

## Lightcone 2013<sup>+</sup>

#### Venturing off the lightcone • local vs. global features

**Topics** 

Wilson lines off the lightcone • Lightcone field theory • AdS/CFT theory and applications Hadron structure in QCD • Effective theories • Lattice simulations

May 20-24, 2013, Skiathos, Greece



Photo: courtesy of Skiathos Palace

**Barbara Pasquini** Pavia U. & INFN, Pavia (Italy)

Monday, May 20, 13

# Wigner Distributions in

# Light-Cone Quark Models



# Outline



spin and orbital angular momentum structure of the nucleon

insights from quark model calculations

# **Phase-space distribution**



#### [Wigner (1932)] [Moyal (1949)]

### **Position-space density**

$$|\psi(q)|^2 = \int \mathrm{d}p \, P_W(p,q)$$

#### **Momentum-space density**

$$|\varphi(p)|^2 = 2\pi \int \mathrm{d}q \, P_W(p,q)$$

#### **Quantum average**

$$\langle \hat{O} \rangle = \int \mathrm{d}q \,\mathrm{d}q \,O(p,q) \,P_W(p,q)$$

# Phase-space distribution

## Wigner distribution

### Numerous applications in

- Nuclear physics
- Quantum chemistry
- Quantum molecular dynamics
- Quantum information
- Quantum optics
- Classical optics
- Signal analysis
- Image processing
- Heavy ion collisions
- •

### **Heisenberg's uncertainty relation**



[Antonov et al. (1980-1989)]

## Generalized TMDs and Wigner Distributions



[Meißner, Metz, Schlegel (2009)]

## Generalized TMDs and Wigner Distributions



 $\vec{k}_{\perp}$ : average quark transverse momentum

[Meißner, Metz, Schlegel (2009)]

 $\xi$ : fraction of longitudinal momentum transfer

 $\Delta_{\perp}$ : nucleon transverse-momentum transfer

## Generalized TMDs and Wigner Distributions



[Meißner, Metz, Schlegel (2009)]

$$-\frac{z}{2}, \frac{z}{2}|n)\psi_{\lambda}^{q}(\frac{z}{2})|P,\Lambda\rangle e^{i(xP^{+}z^{-}-\vec{k}_{\perp}\cdot\vec{z}_{\perp})}$$



| 2D Fourier<br>transform | $\Delta_{\perp} \leftrightarrow b_{\perp}$ |
|-------------------------|--------------------------------------------|
|                         | Wigner distribution                        |
|                         | $x, \vec{k}_{\perp}, \vec{b}_{\perp}$      |





| 2D Fourier<br>transform | $\Delta_{\perp} \leftrightarrow b_{\perp}$ |
|-------------------------|--------------------------------------------|
|                         | Wigner distribution                        |
|                         | $x, \vec{k}_{\perp}, \vec{b}_{\perp}$      |



$$\rightarrow \qquad \vec{\Delta} = 0$$
$$\rightarrow \qquad \int dk_{\perp}$$







$$\rightarrow \qquad \vec{\Delta} = 0$$
$$\rightarrow \qquad \int dk_{\perp}$$

















# Wigner Distributions



# Heisenberg's uncertainty relations Quasi-probabilistic

# Wigner Distributions



real functions, but in general not-positive definite

correlations of quark momentum and position in the transverse plane as function of quark and nucleon polarizations

• quantum-mechanical analogous of classical density in the phase space

not directly measurable in experiments

needs phenomenological models with input from experiments on GPDs and TMDs



Fock expansion of Nucleon state:



Fock expansion of Nucleon state:



Eigenstates of momentum

 $P^+ = \sum_{i=1}^{N} k_i^+ \qquad \vec{P}_\perp = \sum_{i=1}^{N} \vec{k}_{i\perp} = \vec{0}_\perp$ 

Fock expansion of Nucleon state:



Eigenstates of momentum

 $P^+ = \sum_{i=1}^N k_i^+$ 

• Eigenstates of parton light-front helicity  $\hat{S}_{iz} \Psi^{\Lambda}_{\lambda_1 \cdots \lambda}$ 

