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Introduction Notation

xµ = (x+, x−, x⊥)

where

x+ =
(x0 + x3)√

2
, x− =

(x0 − x3)√
2

, x⊥ = (x1, x2)

The metric tensor

gµν =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1


Another notation
x± = x0 ± x3.

We have used the notation of

Mustaki et al.

Momentum is given by p = (p+, p−,p⊥)

Mass shell condition p− =
p2
⊥+m2

2p+

x3

x0

x+x−

[D. Mustaki, S. Pinsky, J. Shigemitsu and K.G. Wilson, Phys. Rev. D 43, 3411 (1991).]
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Introduction Coherent State Formalism

Method of Asymptotic Dynamics

The LSZ formalism is based on the assumption

Has = lim
|t|→∞

H = H0

[P.P. Kulish and L.D. Faddeev, Theor. Math. Phys. 4, 745 (1970).]

Has 6= H0

there are long range interaction

incoming and outgoing states are bound states
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Introduction Coherent State Formalism

In the limit |t| → ∞, H −→ Has

Has = H0 + Vas

Coherent states
|n : coh〉 = ΩA

±|n〉 ,

|n〉 is a Fock state, ΩA
± are the asymptotic Möller operators

ΩA
± = T exp

[
−i
∫ 0

∓
Vas(t)dt

]

The transition matrix element calculated using these states is IR divergence free.
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Introduction Coherent State Formalism

Nelson and Butler =⇒ Cancellation of IR div. in QCD (lowest order) D.R.
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Anuradha Misra, Phys. Rev. D 53, 5874 (1996).
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Introduction Coherent State Formalism

IR Divergences in LFFT

Spurious IR divergences

k+ → 0

True IR divergences

k⊥ → 0, k+ → 0

[Anuradha Misra, Phys. Rev. D 50, 4088 (1994).]

The coherent state method provides an alternative way of treating the true IR
divergences.
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Introduction Coherent State Formalism

Coherent state Formalism in LFFT

Has is evaluated by taking the limit x+ →∞ in exp[−i(p−1 + p−2 + · · ·+ p−n )x+]
of the interaction Hamiltonian Hint .

If (p−1 + p−2 + · · ·+ p−n )→ 0 for some vertex, then the corresponding term in Hint

does not vanish in large x+ limit.

Use KF method to construct asymptotic Hamiltonian and coherent state basis.
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Introduction Coherent State Formalism

Coherent state Formalism in LFQED

HI (x
+) = V1(x+) + V2(x+) + V3(x+)

where

V1(x+) = e
4∑

i=1

∫
dν

(1)
i [e−iν

(1)
i x+

h̃
(1)
i (ν

(1)
i ) + e iν

(1)
i x+

h̃
(1)†
i (ν

(1)
i )]

h̃
(1)
i (ν

(1)
i ) and ν

(1)
i are three point QED interaction vertices and the light-front

energy transferred at the vertex h̃(1) respectively.

For example,

h̃
(1)
1 =

∑
s,s′,λ

b†(p, s ′)b(p, s)a(k, λ)u(p, s ′)γµu(p, s)ελµ ,

ν
(1)
i = p− − k− − (p − k)− and∫

dν(1) =
1

(2π)3/2

∫
[dp][dk]√

2p+
,

LC2013 GREECE 9 Jai More



Introduction Coherent State Formalism

Coherent state Formalism in LFQED

HI (x
+) = V1(x+) + V2(x+) + V3(x+)

where

V1(x+) = e
4∑

i=1

∫
dν

(1)
i [e−iν

(1)
i x+

h̃
(1)
i (ν

(1)
i ) + e iν

(1)
i x+

h̃
(1)†
i (ν

(1)
i )]

h̃
(1)
i (ν

(1)
i ) and ν

(1)
i are three point QED interaction vertices and the light-front

energy transferred at the vertex h̃(1) respectively.

For example,

h̃
(1)
1 =

∑
s,s′,λ

b†(p, s ′)b(p, s)a(k, λ)u(p, s ′)γµu(p, s)ελµ ,

ν
(1)
i = p− − k− − (p − k)− and∫

dν(1) =
1

(2π)3/2

∫
[dp][dk]√

2p+
,

LC2013 GREECE 9 Jai More



Introduction Coherent State Formalism

The 3-point asymptotic Hamiltonian is defined by the following expression

V1as(x
+) = e

∑
i=1,4

∫
dν

(1)
i Θ∆(k)[e−iν

(1)
i x+

h̃
(1)
i (ν

(1)
i ) + e iν

(1)
i x+

h̃†i (ν
(1)
i )]

where

Θ∆(k) =

{
1 in the asymptotic region
0 elsewhere.

