

 Wigner Distributions
 in
 Light-Cone Quark Models

```
May 20-24, 2013,Skiathos, Greece
```

Istituto Nazionale di Fisica Nucleare

Barbara Pasquini

Pavia U. \& INFN, Pavia (Italy)

Outline

Wigner Distributions

Parton distributions in the Phase Space

$$
\mathrm{FT} \overrightarrow{\mathrm{~b}_{\perp}} \leftrightarrow \vec{\Delta}_{\perp}
$$

Generalized Transverse Momentum Dependent Parton Distributions (GTMDs)

spin and orbital angular momentum structure of the nucleon
insights from quark model calculations

Phase-space distribution

Quantum Mechanics

$$
\begin{aligned}
& \text { Position-space density } \\
& \qquad|\psi(q)|^{2}=\int \mathrm{d} p P_{W}(p, q)
\end{aligned}
$$

Momentum-space density

$$
|\varphi(p)|^{2}=2 \pi \int \mathrm{~d} q P_{W}(p, q)
$$

Quantum average

$$
\begin{aligned}
P_{W}(p, q) & =\int \frac{\mathrm{d} z}{2 \pi} e^{-i p z} \psi^{*}\left(q-\frac{z}{2}\right) \psi\left(q+\frac{z}{2}\right) \\
& =\int \frac{\mathrm{d} \Delta}{(2 \pi)^{2}} e^{-i q \Delta} \varphi^{*}\left(p+\frac{\Delta}{2}\right) \varphi\left(p-\frac{\Delta}{2}\right)
\end{aligned}
$$

$$
\langle\hat{O}\rangle=\int \mathrm{d} q \mathrm{~d} q O(p, q) P_{W}(p, q)
$$

Phase-space distribution

Wigner distribution

Numerous applications in

- Nuclear physics
- Quantum chemistry
- Quantum molecular dynamics
- Quantum information
- Quantum optics
- Classical optics
- Signal analysis
- Image processing
- Heavy ion collisions
- ...

[Antonov et al. (1980-1989)]

Heisenberg's uncertainty relation

Generalized TMDs and Wigner Distributions

Quark polarization

$$
W_{\Lambda^{\prime}, \Lambda}^{\Gamma}\left(x, \xi, \vec{k}_{\perp}, \vec{\Delta}_{\perp}\right)
$$

Generalized TMDs and Wigner Distributions

$$
W_{\Lambda^{\prime}, \Lambda}^{\Gamma}\left(x, \xi, \vec{k}_{\perp}, \vec{\Delta}_{\perp}\right)
$$

x : average fraction of quark

 longitudinal momentumξ : fraction of longitudinal momentum transfer
$\overrightarrow{\mathrm{k}}_{\perp}$: average quark transverse momentum $\vec{\Delta}_{\perp}$: nucleon transverse-momentum transfer

Generalized TMDs and Wigner Distributions

$$
W_{\Lambda^{\prime}, \Lambda}^{\Gamma}\left(x, \xi, \vec{k}_{\perp}, \vec{\Delta}_{\perp}\right)
$$

$$
\text { Fourier transform } \vec{\Delta}_{\perp} \leftrightarrow \vec{b}_{\perp}
$$

$$
\tilde{W}_{\Lambda^{\prime}, \Lambda}^{\Gamma}\left(x, \xi, \vec{k}_{\perp}, \vec{b}_{\perp}\right) 16 \text { real Wigner distributions }
$$

2D Fourier transform
$\Delta_{\perp} \leftrightarrow b_{\perp}$

Wigner distribution
$x, \vec{k}_{\perp}, \vec{b}_{\perp}$

2D Fourier transform

Wigner distribution
$x, \vec{k}_{\perp}, \vec{b}_{\perp}$
$\rightarrow \quad \vec{\Delta}=0$

$\rightarrow \quad \vec{\Delta}=0$
$\rightarrow \quad \int d k_{\perp}$

$\rightarrow \quad \vec{\Delta}=0$
$\rightarrow \quad \int d k_{\perp}$

$\rightarrow \quad \vec{\Delta}=0$
$\rightarrow \quad \int d k_{\perp}$

Wigner Distributions

Wigner Distributions

Heisenberg's uncertainty relations

Quasi-probabilistic

* real functions, but in general not-positive definite
\longrightarrow correlations of quark momentum and position in the transverse plane as function of quark and nucleon polarizations
* quantum-mechanical analogous of classical density in the phase space
* not directly measurable in experiments
needs phenomenological models with input from experiments on GPDs and TMDs