♦ Eigenstates of total orbital angular momentum  $\hat{L}_z \Psi^{\Lambda}_{\lambda_1 \cdots \lambda_N}$ 

$$\begin{split} q\bar{q}\rangle + \Psi_{3q\,g} |qqqg\rangle + \cdots \\ \text{fixed light-cone time (x^*=0)} \\ \hline q \\ - q \\ - q \\ - q \\ - q \\ + \\ & \longrightarrow \\ q \\ - q \\$$

Fock expansion of Nucleon state:







Eigenstates of momentum

 $P^+ = \sum_{i=1}^{N} k_i^+$ 

 $\hat{S}_{iz} \Psi^{\Lambda}_{\lambda_1 \dots \lambda_j}$ Eigenstates of parton light-front helicity

Eigenstates of total orbital angular momentum

Probability to find N partons in the nucleon

 $\rho_{N,\beta}^{\Lambda} = \int [dx]$ 

## normalization $\sum_{N,\beta} \rho_{N,\beta}^{\Lambda} = 1$

total OAM  $l_z = \langle \hat{L}_z \rangle = \sum_{N,\beta} \sum_{i=1}^N l_z \, \rho_{N,\beta}^{\Lambda}$ 

total helicity

$$s_z = \langle \hat{S}_z \rangle = \sum_{N,\beta} \sum_{i=1}^N \lambda_i \rho_{N,\beta}^{\Lambda}$$

Monday, May 20, 13

$$\begin{split} -\Psi_{3q q\bar{q}} |3q q\bar{q}\rangle + \Psi_{3q g} |qq qg\rangle + \cdots \\ & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0}) \\ & & & & \text{fixed light-cone time } (\mathbf{x}^{*=0$$

nucleon helicity  $\Lambda = s_z + l_z$ 

# LFWF Overlap representation



3q LFWF:  $\Psi_{\lambda_1\lambda_2\lambda_3}^{\Lambda;q_1q_2q_3}(x_i, \vec{k}_{\perp,i})$ 

invariant under boost, independent of  $P^{\mu}$ 

internal variables:

$$\sum_{i=1}^{3} x_i = 1, \sum_{i=1}^{3} \vec{k}_{\perp i} = \vec{0}_{\perp}$$

[Brodsky, Pauli, Pinsky, '98]

# LFWF Overlap representation



 $A^+=0 \Rightarrow$  Wilson line equal to unit



### General formalism valid for

## Bag Model, LFXQSM, LFCQM, Quark-Diquark, Covariant Parton Models

<u>Common assumptions :</u>

No gluons Independent quarks

Monday, May 20, 13

3q LFWF:  $\Psi_{\lambda_1\lambda_2\lambda_3}^{\Lambda;q_1q_2q_3}(x_i, \vec{k}_{\perp,i})$ 

invariant under boost, independent of P<sup>µ</sup>

internal variables:

$$\sum_{i=1}^{3} x_{i} = 1, \sum_{i=1}^{3} \vec{k}_{\perp i} = \vec{0}_{\perp}$$
[Brodsky, Pauli, Pinsky, '98]

 $\Delta^+=0 \Rightarrow$  diagonal in the Fock-space

# **Quark Wigner Distributions**



# $\rho(\vec{k}_{\perp}, \vec{b}_{\perp}) = \int \mathrm{d}x \,\rho(x, \vec{k}_{\perp}, \vec{b}_{\perp})$

two-dimensional distributions in impact-parameter space





16 independent Wigner distributions



Monday, May 20, 13



## Distortion due to correlations between $\vec{k}_{\perp}$ and $\vec{b}_{\perp}$





absent in GPDs and TMDs !





$$(x, k_{\perp}^2)$$

$$^{-i\vec{b}_{\perp}\cdot\vec{\Delta}_{\perp}}F_1^q(\Delta_{\perp}^2)$$

# Long. pol. quark in Unp. proton

fixed  $ec{k}_{\perp}$ 



projection to GPD and TMD is vanishing

unique information on OAM from Wigner distributions

# Long. pol. quark in Unp. proton

fixed  $ec{k}_{\perp}$   $\left|$ 



correlation between quark spin and quark OAM

$$C_z^q = \int \mathrm{d}x \,\mathrm{d}\vec{k}_{\perp} \,\mathrm{d}\vec{b}_{\perp} \,\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right) \,\rho_{UL}^q(x,\vec{k}_{\perp},\vec{b}_{\perp})$$

|         | <mark>u</mark> -quark | <mark>d</mark> -quark |
|---------|-----------------------|-----------------------|
| $C^q_z$ | 0.23                  | 0.19                  |



