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Introduction Definition of GPD

GPDs in a low-energy theory.

Chiral Perturbation Theory

Definition of GPD

o Generalized parton distributions (GPDs) are phenomenological functions accumulating
information about long-distance hadron dynamics.

Nucleon GPD parameterizes the matrix element of light-cone non-local operator:

X _; A A
[ e ) e ta(- Sl =

1 [ i, Ay
)| H(w € A% + B A?)} u(p),
d\ i _ An An
[ S e a T st a2 lp) =
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/
P:p-;p, A=yp —p, n? =0.
e )\ is the light-cone distance
e x — hadron momentum fraction carried by a quark, £ = —QA% — skewedness
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Introduction Definition of GPD

GPDs in a low-energy theory.

Chiral Perturbation Theory

e GPD can not be calculated within QCD, since it defines long-distance dynamics (low
momenta).

o Dependence of GPDs on low-scale parameters (m, A2) can be extracted within framework
of Effective Field Theories (EFT).

q(z, A%) = §(z) + axqgV(z,§) + a2 ¢ (z,¢) + ...,

2
> ~ 1072,

. . 2 mao A
Chiral expansion parameter a3 ~ TE0Z ™~ TrF?

e §(z) is PDF in the chiral limit (m — 0, A — 0), and ¢(¥)(z, §) perturbativly calculable in
EFT functions.

Chiral expansion < QCD factorization (factorization "head over heels"):

— —> q(x)
q(X,AyZm,Q CFRY
e Kk
Wx.A'm?.) \\\/ 3
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Introduction inition of GPD

GPDs in a low-energy theory.
Chiral Perturbation Theory

e The lowest chiral order Lagrangian:
1) 2 _ w s Ja 5 F2 t ¥ i
£ 4L = [zw(aﬁm)—MJr?uww]N+7Tr [@LU&‘U +x U+XU]

M ~ 940 MeV - the nucleon mass and Fr >~ 93 MeV - the pion decay constant.

in%ra 1
w=U=e Fr , FuZE[uT,()ﬂu], up = w8, Uul,  x ~m2
2 2
@ Not typical for ChPT scale presents: (4%”2 ~1vs in F 7z~ 10—2

Violation of the chiral counting rules!
There are several methods to overcome the hierarchy problem of baryon ChPT, e.g:

e Heavy baryon approach to baryon ChPT, [Jenkins, Manohar,90]
o Infrared regularization scheme, [Becher, Letwyler,01]
o Extended on-mass shell regularization scheme, [Gegelia et., 2003]

However the first and the second are not applied to investigation of non-local operators: non-local
operators are very sensitive to the analytic properties of theory
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Non-local operators in ChPT

Evaluation of GPD in ChPT Erlarztism o ClEmEms

Results

Matching operators

We stay in the Lorentz-invariant ChPT and need to construct GPD non-local operators.

e Quantum numbers of EFT operator and QCD operator should coincide

e Operators in EFT are made of U(z),u(z), N(z) and 8 (various chiral orders are possible).
The lowest chiral order operators (zero derivatives): [Kivel, Polyakov, 04]

it = 5 [ d8dal(@) [Fa(8.0) htd(en) + FalB,0) ArPtA (o) N
) Asrta- 2 = 5 [ d8daN(@) [Fa(, @) APt (o) + Fil8,0) htA ()] N)
By =ul@riu) Lu@rtety), o= GEO, (aZ B

2 2
F (B8, «) are generating function for low energy constants (LECs).

The operator with the same quantum numbers also can be constructed from pion fields only:

An 2.7-_2
—)=
2

q(%) A /dﬁda F(B,a)Tr [14 (V@) 84 U () + U'(2) 54 Uw))]
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Non-local operators in ChPT
Calculation of diagrams
Results

Evaluation of GPD in ChPT

Tree level matrix element of effective operator represents GPD at the chiral limit:

/jl 48 /Ij; dov Fy2)(8,0)3(x — af = B) = H(H) (z,)

e F;, F are Double Distributions in the chiral limit, [Radyushkin,97].
o Generating functions at the forward limit (¢ = 0) are PDFs:

1-8 1-8
[ wan@a =@, [ dar.e) = sie)
—148 —1+8
e Parton distributions are normalized from the form factor operators:
1 1
[ asi =1 [ dsaie) =g
-1 -1

ga is axial coupling constant.
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Non-local operators in ChPT
Calculation of diagrams
Results

Evaluation of GPD in ChPT

Next-to-Leading chiral order GPDs.