Light-Front Wave Function

Fock expansion of Nucleon state:

Light-Front Wave Function

Fock expansion of Nucleon state:

$$
|N\rangle=\Psi_{3 q}|q q q\rangle+\Psi_{3 q q \bar{q}}|3 q q \bar{q}\rangle+\Psi_{3 q g}|q q q g\rangle+\underset{\text { fixed lio }}{\ldots}
$$

fixed light-cone time $\left(x^{+}=0\right)$

\downarrow Eigenstates of momentum

$$
P^{+}=\sum_{i=1}^{N} k_{i}^{+} \quad \vec{P}_{\perp}=\sum_{i=1}^{N} \vec{k}_{i \perp}=\overrightarrow{0}_{\perp}
$$

Light-Front Wave Function

\downarrow Fock expansion of Nucleon state:

$$
|N\rangle=\Psi_{3 q}|q q q\rangle+\Psi_{3 q q \bar{q}}|3 q q \bar{q}\rangle+\Psi_{3 q g}|q q q g\rangle+\cdots
$$

$$
\text { fixed light-cone time (} \mathrm{x}^{+}=0 \text {) }
$$

\downarrow Eigenstates of momentum

$$
P^{+}=\sum_{i=1}^{N} k_{i}^{+} \quad \vec{P}_{\perp}=\sum_{i=1}^{N} \vec{k}_{i \perp}=\overrightarrow{0}_{\perp}
$$

\uparrow Eigenstates of parton light-front helicity
\downarrow Eigenstates of total orbital angular momentum

$$
\hat{S}_{i z} \Psi_{\lambda_{1} \cdots \lambda_{N}}^{\Lambda}=\lambda_{i} \Psi_{\lambda_{1} \lambda_{2} \cdots \lambda_{N}}^{\Lambda}
$$

$$
\hat{L}_{z} \Psi_{\lambda_{1} \cdots \lambda_{N}}^{\Lambda}=l_{z} \Psi_{\lambda_{1} \lambda_{2} \cdots \lambda_{N}}^{\Lambda}
$$

$\Lambda=\sum_{i=1}^{N} \lambda_{i}+l_{z}$

4 $A^{+}=0$ gauge

Light-Front Wave Function

\downarrow Fock expansion of Nucleon state:

$$
|N\rangle=\Psi_{3 q}|q q q\rangle+\Psi_{3 q q \bar{q}}|3 q q \bar{q}\rangle+\Psi_{3 q g}|q q q g\rangle+\cdots
$$

$$
\text { fixed light-cone time (}\left(x^{+}=0\right)
$$

\downarrow Eigenstates of momentum

$$
P^{+}=\sum_{i=1}^{N} k_{i}^{+} \quad \vec{P}_{\perp}=\sum_{i=1}^{N} \vec{k}_{i \perp}=\overrightarrow{0}_{\perp}
$$

\downarrow Eigenstates of parton light-front helicity
\downarrow Eigenstates of total orbital angular momentum
\downarrow Probability to find N partons in the nucleon

$$
\begin{aligned}
& \rho_{N, \beta}^{\Lambda}=\int[d x]_{N}\left[d^{2} k_{\perp}\right]_{N}\left|\Psi_{\lambda_{1} \cdots \lambda_{N}}^{\Lambda}\right|^{2} \\
& \text { normalization } \quad \sum_{N, \beta} \rho_{N, \beta}^{\Lambda}=1
\end{aligned}
$$

> total helicity
> $s_{z}=\left\langle\hat{S}_{z}\right\rangle=\sum_{N, \beta} \sum_{i=1}^{N} \lambda_{i} \rho_{N, \beta}^{\Lambda}$
total OAM

$$
l_{z}=\left\langle\hat{L}_{z}\right\rangle=\sum_{N, \beta} \sum_{i=1}^{N} l_{z} \rho_{N, \beta}^{\Lambda}
$$

$\Lambda=\sum_{i=1}^{N} \lambda_{i}+l_{z}$

4 $A^{+}=0$ gauge

LFWF Overlap representation

3q LFWF: $\Psi_{\lambda_{1} \lambda_{2} \lambda_{3}}^{\Lambda ; q_{1} q_{2} q_{3}}\left(x_{i}, \vec{k}_{\perp, i}\right)$
invariant under boost, independent of P^{μ}
internal variables: $\quad \sum_{i=1}^{3} x_{i}=1, \sum_{i=1}^{3} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}$