### Quark spin

u-quark OAM

d-quark OAM

# Unpol. quark in long. pol. proton





## projection to GPD and TMD is vanishing

unique information on OAM from Wigner distributions

Monday, May 20, 13



# Unpol. quark in long. pol. proton







$$\mathcal{L}_z^q = \int \mathrm{d}x \mathrm{d}^2 \vec{k}_\perp \mathrm{d}^2 \vec{b}_\perp (\vec{b}_\perp \times \vec{k}_\perp)^2 \vec{b}_\perp \vec{b}_\perp \vec{k}_\perp$$

 $(\vec{k}_{\perp}) \rho^q_{LU} (\vec{b}_{\perp}, \vec{k}_{\perp}, x)$ 

Wigner distribution for Unpolarized quark in a Longitudinally pol. nucleon

Lorce', BP (11) Hatta (12) Ji, Xiong, Yuan (12)

$$\begin{aligned} \mathcal{L}_{z}^{q} &= \int \mathrm{d}x \mathrm{d}^{2} \vec{k}_{\perp} \mathrm{d}^{2} \vec{b}_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp}) \\ &= \int \mathrm{d}^{2} \vec{b}_{\perp} \vec{b}_{\perp} \times \langle \vec{k}_{\perp}^{q} \rangle \quad ---- \end{aligned}$$

 $\mathcal{L}_{z}^{q} = \int \mathrm{d}x \mathrm{d}^{2}\vec{k}_{\perp} \mathrm{d}^{2}\vec{b}_{\perp}(\vec{b}_{\perp} \times \vec{k}_{\perp})\rho_{LU}^{q}(\vec{b}_{\perp}, \vec{k}_{\perp}, x)$ 



Results in a light-front constituent quark model:

Lorce', BP, Xiong, Yuan, PRD85 (2012)

Monday, May 20, 13



Proton spin *u*-quark OAM d-quark OAM

 $\mathcal{L}_{z}^{q} = \int \mathrm{d}x \mathrm{d}^{2}\vec{k}_{\perp} \mathrm{d}^{2}\vec{b}_{\perp}(\vec{b}_{\perp} \times \vec{k}_{\perp})\rho_{LU}^{q}(\vec{b}_{\perp}, \vec{k}_{\perp}, x)$ 



Results in a light-front constituent quark model: Lorce', BP, Xiong, Yuan, PRD85 (2012)

Monday, May 20, 13



Proton spin *u*-quark OAM d-quark OAM

$$\mathcal{L}_{z}^{q} = \int \mathrm{d}x \mathrm{d}^{2}\vec{k}_{\perp} \mathrm{d}^{2}\vec{b}_{\perp}(\vec{b}_{\perp} \times$$

Light-cone gauge  $A^+ = 0$ not gauge invariant, but with simple partonic interpretation



 $W \to W^{\mathcal{W}}$ 



[Ji, Xiong, Yuan (2012)] [Burkardt (2012)]

> relations between the two gauge-invariant definitions → talk Burkardt

## $\vec{k}_{\perp})W(\vec{b}_{\perp},\vec{k}_{\perp},x)$

#### [C.L., Pasquini (2011)] [C.L., Pasquini, Xiong, Yuan(2011)]



#### [Hatta (2012)]



✦ almost all distributions (in red) vanish if there is no quark orbital angular momentum

♦ quark GPDs (at ξ=0) and TMDs given by the same overlap of LCWFs but in different kinematics ⇒ each distribution contains unique information

 $\Rightarrow$  no model-independent relations between GPDs and TMDs

## Wigner **Distributions**

$$ho(x, ec{b}_{\perp}, ec{k})$$





probabilistic interpretation



 $k^+ = xP^+$ 

## quasi-probabilistic interpretation





## **Quark OAM: Partial-Wave Decomposition**

$$= \int d[1]d[2]d[3] \Psi^{\Lambda}_{\lambda_{1}\lambda_{2}\lambda_{3}}(x_{i},\vec{k}_{\perp,i}) \frac{\varepsilon^{ijk}}{\sqrt{6}} u^{\dagger}_{i\lambda_{1}}(1)u^{\dagger}_{j\lambda_{2}}(2)d^{\dagger}_{k\lambda_{3}}(3)| 0\rangle$$