0
X

e Loop expansion provides us chiral corrections to the tree order GPDs, FI(z,f) ~a

2
X

e One-loop graphs gives next-to-leading chiral corrections ~ a

e Diagrams A and B describes the contribution of the pion cloud to the nucleon. Diagram D
mixes up the vector and axial PDFs.

e The calculation has been done in the extended on mass-shell normalization scheme (EOMS)

e The heavy baryon and similar schemes gives "mostly wrong" results, (often divergent)
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Non-local operators in ChPT
Calculation of diagrams
Results

Evaluation of GPD in ChPT

Leading order PDF.

e We present parton distributions ¢(z, A?), Ag(x, A?) and in one-loop order.
They correspond to GPDs: H(x,¢& = 0,A?), H(x,& = 0,A?), ,

e ()00 (2) et 5
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Evaluation of GPD in ChPT Non-loca_ﬂ operators in VChPT
Calculation of diagrams

Results

Leading order PDF.
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Non-local operators in ChPT
Calculation of diagrams

Evaluation of GPD in ChPT
Results

Leading order PDF.

392 . m? 5 [Y ym? — A%ng
c® (y, AQ) = 7—‘7” 6(1 — y)mZ In —- — 25(1(': / dn Y = 1
2 K Jo g2ty — S5 - y)

_ 390 n?
AC(y) = (7 5(1 — y)ym? ln— — 39, M>FIn <1 + yo >
g2
392 g R
s = L) [ nmenm 20
0 H
L 22 * 'y m? — nA?
+6g9, My In l+— Jr()y” / dn = -
Jo y? + P(u —ym? nA2
: M2
x~0° x~0 X~
L L I,
- T T Eat
162 10" 1

o Red terms are responsible for small-x region 2 ~ a2. They describe the pion cloud at large
impact parameters b .

e Green terms become significant in the intermediate region = ~ «a. ‘}M%é

e Blue terms are responsible for the region = ~ 1. | @

(© The consideration of the Mellin moments gives AC =0 and C' ~ §(1 — y) .
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Moments vs. PDF
Analysis of counting rules
Summation of the singular terms

Comparison with Mellin moments

Why so different?

My = / dea¥q(@,A?) & q@,A%) = /

e} —100

o The perturbative calculation leads to My = M]<\(,)) + aiM}VU, ie. My — My = O(ai).

e The restored from My PDF G(z)

q(z) — q(z) = O(a3,)??

( The restored from the Mellin moments PDF can be of absolutely different order. It depends
on how the perturbative expansion effects the analytic properties of PDF.
e For QCD, where as is dimensionless and presumably does not change the analytic properties
the difference would appear only for very small x.
e For EFT, where a, is of kinematic origin the (non-accurate) perturbative expansion changes
the analytic properties of PDF (shifts positions of poles, etc).
o These effects are well known for pion PDF (see [Kivel,Polyakov,AV]), and should be taken
into account for nucleon case.
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Moments vs. PDF
Analysis of counting rules
Summation of the singular terms

Comparison with Mellin moments

Mellin moments

O = [ aBaan(o) [Fr(8,0) 5 wn) + Pa(,0) A )| N )

The corresponded Mellin moment operator reads (here we extract the large component of nucleon
field Ny(z) = etM V) N (z))

oo o > N
. M _ 3
On = /dx:cN / d\ e PO () = PN—JLNU(O) {’ 2* } Ny (0) + (pions)
+

—o0

(© Since X is a dimensional parameter the standard counting rules of gradient expansion should
be modified, in the regions of large .

@ zP4 and X are "canonical conjugated" variables (Fourier integral demands 2 P4\ ~ 1).
Therefore, = "remembers" about different regions of integration over .

(© Thus, restoration of PDF in different regions of z requires different counting rules for Mellin
moment.
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Moments vs. PDF

Comparison with Mellin moments (el off @i nfles
Summation of the singular terms

Region z ~ 1

e Let us consider standard chiral counting rules.

ZA(P-n)~1 n~1

1
MXv-n)~1 z~1 = O+ ~q )\NM’ vp vl

e Small light-cone distances justify the expansion over A (gives local MM-operators).

e Under such chiral counting rules one can forget about derivatives (at least for higher
moments). MM-operators correspond to local operator for GPD(no parton dynamics!):

N
—Mu} Ny(0) = On(\) = / dﬁa(ﬁ)eiMmev(o)%*Nv(o)

soft hard

Ny -

i O

1 04

pN+ )

N1 v(O
+

© Implies the multiplicative approximation for PDF: g(z, A2%) = q(z)F(A?),
F(A?)—corresponding Form Factor.