LFWF Overlap representation

$$
\begin{aligned}
& \mathrm{A}^{+}=0 \Rightarrow \text { Wilson line equal to unit } \\
& \Delta^{+}=0 \Rightarrow \text { diagonal in the Fock-space }
\end{aligned}
$$

General formalism valid for

Bag Model, LFXQSM, LFCQM, Quark-Diquark, Covariant Parton Models
Common assumptions:
$>$ No gluons
> Independent quarks

Quark Wigner Distributions

$$
\begin{aligned}
& \rho\left(\vec{k}_{\perp}, \vec{b}_{\perp}\right)=\int \mathrm{d} x \rho\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right) \\
& \text { at fixed } \vec{k}_{\perp} \longrightarrow \begin{array}{l}
\text { two-dimensional distributions } \\
\text { in impact-parameter space }
\end{array}
\end{aligned}
$$

Unpol. up Quark in Unpol. Proton

[Lorce', BP, PRD84 (2011)]

Generalized Transverse Charge Density

fixed angle between $\overrightarrow{\mathrm{k}}_{\perp}$ and $\overrightarrow{\mathrm{b}}_{\perp}$ and fixed value of $\left|\overrightarrow{\mathrm{k}}_{\perp}\right|$

Unpol. up Quark in Unpol. Proton

[Lorce', BP, PRD84 (2011)]

Generalized Transverse Charge Density

fixed angle between $\overrightarrow{\mathrm{k}}_{\perp}$ and $\overrightarrow{\mathrm{b}}_{\perp}$ and fixed value of $\left|\overrightarrow{\mathrm{k}}_{\perp}\right|$

Unpol. up Quark in Unpol. Proton

[Lorce', BP, PRD84 (2011)]

Generalized Transverse Charge Density

fixed angle between $\overrightarrow{\mathrm{k}}_{\perp}$ and $\overrightarrow{\mathrm{b}}_{\perp}$ and fixed value of $\left|\overrightarrow{\mathrm{k}}_{\perp}\right|$

Unpol. up Quark in Unpol. Proton

[Lorce', BP, PRD84 (2011)]

Generalized Transverse Charge Density

fixed angle between $\overrightarrow{\mathrm{k}}_{\perp}$ and $\overrightarrow{\mathrm{b}}_{\perp}$ and fixed value of $\left|\overrightarrow{\mathrm{k}}_{\perp}\right|$

Unpol. up Quark in Unpol. Proton

[Lorce', BP, PRD84 (2011)]

Generalized Transverse Charge Density

fixed angle between $\overrightarrow{\mathrm{k}}_{\perp}$ and $\overrightarrow{\mathrm{b}}_{\perp}$ and fixed value of $\left|\overrightarrow{\mathrm{k}}_{\perp}\right|$

Unpol. up Quark in Unpol. Proton

Distortion due to correlations between \vec{k}_{\perp} and \vec{b}_{\perp}
\square absent in GPDs and TMDs !

Left-right symmetry no net quark OAM

Unpol. up Quark in Unpol. Proton

\leftrightarrow integrating over $\overrightarrow{\mathrm{b}}_{\perp} \longrightarrow$ transverse-momentum density

$$
f_{1}^{q}\left(k_{\perp}^{2}\right)=\int \mathrm{d} x f_{1}^{q}\left(x, k_{\perp}^{2}\right)
$$

\leftrightarrow integrating over $\overrightarrow{\mathrm{k}}_{\perp} \longrightarrow$ charge density in the transverse plane $\overrightarrow{\mathrm{b}}_{\perp}$

Monopole
Distributions

$$
\rho^{q}\left(b_{\perp}^{2}\right)=e^{q} \int \mathrm{~d}^{2} \Delta_{\perp} e^{-i \vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}} F_{1}^{q}\left(\Delta_{\perp}^{2}\right)
$$

Long. pol. quark in Unp. proton

fixed $\vec{k}_{\perp} \mid$

\uparrow projection to GPD and TMD is vanishing
\longrightarrow unique information on OAM from Wigner distributions