 $L_z \langle P, \uparrow | P, \uparrow \rangle^{L_z}$ : probability to find the proton in a state with eigenvalue of OAM  $L_z$  $\mathcal{L}_z = \sum_{L_z} L_z \, {}^{L_z} \langle P, \uparrow | P, \uparrow \rangle^{L_z}$ 

$$(\uparrow\downarrow\downarrow)_{LC} = -\frac{1}{2} \qquad (\downarrow\downarrow\downarrow)_{LC} = -\frac{3}{2}$$
$$L_z^q = 1 \qquad \qquad L_z^q = 2$$

squared of LCWFs

## Orbital angular momentum content of TMDs (light-front constituent quark model)



$$f_1 = \mathbf{\bullet}$$





## Orbital angular momentum content of TMDs (light-front constituent quark model)



Effects on SIDIS observables







## **Quark OAM from Pretzelosity**

$$h_{1T}^{\perp} =$$

model-dependent relation

$$\mathcal{L}_z = -\int \mathrm{d}x \mathrm{d}^2 \vec{k}_\perp \frac{k_\perp^2}{2M^2} h_{1T}^\perp(x,k_\perp^2)$$

first derived in LC-diquark model and bag model [She, Zhu, Ma, 2009; Avakian, Efremov, Schweitzer, Yuan, 2010]



"pretzelosity"

## **Quark OAM from Pretzelosity**

$$h_{1T}^{\perp} =$$

## model-dependent relation

$$\mathcal{L}_z = -\int \mathrm{d}x \mathrm{d}^2 \vec{k}_\perp \frac{k_\perp^2}{2M^2} h_{1T}^\perp(x, k_\perp^2)$$

first derived in LC-diquark model and bag model

[She, Zhu, Ma, 2009; Avakian, Efremov, Schweitzer, Yuan, 2010]

## $\mathcal{L}_z$

chiral even and charge even

 $\Delta L_z = 0$ 

no operator identity relation at level of matrix elements of operators

"pretzelosity"

 $h_{1T}^{\perp}$ chiral odd and charge odd  $|\Delta L_z| = 2$ 

## **Quark OAM from Pretzelosity**

$$h_{1T}^{\perp} =$$

### model-dependent relation

$$\mathcal{L}_z = -\int \mathrm{d}x \mathrm{d}^2 \vec{k}_\perp \frac{k_\perp^2}{2M}$$

first derived in LC-diquark model and bag model

[She, Zhu, Ma, 2009; Avakian, Efremov, Schweitzer, Yuan, 2010]

## $\mathcal{L}_z$

chiral even and charge even

 $\Delta L_z = 0$ 

no operator identity relation at level of matrix elements of operators

 $\frac{1}{1}$ valid in all quark models with spherical symmetry in the rest frame [Lorce', BP, PLB (2012)] Efremov's lecture on TMDs

Π



"pretzelosity"

 $\frac{1}{4} \frac{1}{4^2} h_{1T}^{\perp}(x,k_{\perp}^2)$ 

 $h_{1T}^{\perp}$ chiral odd and charge odd  $|\Delta L_z| = 2$ 

# Quark spin and OAM

## GTMDs

### **Quark spin (from DIS)**

$$S_z^q = \frac{1}{2} \int dx \, d^2 k_\perp \, G_{14}^q(x, 0, \vec{k}_\perp, \vec{0}_\perp)$$

polarized PDF inclusive DIS

# $\ell_z^q = -\int dx \, d^2 k_\perp \, \frac{\vec{k}_\perp^2}{M^2} \, F_{14}^q(x,0,\vec{k}_\perp,\vec{0}_\perp)$

[Lorce, BP(2011)] [Hatta (2011)] [Lorce', BP, et al. (2012)]

