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What are wavelets?

• They are orthonormal basis functions that are used in
data compression algorithms.

• JPEG digital images are tables of expansion coefficients
in a wavelet basis.

• FBI fingerprint files are stored as expansion coefficients
in a wavelet basis.

• They are fractal valued.
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Useful properties of wavelet bases (for field theory)

• They are a basis for L2(R).

• Fields can be expressed exactly as linear combinations of
discrete field operators and known coefficient functions.

• They have compact support.

• The discrete fields form a local algebra of operators.

• Natural separation of scales

• Natural resolution and volume cutoffs.



• The basis functions are related to fixed points of a
renormalization group equation.

• The basis is natural for formulating renormalization group
transformations.

• The basis naturally separates physics associated with
different scales.

• The basis contains partitions of unity on all scales.

• The partitions of unity are natural for studying how
truncations violate Poincaré invariance.

• The basis functions are differentiable; finite difference
approximations can be replaced by derivatives.

• Quadratures needed for field theory applications can be
computed exactly using renormalization group methods.



Basis construction

operators

(Df )(x) =
√

2f (2x)︸ ︷︷ ︸
scale change

(Tf )(x) = f (x − 1)︸ ︷︷ ︸
translation

.

scaling equation

s(x) = D(
2K−1∑
l=0

hlT
ls(x))

∫
s(x)dx = 1

hl fixed constants

s(x) := scaling function



Renormalization group transformation

fn(x) = D (
2K−1∑
l=0

hlT
l fn−1(x))︸ ︷︷ ︸

block average︸ ︷︷ ︸
rescale

s(x) is a fixed point of this Renormalization group
transformation!



The hn are solutions to (for each K)

2K−1∑
n=0

hn =
√

2 existence

2K−1∑
n=0

hnhn−2m = δm0 (

∫
s(x − n)s(x) = δn0)

2K−1∑
n=0

nm(−l)nh2K−1−n = 0 m < K

(xm =
∑
n

cn(m)s(x − n) m < K )

Equations fix hn up to reflection, hn → h′n = h2K−1−n



Solutions: Daubechies’ scaling coefficients, K = 1, 2, 3

hl K=1 K=2 K=3

h0 1/
√
2 (1 +

√
3)/4
√
2 (1 +

√
10 +

√
5 + 2

√
10)/16

√
2

h1 1/
√
2 (3 +

√
3)/4
√
2 (5 +

√
10 + 3

√
5 + 2

√
10)/16

√
2

h2 0 (3−
√
3)/4
√
2 (10− 2

√
10 + 2

√
5 + 2

√
10)/16

√
2

h3 0 (1−
√
3)/4
√
2 (10− 2

√
10− 2

√
5 + 2

√
10)/16

√
2

h4 0 0 (5 +
√
10− 3

√
5 + 2

√
10)/16

√
2

h5 0 0 (1 +
√
10−

√
5 + 2

√
10)/16

√
2
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Daubechies’ K=3 scaling function



Properties of the scaling function s(x)

1. Reality
s(x) = s∗(x)

2. Partition of unity

1 =
∞∑

n=−∞

s(x − n) =
∞∑

n=−∞

(T ns)(x)

3. Compact support

support[s(x)] = [0, 2K − 1]

5. Differentiability (K>2)

ds(x)

dx
exists C 1(R) for K = 3

6. Orthonormality
(Tms,T ns) = δmn

7. Pointwise low-degree polynomial representation

xm =
∑
n

cn(m)sn(x) m < K



Partition of unity
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Resolution 1/2k spaces

skn (x) := (DkT ns)(x) =
√

2ks(2k(x − n/2k))

Resolution 1/2k subspace Sk

Sk := {f (x)|f (x) =
∞∑

n=−∞
cns

k
n (x),

∞∑
n=−∞

|cn|2 <∞}

The scaling equation implies

L2(R) ⊃ · · · ⊃ Sk+1 ⊃ Sk ⊃ Sk−1 ⊃ · · ·



Properties of skn (x)

1. Reality:
skn (x) = sk∗n (x)

2. Partition of unity:

1√
2k

∞∑
n=−∞

skn (x) =
∞∑

n=−∞
s(2kx − n) = 1

3. Compact support:

support[skn (x)] = [
n

2k
,
n + 2K − 1

2k
]

4. Differentiability (continuous for K ≥ 3):

dskn (x)

dx
= 2kDkT n ds

dx

d

dx
D = 2D

d

dx

d

dx
T = T

d

dx



5. Orthonormality:
(skm, s

k
n ) = δmn

6. Approximation:
lim
k→∞

Sk = L2(R)