Long. pol. quark in Unp. proton

fixed $\vec{k}_{\perp} \mid$

correlation between quark spin and quark OAM

$$
C_{z}^{q}=\int \mathrm{d} x \mathrm{~d} \vec{k}_{\perp} \mathrm{d} \vec{b}_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right) \rho_{U L}^{q}\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right)
$$

	u-quark	d-quark
C_{z}^{q}	0.23	0.19

Unpol. quark in long. pol. proton

fixed $\vec{k}_{\perp} \uparrow$

$\longrightarrow \begin{gathered}\text { Proton spin } \\ \text { u-quark OAM } \\ \text { u-quark OAM }\end{gathered}$
\uparrow projection to GPD and TMD is vanishing

unique information on OAM from Wigner distributions

Unpol. quark in long. pol. proton

fixed $\vec{k}_{\perp} \uparrow$

Quark Orbital Angular Momentum

$$
\mathcal{L}_{z}^{q}=\int \mathrm{d} x \mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d}^{2} \vec{b}_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right) \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right)
$$

Wigner distribution
for Unpolarized quark in a Longitudinally pol. nucleon

Quark Orbital Angular Momentum

$$
\begin{aligned}
\mathcal{L}_{z}^{q} & =\int \mathrm{d} x \mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d}^{2} \vec{b}_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right) \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right) \\
& =\int \mathrm{d}^{2} \vec{b}_{\perp} \vec{b}_{\perp} \times\left\langle\vec{k}_{\perp}^{q}\right\rangle \longrightarrow\left\langle\vec{k}_{\perp}^{q}\right\rangle=\int \mathrm{d} x \mathrm{~d} \vec{k}_{\perp} \vec{k}_{\perp} \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{z}^{q} & =\int \mathrm{d} x \mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d}^{2} \vec{b}_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right) \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right) \\
& =\int \mathrm{d}^{2} \vec{b}_{\perp} \vec{b}_{\perp} \times\left\langle\vec{k}_{\perp}^{q}\right\rangle \longrightarrow\left\langle\vec{k}_{\perp}^{q}\right\rangle=\int \mathrm{d} x \mathrm{~d} \vec{k}_{\perp} \vec{k}_{\perp} \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{z}^{q} & =\int \mathrm{d} x \mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d}^{2} \vec{b}_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right) \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right) \\
& =\int \mathrm{d}^{2} \vec{b}_{\perp} \vec{b}_{\perp} \times\left\langle\vec{k}_{\perp}^{q}\right\rangle \longrightarrow\left\langle\vec{k}_{\perp}^{q}\right\rangle=\int \mathrm{d} x \mathrm{~d} \vec{k}_{\perp} \vec{k}_{\perp} \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right)
\end{aligned}
$$

$$
\mathcal{L}_{z}^{q}=\int \mathrm{d} x \mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d}^{2} \vec{b}_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right) W\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right)
$$

Light-cone gauge $A^{+}=0$
not gauge invariant, but with simple partonic interpretation

Gauge-invariant extension

$$
W \rightarrow W^{\mathcal{W}}
$$

[Ji, Xiong, Yuan (2012)]
[Burkardt (2012)]

```
relations between the two gauge-invariant definitions
talk Burkardt
```

GTMDs (16 functions)

$$
\begin{aligned}
& \text { GPDs (8 functions) } \\
& x, \xi, \vec{\Delta}_{\perp}
\end{aligned}
$$

$\begin{aligned} & \text { 으N } \\ & \text { NN } \\ & \text { N } \\ & \text { 헹 } \end{aligned}$	Quark polarization			
		U	T	L
	U	H	$\mathcal{E}_{\mathcal{T}}$	
$\begin{aligned} & \overline{0} \\ & \underline{0} \end{aligned}$	T	E	H_{T}, \tilde{H}_{T}	\tilde{E}
$\stackrel{0}{2}$	L		\tilde{E}_{T}	\tilde{H}

$\frac{. \overline{0}}{\underline{0}}$	Quark polarization			
		U	T	L
	U	f_{1}	h_{1}^{\perp}	
艺	T	$f_{1 T}^{\perp}$	$h_{1}, h_{1 T}^{\perp}$	$g_{1 T}$
$\begin{aligned} & \overline{\mathrm{O}} \\ & \mathbf{z} \end{aligned}$	L		$h_{1 L}^{\perp}$	$g_{1 L}$