Asymptotic region can be considered to be consisting of all points (k+, k⊥)
satisfying:

k2
⊥ <

k+∆

p+
, k+ <

p+∆

m2
.

leading to

Θ∆(k) = θ

(
k+∆

p+
− k2
⊥

)
θ

(
p+∆

m2
− k+

)
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Introduction Coherent State Formalism

Asymptotic states:

ΩA
±|n : pi 〉 =exp

[
−e
∫

dp+d2p⊥
∑
λ=1,2

[d3k][f (k , λ : p)a†(k, λ)

− f ∗(k, λ : p)a(k , λ)] + e2

∫
dp+d2p⊥

∑
λ1,λ2=1,2

[d3k1][d3k2]

[g1(k1, k2, λ1, λ2 : p)a†(k2, λ2)a(k1, λ1)

− g2(k1, k2, λ1, λ2 : p)a(k2, λ2)a†(k1, λ1)]ρ(p)

]
|n : pi 〉

[Jai D. More and Anuradha Misra, Phys. Rev. D 86, 065037 (2012)]
Here

[d3k] =

∫
d2k⊥

(2π)3/2

∫
dk+

√
2k+
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[d3k] =

∫
d2k⊥

(2π)3/2

∫
dk+

√
2k+

f (k, λ : p) =
pµε

µ
λ(k)

p · k
θ

(
k+∆

p+
− k2
⊥

)
θ

(
p+∆

m2
− k+

)
,

f (k, λ : p) =f ∗(k, λ : p),
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Introduction Coherent State Formalism

One fermion coherent state:

|p, σ : f (p)〉 =exp

[
−e

∑
λ=1,2

[d3k][f (k , λ : p)a†(k , λ)− f ∗(k, λ : p)a(k , λ)]

+e2
∑

λ1,λ2=1,2

[d3k1][d3k2][g1(k1, k2, λ1, λ2 : p)a†(k2, λ2)a(k1, λ1)

−g2(k1, k2, λ1, λ2 : p)a(k2, λ2)a†(k1, λ1)

]
|p, σ〉
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Introduction Coherent State Formalism

Light-Front QED in LF gauge

Light-front QED Hamiltonian in the light-front gauge (A+ = 0)

P− = H ≡ H0 + V1 + V2 + V3 ,

Here

H0 =

∫
d2x⊥dx

−{ i
2
ξ̄γ−

↔
∂− ξ +

1

2
(F12)2 − 1

2
a+∂−∂kak}

V1 = e

∫
d2x⊥dx

−ξ̄γµξaµ

V2 = − i

4
e2

∫
d2x⊥dx

−dy−ε(x− − y−)(ξ̄akγ
k)(x)γ+(ajγ

jξ)(y)

V3 = −e2

4

∫
d2x⊥dx

−dy−(ξ̄γ+ξ)(x)|x− − y−|(ξ̄γ+ξ)(y)

LC2013 GREECE 14 Jai More



Introduction Coherent State Formalism

ξ(x) and aµ(x) can be expanded in terms of creation and annihilation operators as

ξ(x) =

∫
d2p⊥

(2π)3/2

∫
dp+

√
2p+

∑
s=± 1

2

[u(p, s)e−i(p
+x−−p⊥x⊥)b(p, s, x+)

+v(p, s)e i(p
+x−−p⊥x⊥)d†(p, s, x+)],

aµ(x) =

∫
d2q⊥

(2π)3/2

∫
dq+

√
2q+

∑
λ=1,2

ελµ(q)[e−i(q
+x−−q⊥x⊥)a(q, λ, x+)

+e i(q
+x−−q⊥x⊥)a†(q, λ, x+)],

operators satisfy

{b(p, s), b†(p′, s ′)} = δ(p+ − p′+)δ2(p⊥ − p′⊥)δss′ = {d(p, s), d†(p′, s ′)},[
a(q, λ), a†(q′, λ′)

]
= δ(q+q′+)δ2(q⊥ − q′⊥)δλλ′ .

LC2013 GREECE 15 Jai More



Introduction Coherent State Formalism

QED interaction vertices
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Introduction Coherent State Formalism

Mass renormalization in LFQED

The transition matrix is given by

T = V + V
1

p− − H0
V + · · ·

The electron mass shift is obtained by calculating Tpp

δm2 = p+
∑
s

Tpp

and

Tpp = 〈p, s|T |p, s〉
We expand Tpp in powers of e2 as

Tpp = T (1) + T (2) + · · ·

T (1)
pp ≡ T (1)(p, p) = 〈p, s|V1

1

p− − H0
V1|p, s〉+ 〈p, s|V2|p, s〉

LC2013 GREECE 17 Jai More



Mass renormalization upto O(e2) in the fock state basis

(a)