7. Normalization (scale fixing):∫
skn (x)dx =

1√
2k

8. Pointwise low-degree polynomial

xm =
∑
n

ckn (m)skn (x) m < K



Multi-scale decomposition of L2(R)

m > n ⇒ Sm ⊃ Sn

L2(R) ⊃ · · · ⊃ Sn+1 ⊃ Sn ⊃ Sn−1 ⊃ · · · ⊃ ∅

Sn+1 = Sn ⊕Wn

⇓

Sn =Wn−1 ⊕Wn−2 ⊕ · · · ⊕Wn−m ⊕ Sn−m

lim
n→∞

Sn = L2(R)

L2(R) =
∞⊕

n=−∞
Wn = Sm ⊕

( ∞⊕
n=m

Wn

)



Wavelets

Wn are wavelet spaces

w(x) := D(
2K−1∑
l=0

(−)lh2K−l−1T
ls(x)) = D(

2K−1∑
l=0

glT
ls(x))

w(x) is called the “Mother” wavelet

wn
l (x) := DnT lw(x)

{wn
l }∞l=−∞ orthonormal basis for Wn



Daubechies’ K = 3 mother wavelet
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Properties of wavelets

• support [wk
m(x)] = support [skm(x)]

•
∫
wk
m(x)xndx = 0 0 ≤ n ≤ K − 1

•
∫
wk
m(x)w l

n(x)dx = δklδmn

•
∫
skm(x)wk+l

n (x)dx = 0 l ≥ 0



Multi-resolution basis

{skn (x)}∞n=−∞ ∪ {wk+l
n (x)}∞n=−∞∞l=0

All functions have compact support.

The basis is orthonormal.

Multidimensional basis functions are products of
one-dimensional basis functions.



Change of scale (orthogonal transformation relating fine
scale scaling functions to coarse scale scaling functions and

wavelets):

Sk =Wk−1 ⊕ Sk−1

sk−1n (x) =
2K−1∑
l=0

hls
k
2n+l(x)︸ ︷︷ ︸

wavelet block-spin average

wk−1
n (x) =

2K−1∑
l=0

gls
k
2n+l(x)︸ ︷︷ ︸

lost short-distance information

gl = (−)lh2K−1−l



Inverse relations

Reconstruct fine resolution scaling functions from coarse
resolution scaling functions and wavelets

skn (x) =
∑
m

hn−2ms
k−1
m (x) +

∑
m

gn−2mw
k−1
m (x)



Wavelet localized fields (scale k - one dimension for
illustration)

Φ(x , t), Π(x , t)

Φk
s (n, t) :=

∫
skn (x)Φ(x , t)dx

Φl
w (n, t) :=

∫
w l
n(x)Φ(x , t)dx

Πk
s (n, t) :=

∫
skn (x)Π(x , t)dx

Πl
w (n, t) :=

∫
wl
n(x)Π(x , t)dx



Commutation relations (fixed scale k)

[φ(x, t), π(y, t)] = iδ(x− y)

⇓

[Φk
s (m, t),Φk

s (n, t)] = 0 [Πk
s (m, t),Πk

s (n, t)] = 0

[Φk
s (m, t),Πk

s (n, t)] = iδmn

[Φk
w (m, t),Φl

w (n, t)] = 0 [Πk
w (m, t),Πl

w (n, t)] = 0

[Φk
w (m, t),Πl

w (n, t)] = iδmnδkl

[Φk
w (m, t),Φk

s (n, t)] = 0 [Πk
w (m, t),Πk

s (n, t)] = 0

[Φk
w (m, t),Πk

s (n, t)] = 0



• Two-kinds of fields: scaling function fields, Φk
s (n, t), and

wavelet fields, Φl
w (n, t) .

• Scaling function fields encode scale 1
2k

physics.

• Wavelet fields encode fine resolution physics ( 1
2l
l ≥ k).

• Limiting l gives a short-distance cutoff.

• Limiting −N ≤ n ≤ N gives a volume cutoff.

• Wavelet + scaling function fields form a local algebra.



Exact multi-resolution representation of field

Φ(x , t) =
∞∑

n=−∞
Φk

s (n, t)skn (x) +
∞∑

n=−∞

∞∑
l=k

Φl
w (n, t)w l

n(x)

Π(x , t) =
∞∑

n=−∞
Πk

s (n, t)skn (x) +
∞∑

n=−∞

∞∑
l=k

Πl
w (n, t)w l

n(x)



Resolution 1/2m (m > k) field operators

Φm(x , t) =
∞∑

n=−∞
Φm

s (n, t)smn (x) =

∞∑
n=−∞

Φk
s (n, t)skn (x) +

∞∑
n=−∞

m−1∑
l=k

Φl
w (n, t)w l

n(x)

Πm(x , t) =
∞∑

n=−∞
Πm

s (n, t)skn (x) =

∞∑
n=−∞

Πk
s (n, t)skn (x) +

∞∑
n=−∞

m−1∑
l=k

Πl
w (n, t)w l

n(x)



Creation and annihilation operators are associated with each
type of field

ak
s (n, t) :=

1√
2

(
√
γΦk

s (n, t) + i
1
√
γ

Πk
s (n, t))

ak
w (n, t) :=

1√
2

((
√
γΦk

w (n, t) + i
1
√
γ

Πk
w (n, t))