\checkmark almost all distributions (in red) vanish if there is no quark orbital angular momentum
\downarrow quark GPDs (at $\xi=0$) and TMDs given by the same overlap of LCWFs but in different kinematics
\Rightarrow each distribution contains unique information
\Rightarrow no model-independent relations between GPDs and TMDs

$$
\rho\left(x, \vec{b}_{\perp}, \vec{k}_{\perp}\right)
$$

quasi-probabilistic interpretation

$\rho\left(x, \vec{b}_{\perp}\right)$

TMDs
$\rho\left(x, \vec{k}_{\perp}\right)$

Quark OAM: Partial-Wave Decomposition

$$
\left.\left.\begin{array}{ccccc}
J_{z}^{q} & \longrightarrow & (\uparrow \uparrow \uparrow)_{L C}=\frac{3}{2} & (\uparrow \uparrow \downarrow)_{L C}=\frac{1}{2} & (\uparrow \downarrow \downarrow)_{L C}=-\frac{1}{2}
\end{array}\right)(\downarrow \downarrow \downarrow)_{L C}=-\frac{3}{2}\right)
$$

$\left.{ }^{L_{z}}\langle P, \uparrow \mid P, \uparrow\rangle\right\rangle^{L_{z}}$: probability to find the proton in a state with eigenvalue of OAM L_{z}

$$
\mathcal{L}_{z}=\sum_{L_{z}} L_{z}{ }^{L_{z}}\langle P, \uparrow \mid P, \uparrow\rangle^{L_{z}}
$$

\downarrow Orbital angular momentum content of TMDs (light-front constituent quark model)

$$
\mathrm{f}_{1}=\bullet
$$

"pretzelosity"

$$
h_{1 \mathrm{~T}}^{\perp}=0
$$

\downarrow Orbital angular momentum content of TMDs (light-front constituent quark model)

\uparrow Effects on SIDIS observables $\quad A_{U T}^{\sin \left(3 \phi-\phi_{S}\right)} \sim \frac{h_{1 T}^{\perp} \otimes H_{1}}{f_{1} \otimes D_{1}}$

Quark OAM from Pretzelosity

model-dependent relation

$$
\mathcal{L}_{z}=-\int \mathrm{d} x \mathrm{~d}^{2} \vec{k}_{\perp} \frac{k_{\perp}^{2}}{2 M^{2}} h_{1 T}^{\perp}\left(x, k_{\perp}^{2}\right)
$$

first derived in LC-diquark model and bag model
[She, Zhu, Ma, 2009; Avakian, Efremov, Schweitzer, Yuan, 2010]

Quark OAM from Pretzelosity

$$
\mathrm{h}_{1 \mathrm{~T}}^{\perp}=0 \text { "pretzelosity" }
$$

model-dependent relation

$$
\mathcal{L}_{z}=-\int \mathrm{d} x \mathrm{~d}^{2} \vec{k}_{\perp} \frac{k_{\perp}^{2}}{2 M^{2}} h_{1 T}^{\perp}\left(x, k_{\perp}^{2}\right)
$$

first derived in LC-diquark model and bag model
[She, Zhu, Ma, 2009; Avakian, Efremov, Schweitzer, Yuan, 2010]

$$
\mathcal{L}_{z}
$$

chiral even and charge even

$$
\Delta L_{z}=0
$$

$$
h_{1 T}^{\perp}
$$

chiral odd and charge odd

$$
\left|\Delta L_{z}\right|=2
$$

no operator identity
relation at level of matrix elements of operators

Quark OAM from Pretzelosity

model-dependent relation

$$
\mathcal{L}_{z}=-\int \mathrm{d} x \mathrm{~d}^{2} \vec{k}_{\perp} \frac{k_{\perp}^{2}}{2 M^{2}} h_{1 T}^{\perp}\left(x, k_{\perp}^{2}\right)
$$

first derived in LC-diquark model and bag model
[She, Zhu, Ma, 2009; Avakian, Efremov, Schweitzer, Yuan, 2010]

$$
\mathcal{L}_{z}
$$

chiral even and charge even

$$
\Delta L_{z}=0
$$

$$
h_{1 T}^{\perp}
$$

chiral odd and charge odd

$$
\left|\Delta L_{z}\right|=2
$$

no operator identity
relation at level of matrix elements of operators
Ω
valid in all quark models with spherical symmetry in the rest frame