$$\vec{v}_{iz}^{\text{int}} = \vec{b}_{i\perp} \times \vec{k}_{i\perp}$$

## TMDs

#### Qu

$$S_z^q = \frac{1}{2} \int dx \, d^2 k_\perp g_{1L}^q(x, \vec{k}_\perp)$$
polarized PDF
inclusive DIS
$$(x, \vec{k}_\perp) = -\frac{\vec{k}_\perp^2}{2M^2} h_{1T}^{\perp q}(x, \vec{k}_\perp^2)$$
[Burkardt (2007)]
[Efremov et al. (2008,2010)]
[She, Zhu, Ma (2009)]
[Avakian et al. (2010)]
[Lorce', BP (2011)]
$$(Lorce', BP (2011)]$$

$$\mathcal{L}_{iz} = \vec{r}_{i\perp} \times \vec{k}_{i\perp}$$

$$S_z^q = \frac{1}{2} \int dx \, d^2 k_\perp g_{1L}^q(x, \vec{k}_\perp)$$
polarized PDF  
inclusive DIS
$$\mathcal{L}_z^q(x, \vec{k}_\perp) = -\frac{\vec{k}_\perp^2}{2M^2} h_{1T}^{\perp q}(x, \vec{k}_\perp^2)$$
[Burkardt (2007)  
[Efremov et al. (2008,2010)  
[She, Zhu, Ma (2009)  
[Avakian et al. (2010)  
[Lorce', BP (2011)]
$$\mathcal{L}_{iz} = \vec{r}_{i\perp} \times \vec{k}_{i\perp}$$



# Quark spin and OAM

## GTMDs

### Quark spin (from DIS)

$$S_z^q = \frac{1}{2} \int \mathrm{d}x \, \mathrm{d}^2 k_\perp \, G_{14}^q(x, 0, \vec{k}_\perp, \vec{0}_\perp)$$

polarized PDF inclusive **DIS** 

# $\ell_z^q = -\int \mathrm{d}x \,\mathrm{d}^2 k_\perp \,\frac{\vec{k}_\perp^2}{M^2} \,F_{14}^q(x,0,\vec{k}_\perp,\vec{0}_\perp)$

[Lorce, BP(2011)] [Hatta (2011)] [Lorce', BP, et al. (2012)]

$$\vec{v}_{iz}^{\text{int}} = \vec{b}_{i\perp} \times \vec{k}_{i\perp}$$

## TMDs

#### Quark spin

$$S_z^q = \frac{1}{2} \int \mathrm{d}x \,\mathrm{d}^2k_{-}$$

polarized PDF inclusive **DIS** 

$$\mathcal{L}_z^q(x, \vec{k}_\perp) = -\frac{\vec{k}_\perp^2}{2M^2}$$

[Burkardt (2007)] [Efremov et al. (2008,2010)] [She, Zhu, Ma (2009)] [Avakian et al. (2010)] [Lorce', BP (2011)]



 $\mathcal{L}_{iz} = \vec{r}_{i\perp} \times \vec{k}_{i\perp}$ 

## GPDs

 $g_\perp g_{1L}^q(x, \vec{k}_\perp)$ 

 $h_{1T}^{\perp q}(x, \vec{k}_{\perp}^2)$ 

#### Quark spin (from DIS)

$$S_z^q = \frac{1}{2} \int \mathrm{d}x \, \tilde{H}^q(x, 0, 0)$$

polarized PDF inclusive **DIS** 

#### Ji sum rule

$$J^{q} = \frac{1}{2} \int dx \, x \left[ H^{q}(x,0,0) + E^{q}(x,0,0) \right]$$
$$L^{q} = J^{q} - S^{q}_{z}$$
[Ji (1997)]

**Twist-3** 

$$L_{z}^{q} + 2S_{z}^{q} = -\int dx \, x \, \tilde{E}_{2T}^{q}(x, 0, 0)$$

$$L_{z}^{q} = -\int dx \, x \, G_{2}^{q}(x, 0, 0)$$
Pure twist-3!
[Penttinen et al. (2000)]

Lattice Results



- "disconnected diagrams" not included
- Error bands: chiral extrapolation in  $m_{\pi}$  and extrapolation to t=0

Lattice results (µ

- J<sup>u+d</sup>=0.264(6)  $\Delta \Sigma^{u+d} / 2 = 0.20$
- J<sup>u+d</sup>=0.168(42)  $\Delta \Sigma^{u+d} / 2 = 0.22$