(p, s) (p, σ)

k1

(p, s) (p, σ)
(b)

k1

Diagrams for O(e2) self energy correction in fock basis corresponding to T1

T (1)
pp ≡ T (1)(p, p) = 〈p, s|V1

1

p− − H0
V1|p, s〉

In the limit k+
1 → 0, k1⊥ → 0,

(δm2
1a)

IR
= − e2

(2π)3

∫
d2k1⊥

∫
dk+

1

k+
1

(p · ε(k1))2

(p · k1)

LC2013 GREECE 18 Jai More



Mass renormalization upto O(e2) in the fock state basis

Mass renormalization in LFQED: Feynman gauge

QED Lagrangian in Feynman gauge with additional PV fields

L =
2∑

i=0

(−1)i
[
−1

4
Fµνi Fi,µν +

1

2
µ2
i A

µ
i Aiµ −

1

2
(∂µAiµ)2

]

+
2∑

i=0

(−1)i ψ̄i (iγ
µ∂µ −mi )ψi − eψ̄γµψAµ.

Here

ψ =
2∑

i=0

√
βiψi , Aµ =

2∑
i=0

√
ξiAiµ, Fiµν = ∂µAiν − ∂νAiµ,

i = 0 corresponds to a physical field, and i = 1 and 2, to PV fields. The photon
fields have mass mi , m0 → 0 for the physical photon. βi and ξi are coupling
coefficients.
[S. S. Chabysheva and J. R. Hiller, Phys. Rev. D 84, 034001 (2011).]
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Mass renormalization upto O(e2) in the fock state basis

(a)
(p, s) (p, σ)

k1

j (p, s) (p, s)

(b)

k1

j

ii = 0

Diagrams for O(e2) self energy correction in fock basis corresponding to T1a and
T1b. In (a), wavy line corresponds to physical photon (i = 0) and in (b) curly line
corresponds to PV photon (i = 1, 2).
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Mass renormalization upto O(e2) in the fock state basis

The four point instantaneous terms do not appear in LF Hamiltonian

In the infinite PV mass limit one can obtain the instantaneous four point
interaction terms
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Mass renormalization upto O(e2) in the fock state basis

m0

m1 m1 → ∞

m0

In the infinite PV mass limit the PV fermion line reduces to an instantaneous four
point interaction term denoted by a dash on the fermion line. [S. S. Chabysheva

and J. R. Hiller, Phys. Rev. D 84, 034001 (2011).]

k2

i

3(a)

k1

j k

k2

4(a)

k1

m1 → ∞

In the infinite PV mass limit the diagram on the left reduces to a diagram
involving instantaneous interaction. Here i = 1 while j = k = 0.
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Mass renormalization upto O(e2) in the coherent state basis

Mass renormalization in the coherent state basis

k1

(p, s) (p, σ)

k1

(p, s) (p, σ)

Additional diagrams in coherent state basis for O(e2) self energy correction
corresponding to T2.

T ′(p, p) = 〈p, s : f (p)|V1|p, s : f (p)〉

LC2013 GREECE 23 Jai More



Mass renormalization upto O(e2) in the coherent state basis

T ′(p, p) =
e2

(2π)3

∫
d2k1⊥

2p+

∫
dk+

1

2k+
1

u(p, s ′)ε/λ(k1)u(p, s)f (k1, λ : p)

where

f (k , λ : p) =
pµε

µ
λ(k)

p · k θ

(
k+∆

p+
− k2
⊥

)
θ

(
p+∆

m2
− k+

)
,

(δm2)
′

=
e2

(2π)3

∫
d2k1⊥

∫
dk+

1

k+
1

(p · ε(k1))2Θ∆(k1)

p · k1

LC2013 GREECE 24 Jai More



Mass renormalization upto O(e2) in the coherent state basis

Mass Renormalization up to O(e2) is IR finite

(a)

(p, s) (p, σ)

k1

(p, s) (p, σ)
(b)

k1

(a)
(p, s) (p, σ)

k1

j (p, s) (p, s)

(b)

k1

j

ii = 0

k1

(p, s) (p, σ)

k1

(p, s) (p, σ)

LC2013 GREECE 25 Jai More



Mass renormalization upto O(e4) in the fock state basis

Diagrams for O(e4) self energy correction in LF gauge

k2

(p, σ)(p, s)
(a)

k1

(p, σ)(p, s)

(b)

k1

k2

(p, σ)(p, s)

(c)

k1 k2

(a)
(p, s) (p, σ)

k1

k2

(b)

k1

k2

(p, s) (p, σ)

(c)

k2

k1

(p, s) (p, σ)

k2

k1

(d)

(p, s) (p, σ)

(e)
(p, s) (p, σ)

k1

k2

(f)
(p, s) (p, σ)

k1 k2

(p, σ)(p, s)
(a)

k2
k1

(p, σ)(p, s)
(b)

k2
k1

(p, σ)(p, s)

(c)

k2 k1

(p, σ)(p, s)