Quark spin and OAM

GTMDs

Quark spin (from DIS)

$$
S_{z}^{q}=\frac{1}{2} \int \mathrm{~d} x \mathrm{~d}^{2} k_{\perp} G_{14}^{q}\left(x, 0, \vec{k}_{\perp}, \overrightarrow{0}_{\perp}\right)
$$

polarized PDF
inclusive DIS

$$
\ell_{z}^{q}=-\int \mathrm{d} x \mathrm{~d}^{2} k_{\perp} \frac{\vec{k}_{\perp}^{2}}{M^{2}} F_{14}^{q}\left(x, 0, \vec{k}_{\perp}, \overrightarrow{0}_{\perp}\right)
$$

TMDs

Quark spin

$$
\begin{array}{r}
S_{z}^{q}=\frac{1}{2} \int \mathrm{~d} x \mathrm{~d}^{2} k_{\perp} g_{1 L}^{q}\left(x, \vec{k}_{\perp}\right) \\
\begin{array}{c}
\text { polarized PDF } \\
\text { inclusive DIS }
\end{array} \\
\mathcal{L}_{z}^{q}\left(x, \vec{k}_{\perp}\right)=-\frac{\vec{k}_{\perp}^{2}}{2 M^{2}} h_{1 T}^{\perp q}\left(x, \vec{k}_{\perp}^{2}\right) \\
\\
{[\text { [Burkardt }(2007)]} \\
{[\text { Efremov et al. (2008,2010)] }} \\
{[\text { She, Zhu, Ma (2009)] }} \\
{[\text { Avakian et al. (2010)] }} \\
{[\text { Lorce', BP (2011)] }]}
\end{array}
$$

- Model-dependent

- Not intrinsic!

$$
\mathcal{L}_{i z}=\vec{r}_{i \perp} \times \vec{k}_{i \perp}
$$

Quark spin and OAM

GTMDs

Quark spin (from DIS)

$$
S_{z}^{q}=\frac{1}{2} \int \mathrm{~d} x \mathrm{~d}^{2} k_{\perp} G_{14}^{q}\left(x, 0, \vec{k}_{\perp}, \overrightarrow{0}_{\perp}\right)
$$

polarized PDF
inclusive DIS

$$
\ell_{z}^{q}=-\int \mathrm{d} x \mathrm{~d}^{2} k_{\perp} \frac{\vec{k}_{\perp}^{2}}{M^{2}} F_{14}^{q}\left(x, 0, \vec{k}_{\perp}, \overrightarrow{0}_{\perp}\right)
$$

[Lorce, BP(2011)] [Hatta (2011)] [Lorce',BP, et al. (2012)]

TMDs

Quark spin

$$
S_{z}^{q}=\frac{1}{2} \int \mathrm{~d} x \mathrm{~d}^{2} k_{\perp} g_{1 L}^{q}\left(x, \vec{k}_{\perp}\right)
$$

polarized PDF
inclusive DIS

$$
\mathcal{L}_{z}^{q}\left(x, \vec{k}_{\perp}\right)=-\frac{\vec{k}_{\perp}^{2}}{2 M^{2}} h_{1 T}^{\perp q}\left(x, \vec{k}_{\perp}^{2}\right)
$$

[Burkardt (2007)] [Efremov et al. $(2008,2010)$] [She, Zhu, Ma (2009)] [Avakian et al. (2010)] [Lorce', BP (2011)]

- Model-dependent
- Not intrinsic!
$\mathcal{L}_{i z}=\vec{r}_{i \perp} \times \vec{k}_{i \perp}$

GPDs

Quark spin (from DIS)

$$
S_{z}^{q}=\frac{1}{2} \int \mathrm{~d} x \tilde{H}^{q}(x, 0,0)
$$

polarized PDF
inclusive DIS

Ji sum rule
$J^{q}=\frac{1}{2} \int \mathrm{~d} x x\left[H^{q}(x, 0,0)+E^{q}(x, 0,0)\right]$

$$
\begin{equation*}
L^{q}=J^{q}-S_{z}^{q} \tag{1997}
\end{equation*}
$$

Twist-3

$$
\begin{gathered}
L_{z}^{q}+2 S_{z}^{q}=-\int \mathrm{d} x x \tilde{E}_{2 T}^{q}(x, 0,0) \\
L_{z}^{q}=-\int_{\text {Pure twist-3! }} \mathrm{d} x x G_{2}^{q}(x, 0,0) \\
\quad[\text { Penttinen et al. (2000)] }
\end{gathered}
$$