= 2 GeV)  

$$D8(10)$$
 L<sup>u+d</sup> =0.056(11) [LHPC Coll.,2010]  
 $25(8)$  L<sup>u+d</sup> =-0.141(27) [QCDSF Coll.,2013  
 $\downarrow$   
cancelation between L<sup>u</sup> <0 and L<sup>d</sup> >0

unpolarized quark in unpolarized nucleon



### unpolarized quark in transversely pol. nucleon

![](_page_56_Picture_2.jpeg)

### Distortion in impact parameter (related to GPD E)

unpolarized quark in transversely pol. nucleon

![](_page_57_Picture_2.jpeg)

Final-state interaction (lensing function)

![](_page_58_Picture_1.jpeg)

Final-state interaction (lensing function)

![](_page_59_Figure_1.jpeg)

Final-state interaction (lensing function)

Burkardt, PRD66 (02)

$$\mathcal{I}^{q,i}(x,\vec{b}_T) \frac{\epsilon_T^{jk} b_T^j S_T^k}{M} \left( \mathcal{E}^q(x,\vec{b}_T^2) \right)'$$
  
notion F.T. of E(x,0,t)

inspired from model results

first moment constrained from anomalous magnetic moment • Results from Sivers  $\leq$  lensing  $\leq$  GPD

$$J^u = 0.229 \pm 0.002^{+0.008}_{-0.012}, \qquad J$$

Bacchetta, Radici, PRL107(2011)

- $J^{d} = -0.007 \pm 0.003^{+0.020}_{-0.005}, \quad J^{d} = 0.022 \pm 0.005^{+0.001}_{-0.000},$
- $J^s = 0.006^{+0.002}_{-0.006},$
- Comparing with GPD models and Lattice calculations

![](_page_60_Figure_6.jpeg)

 $V^{\bar{u}} = 0.015 \pm 0.003^{+0.001}_{-0.000},$  $J^{\overline{s}} = 0.006^{+0.000}_{-0.005}.$ 

![](_page_60_Figure_9.jpeg)

 $(Q^2 = 4 \text{ GeV}^2)$ 

![](_page_61_Picture_0.jpeg)

## GTMDs Wigner Distributions

- the most complete information on partonic structure of the nucleon

- GTMDs Wigner Distributions
  - the most complete information on partonic structure of the nucleon
- Results for Wigner distributions in the transverse plane - non-trivial correlations between  $\vec{b}_{\perp}$  and  $\vec{k}_{\perp}$  due to orbital angular momentum

![](_page_62_Picture_5.jpeg)

- GTMDs Wigner Distributions
  - the most complete information on partonic structure of the nucleon
- Results for Wigner distributions in the transverse plane - non-trivial correlations between  $\vec{b}_{\perp}$  and  $\vec{k}_{\perp}$  due to orbital angular momentum
- Orbital Angular Momentum from phase-space average with Wigner distributions

![](_page_63_Picture_6.jpeg)

- GTMDs Wigner Distributions
  - the most complete information on partonic structure of the nucleon
- Results for Wigner distributions in the transverse plane - non-trivial correlations between  $\vec{b}_{\perp}$  and  $\vec{k}_{\perp}$  due to orbital angular momentum
- Orbital Angular Momentum from phase-space average with Wigner distributions
- GPDs and TMDs probe the same overlap of 3-quark LCWF in different kinematics
  - no model-independent relations between GPDs and TMDs
  - give complementary information useful to reconstruct the nucleon wf

- GTMDs Wigner Distributions
  - the most complete information on partonic structure of the nucleon
- Results for Wigner distributions in the transverse plane - non-trivial correlations between  $\vec{b}_{\perp}$  and  $\vec{k}_{\perp}$  due to orbital angular momentum
- Orbital Angular Momentum from phase-space average with Wigner distributions
- GPDs and TMDs probe the same overlap of 3-quark LCWF in different kinematics
  - no model-independent relations between GPDs and TMDs
  - give complementary information useful to reconstruct the nucleon wf
- No direct connection between TMDs and OAM provide to use model-inspired connections
  - use LCWF (eigenstate of quark OAM) to quantify amount of OAM in different observables
  - model relation between pretzelosity and OAM
  - OAM from model relation between Sivers function and GPD E