(d)

k2 k1
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Mass renormalization upto O(e4) in the fock state basis

k2

(p, σ)(p, s)
(a)

k1

(p, σ)(p, s)

(b)

k1

k2

(p, σ)(p, s)

(c)

k2 k1

(p, σ)(p, s)

(a)

k1 k2

(p, σ)(p, s)

(b)

k1

k2

k2

(p, σ)(p, s)
(a)

k1

k2

(p, σ)(p, s)
(a)

k1

(p, σ)(p, s)

(b)
k1

k2

(p, σ)(p, s)

(c)

k1 k2

(p, σ)(p, s) (p, σ)(p, s)
(a) (b)

k1
k2

k1

k2

k2k2
k1

(p, σ)(p, s)

k1

(p, σ)(p, s)(c)
(d)

(p, σ)(p, s)

(f)

k1

k2(p, σ)(p, s)

(e)

k1

k2

k1

k2
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[Jai D. More and Anuradha Misra, Phys. Rev. D 86, 065037 (2012)]
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Mass renormalization upto O(e4) in the fock state basis
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Diagrams for O(e4) self energy correction in fock basis using Feynman gauge.
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Mass renormalization upto O(e4) in the coherent state basis
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Diagrams for O(e4) self energy correction in coherent state basis using Feynman
gauge.
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Mass renormalization upto O(e4) in the coherent state basis

Mass Renormalization up to O(e4) in Feynman gauge is IR
finite
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[Jai D. More and Anuradha Misra, Phys. Rev. D 87, 085052 (2013)]
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Improved Method of Asymptotic Dynamics

Improved Method of Asymptotic Dynamics

In equal time formulation of QED, IR divergences cancel to all orders. In
QCD such a proof does not exists

In QCD asymptotic state are bound state. So the asymptotic Hamiltonian
obtained by KF method is not sufficient for the cancellation of IR divergences

An ‘improved’ method of asymptotic dynamics takes into account the
separation of particles also

[ R. Horan, M. Lavelle, and D. McMullan, Pramana 51, 317 (1998).

R. Horan, M. Lavelle, and D. McMullan, Report No. PLY-MS-99-9, hep-th/9909044, (1999).

R. Horan, M. Lavelle, and D. McMullan, hep-th /0002206 (2000).]
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Improved Method of Asymptotic Dynamics

The key observation is that it is more appropriate in QFT to work at the level of
matrix elements than at the level of operators.

〈ψout |Hint |ψin〉

is a time dependent complex number and, therefore, to investigate its asymptotic
limit, one can use the method of stationary phase.
Thus, if the above matrix element is given by

〈ψout |Hint |ψin〉 =

∫
dνi f (p1)g(p2) · · · exp[−iνix+]

then, according to the method of stationary phase, this integral approaches zero
as |x+| → ∞ provided there is no point in the region of integration at which all
first order partial derivatives of νi vanish.
The second criteria is to take into account the binding of particle at asymptotic
limit.

[Anuradha Misra, Few-Body Systems 36, 201-204 (2005).]
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Improved Method of Asymptotic Dynamics

Criteria in the Method of Asymptotic Dynamics

In LFQED,
νi = p− − k− − (p − k)−

Condition to obtain the asymptotic region

KF approach : νi = 0

Improved Method:

1 ∂νi
∂p⊥

= ∂νi
∂p+ = ∂νi

∂k⊥
= ∂νi

∂k+ = 0

2 Separation of particles at large distances
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Improved Method of Asymptotic Dynamics

Work in progress:

For QED, both methods give the same asymptotic conditions

In case of theories with 4-point coupling the asymptotic regions obtained by
KF method and first criteria of improve method do not match.

Developing the improved method of asymptotic dynamics in LFFT for simple
model like Yukawa theory, φ4 theory

Extending this method to QCD to analyze the nature of IR divergences

To construct an artificial potential that is needed for bound state calculation
in LFQCD.
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Summary and Future Plans

Summary

The true IR divergences get cancelled when coherent state basis is used to
calculate the matrix elements in lepton self energy correction in light-front
QED up to O(e4) in LF gauge as well as in Feynman gauge.

The proof can be generalized to general covariant gauge (in preparation)

In LFQCD, the second criteria of Improved Method of Asymptotic dynamics
must take into account the binding between the quarks and gluons.
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Summary and Future Plans

Future Plans

The cancellation of IR divergences between real and virtual processes is
known to hold in equal time QED to all orders. It would be interesting to
verify this all order cancellation in LFQED.

It is well known that IR divergences do not cancel in QCD in higher orders.
The reason may lie in the wrong choice of asymptotic states.

Connection between asymptotic dynamics and IR divergences can possibly be
exploited to construct an artificial potential that may be used in bound state
calculation in LFQCD
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Summary and Future Plans

Thank you
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