- "disconnected diagrams" not included
- Error bands: chiral extrapolation in m_{π} and extrapolation to $\mathrm{t}=0$

Lattice results ($\mu=2 \mathrm{GeV}$)

Constraining quark OAM with Sivers function

unpolarized quark in unpolarized nucleon

Burkardt, PRD66 (02)

Constraining quark OAM with Sivers function

unpolarized quark in transversely pol. nucleon

Distortion in impact parameter (related to GPD E)

Constraining quark OAM with Sivers function

unpolarized quark in transversely pol. nucleon

Constraining quark OAM with Sivers function

unpolarized quark in transversely pol. nucleon

Constraining quark OAM with Sivers function

unpolarized quark in transversely pol. nucleon

Distortion in transverse momentum (related to Sivers function)
inal-state interaction (lensing function)

- Results from Sivers

Bacchetta, Radici, PRL107(2011)

$$
\begin{aligned}
J^{u} & =0.229 \pm 0.002_{-0.012}^{+0.008}, & J^{\bar{u}}=0.015 \pm 0.003_{-0.000}^{+0.001} \\
J^{d} & =-0.007 \pm 0.003_{-0.005}^{+0.020}, & J^{\bar{d}}=0.022 \pm 0.005_{-0.000}^{+0.001} \\
J^{s} & =0.006_{-0.006}^{+0.002}, & J^{\bar{s}}=0.006_{-0.005}^{+0.000}
\end{aligned}
$$

- Comparing with GPD models and Lattice calculations

Goloskokov and Kroll, EPJC59, (09) 509

Diehl at al, EPJC39 (05)।
Guidal et al, PRD72 (05) 054013

Liuti et al., PRD84 (I I) 034007

Bacchetta and Radici, PRL 107 (II) 21 180।
LHPC-I, PRD 77 (08) 094502

LHPC-2, PRD 82 (IO) 094502
QCDSF, PoS LAT2007 (2007) I58

Wakamatsu, EPJ A44, (I0)297
Thomas, PRL IOI (08) I02003
Thomas, INT 2012 workshop

Summary

* GTMDs Wigner Distributions

- the most complete information on partonic structure of the nucleon

Summary

* GTMDs Wigner Distributions
- the most complete information on partonic structure of the nucleon
* Results for Wigner distributions in the transverse plane
- non-trivial correlations between $\overrightarrow{\mathrm{b}}_{\perp}$ and $\overrightarrow{\mathrm{k}}_{\perp}$ due to orbital angular momentum

Summary

* GTMDs Wigner Distributions
- the most complete information on partonic structure of the nucleon
* Results for Wigner distributions in the transverse plane
- non-trivial correlations between $\overrightarrow{\mathrm{b}}_{\perp}$ and $\overrightarrow{\mathrm{k}}_{\perp}$ due to orbital angular momentum
* Orbital Angular Momentum from phase-space average with Wigner distributions

Summary

* GTMDs Wigner Distributions
- the most complete information on partonic structure of the nucleon
* Results for Wigner distributions in the transverse plane
- non-trivial correlations between $\overrightarrow{\mathrm{b}}_{\perp}$ and $\overrightarrow{\mathrm{k}}_{\perp}$ due to orbital angular momentum
* Orbital Angular Momentum from phase-space average with Wigner distributions
* GPDs and TMDs probe the same overlap of 3-quark LCWF in different kinematics
- no model-independent relations between GPDs and TMDs
- give complementary information useful to reconstruct the nucleon wf

Summary

* GTMDs Wigner Distributions
- the most complete information on partonic structure of the nucleon
* Results for Wigner distributions in the transverse plane
- non-trivial correlations between $\overrightarrow{\mathrm{b}}_{\perp}$ and $\overrightarrow{\mathrm{k}}_{\perp}$ due to orbital angular momentum
* Orbital Angular Momentum from phase-space average with Wigner distributions
* GPDs and TMDs probe the same overlap of 3-quark LCWF in different kinematics
- no model-independent relations between GPDs and TMDs
- give complementary information useful to reconstruct the nucleon wf
* No direct connection between TMDs and OAM \Rightarrow need to use model-inspired connections
- use LCWF (eigenstate of quark OAM) to quantify amount of OAM in different observables
- model relation between pretzelosity and OAM
- OAM from model relation between Sivers function and GPD E

