left[\sum_{n} O_{n}^{a k}, \sum_{m} O_{m}^{b k}\right]=i f^{a b c} \sum_{l} O_{l}^{c k}} \\
O^{a} \rightarrow \sum_{n} O_{n}^{a k}
\end{gathered}
$$

Gives local generators - the symmetry is broken when products of finite resolution discrete fields are used to construct $O_{n}^{a k}$.

Truncations as approximations

$$
\|\left[\boldsymbol{\Phi}\left(f_{1}\right) \cdots \boldsymbol{\Phi}\left(f_{n}\right)|0\rangle-\boldsymbol{\Phi}^{k}\left(f_{1}\right) \cdots \boldsymbol{\Phi}^{k}\left(f_{n}\right)|0\rangle\right] \|=\Delta(k)
$$

$$
\boldsymbol{\Phi}(f) \rightarrow \int: \boldsymbol{\Phi}^{n}(x): f(x) d x
$$

Summary

- Wavelet methods provided a useful representation for understanding problems in quantum field theory.
- Formulation of RG equations
- Test of symmetries
- Tests of truncations as approximations