The coefficients γ are fixed by the requirement that the
annihilation operators annihilate the vacuum:

〈0|ak†
s (n, t)ak

s (n, t)|0〉 = 0

〈0|ak†
w (n, t)ak

w (n, t)|0〉 = 0

〈0|ak
s (n, t)ak†

s (n, t)|0〉 = 1

〈0|ak
w (n, t)ak†

w (n, t)|0〉 = 1



Resolution k operator products

∫
dxΦk(x)Φk(x)Φk(x)Φk(x) =

∑
Φk

s (n1, t)Φk
s (n2, t)Φk

s (n3, t)Φk
s (n4, t)Γk

n1n2n3n4

where

Γk
n1n2n3n4 :=

∫
skn1(x)skn2(x)skn3(x)skn4(x)dx

and

∫
dx

∂

∂x
Φk(x)

∂

∂x
Φk(x) =

∑
Φk

s (n1, t)Φk
s (n2, t)Dk

n1n2

where

Dk
mn =

∫
dx

∂

∂x
skm(x)

∂

∂x
skn (x)



Numerical coefficients have simple scaling properties

Γk
n1···nm = 2k(m−2)/2Γ0

n1···nm

Dk
mn = 2kD0

mn

Γ0
n1···nm and D0

mn generated using translational invariance from
solutions of a finite linear systems with known coefficients.



RG computation of Γ and D

Γ0
0n2n3 =

√
2
∑

hl1hl2hl3Γ0
02n2+l2−l1,2n3+l3−l1

∑
Γ0
0n2n3 = δn20

D0
0,n1 =

∑
4hl1hl2D

0
0,l2n2+l2−l1



Hamiltonian

H =

1

2

∫
: (Π(x)2 +∇∇∇Φ(x) · ∇∇∇Φ(x) + µ2Φ(x)2 + λΦ(x)4) : dx

Resolution 1/2k Hamiltonian

Φ(x)→ Φk
s (x) Π(x)→ Πk

s (x)

Hk =

1

2

∑
:
(

Πk
s (n, 0)2 + Dk

mnΦk
s (n, 0)Φk

s (m, 0) + µ2Φk
s (n, 0)2+

λΓk
n1n2n3n4Φ

k
s (n1, 0)Φk

s (n2, 0)Φk
s (n3, 0)Φk

s (n4, 0)
)

:



Two scale Hamiltonian

Φk+1
s (n, 0) =

∑
m

(hn−2mΦk
s (n, 0) + gn−2mΦk

w (n, 0))

Γk
n1n2n3n4 → Γk+1

n1n2n3n4 = 2Γk
n1n2n3n4

Dk
mn → Dk+1

mn = 2Dk
mn

This leads to separation of scales 1/2k+1 and 1/2k and a
coupling term

Hk+1
s (ak+1

s , ak+1
s
†) =

Hk
s (ak

s , a
k
s
†) + Hk

w (ak
w , a

k
w
†) + Hk

sw (ak
s , a

k
s
†, ak

w , a
k
w
†)



RG

• Hk and Hk+1 have the same form with rescaled
coefficients.

• Eliminating the wavelet degrees of freedom gives a new
Hk(1) involving the same parameters and same scale
1/2k degrees of freedom including effects eliminated
scale 1/2k+1 degrees of freedom.

• Readjust parameters to fix scale 1/2k observables.

• Rescaling the coefficients Γk → Γk+1, Dk → Dk+1 gives
scale Hk+1(1) Hamiltonian including effects of eliminated
scale k + 2 degrees of freedom.

• This process can be repeated to determine evolution of
bare coupling constants as a function of resolution k.



Elimination can be performed using the similarity
renormalization group method.

dH(λ)

dλ
= [H(λ), [H(λ),Hk

s + Hk
w ]]

Approximations can be made because the size of all
coefficients are known



Partitions of unity and symmetries

[Oa(x),Ob(y)] = iδ(x − y)f abcOc(y)

1 = (2−k/2
∑
n

skn (x))(2−k/2
∑
m

skm(y))

1 = (2−k/2
∑
n

skn (x))



Oak
n := 2k/2

∫
Oa(x)skn (x)dx

[
∑
n

Oak
n ,
∑
m

Obk
m ] = if abc

∑
l

Ock
l

Oa →
∑
n

Oak
n

Gives local generators - the symmetry is broken when
products of finite resolution discrete fields are used to

construct Oak
n .



Truncations as approximations

‖[Φ(f1) · · ·Φ(fn)|0〉 −Φk(f1) · · ·Φk(fn)|0〉]‖ = ∆(k)

Φ(f )→
∫

: Φn(x) : f (x)dx



Summary

• Wavelet methods provided a useful representation for
understanding problems in quantum field theory.

• Formulation of RG equations

• Test of symmetries

• Tests of truncations as approximations