( This regime was considered in all previous calculations of nucleon PDF and GPDs
[Belitsky,Ji,02],[Diehl,et al,06],[Ando,Chen,Kao,06],[Dorati,et al,08]
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Moments vs. PDF
Analysis of counting rules
Summation of the singular terms

Comparison with Mellin moments

Region x ~ 1 ~ ~ 1071

e Counting rules for the intermediate region of x:

zA(P-n) ~1 n~1/q !
MA(vn)Nl INq/M = Oy ~1, A~ +~M

e Under such chiral counting rules MM-operators correspond to the truly non-local operator:

- > N
My 0% _ ppy i X (W) e (_@)
Py U(O)[ 5 Mv } Ny(0) = /dﬁq +AAN, 5 ) 5 M 5

same order

(© Consideration of this region requires the all order summation of particular diagrams in Mellin
moment representations, but automatically covered by the consideration of the non-local operator.

Bright representative of this region is parity mixing term AC

2
ACO(y) = 3g”(5(1 y)m? ln/‘—2

—39a J\Jzy In ( yer >
/
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Moments vs. PDF
Analysis of counting rules
Summation of the singular terms

Comparison with Mellin moments

ZA(P-n)~1

. M 2 02
MX(v-n)~1 = Oy~ M, Ao, vp g /M

(12

n~ M/q
x ~ q%/M?

e Under such chiral counting rules one can forget about Mv term. The non-local operator
loses its exponential factor:

o N

P]%HNU(O){ 9+ Mv+} Ny(0) = OwN(A):/dﬁq"(ﬁ)Nv (@) U+ N, (_@)

+

hard soft

@ In this region one need to sum up all orders diagrams in order.
(© This region is of the special importance for the pion PDF, and for the pion cloud contribution
to the nucleon PDF.
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Moments vs. PDF
Analysis of counting rules

Comparison with Mellin moments Summation of the singular terms

1
C’,Or(y, AQ) = ‘—a(i(y)/ dnR(n) In R(z)
0 12

2 _ 77A2
R(n) m2—nA2
™2 YT

+6gaM2y1n (1 4 7) +6gay/ dn
y? +

( This o-function is only the first term for the series of d-functions

Cr(y,0) = (regular terms) + c16(y)ay Inay + c26 (J)(L In? ay, + ¢z’ (J)(L?( In® ay + ...

= (regular terms) + f <L>

ay Inay

e The coefficients ¢, are proportional to the leading logarithm
coefficients of wr-scattering [Kivel, Polyakov, 0707.2208].

e Can be obtained via renormalization group recursive equations
[Kivel,Polyakov,Vladimirov,0809.3236]

e ~ R
e Or alternatively can be obtained via the analytic properties of
the amplitude [Koschinski,Polyakov,Vladimirov,1004.2197] "-/Ocigzggaphs
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Conclusion

Conclusion

(© We have performed the detailed analysis for nucleon GPD operators in EFT
[AM,Vladimirov,1208.1714].

e Reconstruction of GPDs in different regions of = requires different counting rules for Mellin
moment.
e For non-local operators we do not need special counting rules.
2
m

e At low x ~ ™ 10~2 a resummation of the singular terms is required.
N

(© We have calculated GPD functions at the leading order of chiral expansion
in the limits { = 0 and £ # 0.

e A parity mixing contribution appears at ai chiral order. It was believed to be strongly
suppressed (~ a}) from MM calculations.

o Calculations with non-local GPD operators explore a rich structure of chiral corrections in
z-space.
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Conclusion

Conclusion

(© We have performed the detailed analysis for nucleon GPD operators in EFT
[AM,Viadimirov,1208.1714].

e Reconstruction of GPDs in different regions of x requires different counting rules for Mellin
moment.

e For non-local operators we do not need special counting rules.

2
m — . . . .
e Atlow z ~ 175 ~ 10 2 a resummation of the singular terms is required.
N

(© We have calculated GPD functions at the leading order of chiral expansion
in the limits { = 0 and £ # 0.
e A parity mixing contribution appears at ai chiral order. It was believed to be strongly
suppressed (~ ai) from MM calculations.

e Calculations with non-local GPD operators explore a rich structure of chiral corrections in
x-space.

Thank you for your attention. s
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