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De�nition of GPD

GPDs in a low-energy theory.

Chiral Perturbation Theory

De�nition of GPD

•
Generalized parton distributions (GPDs) are phenomenologial funtions aumulating

information about long-distane hadron dynamis.

Nuleon GPD parameterizes the matrix element of light-one non-loal operator:

∫
dλ

2π
e−ixλP+〈p′|q̄(

λn

2
) 6n τAq(−

λn

2
)|p〉 =

1

P+
ū(p′)

[
6nH(x, ξ,∆2) +

iσµνnµ∆ν

2M
E(x, ξ,∆2)

]
τAu(p),

∫
dλ

2π
e−ixλP+〈p′|q̄(

λn

2
) 6nγ5τ

Aq(−
λn

2
)|p〉 =

1

P+
ū(p′)

[
6nγ5H̃(x, ξ,∆2) + γ5

(n∆)

2M
Ẽ(x, ξ,∆2)

]
τAu(p)

P =
p+ p′

2
, ∆ = p′ − p, n2 = 0.

• λ is the light-one distane

• x � hadron momentum fration arried by a quark, ξ = −
∆+

2P+
� skewedness
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De�nition of GPD

GPDs in a low-energy theory.

Chiral Perturbation Theory

•
GPD an not be alulated within QCD, sine it de�nes long-distane dynamis (low

momenta).

•
Dependene of GPDs on low-sale parameters (mπ , ∆2

) an be extrated within framework

of E�etive Field Theories (EFT).

q(x,∆2) = q̊(x) + aχq
(1)(x, q̊) + a2χq

(2)(x, q̊) + ...,

Chiral expansion parameter a2χ ∼
m2

π

(4πFπ)2
∼ ∆2

(4πFπ)2
∼ 10−2

.

• q̊(x) is PDF in the hiral limit (m → 0, ∆ → 0), and q(i)(x, q̊) perturbativly alulable in

EFT funtions.

Chiral expansion ⇔ QCD fatorization (fatorization "head over heels"):

Alena Moiseeva Chiral orretions to nuleon GPDs



Introdution

Evaluation of GPD in ChPT

Comparison with Mellin moments

Conlusion

De�nition of GPD

GPDs in a low-energy theory.

Chiral Perturbation Theory

•
The lowest hiral order Lagrangian:

L
(1)
πN + L

(2)
ππ = N̄

[
iγµ(∂µ + Γµ)−M +

ga

2
uµγ

µγ5
]
N +

F 2
π

4
Tr

[
∂µU∂µU† + χ†U + χU†

]

M ≃ 940 MeV � the nuleon mass and Fπ ≃ 93 MeV � the pion deay onstant.

u2 = U = e
iπaτa

Fπ , Γµ =
1

2

[
u†, ∂µu

]
, uµ = iu†∂µUu†, χ ∼ m2

π

⊙
Not typial for ChPT sale presents:

M2

(4πFπ)2
∼ 1 vs

m2
π

(4πFπ)2
∼ 10−2

.

Violation of the hiral ounting rules!

There are several methods to overome the hierarhy problem of baryon ChPT, e.g:

•
Heavy baryon approah to baryon ChPT, [Jenkins, Manohar,90℄

•
Infrared regularization sheme, [Beher, Letwyler,01℄

•
Extended on-mass shell regularization sheme, [Gegelia et., 2003℄

However the �rst and the seond are not applied to investigation of non-loal operators: non-loal

operators are very sensitive to the analyti properties of theory
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Non-loal operators in ChPT

Calulation of diagrams

Results

Mathing operators

We stay in the Lorentz-invariant ChPT and need to onstrut GPD non-loal operators.

•
Quantum numbers of EFT operator and QCD operator should oinide

•
Operators in EFT are made of U(x), u(x), N(x) and ∂ (various hiral orders are possible).

The lowest hiral order operators (zero derivatives): [Kivel, Polyakov, 04℄

q̄(
λn

2
) 6n τAq(−

λn

2
) ⇒

1

2

∫
dβdαN̄(x)

[
F1(β, α) 6n tA+(x, y) + F2(β, α) 6n γ5tA−(x, y)

]
N(y)

q̄(
λn

2
) 6n γ5τ

Aq(−
λn

2
) ⇒

1

2

∫
dβdαN̄(x)

[
F2(β, α) 6n γ5tA+(x, y) + F1(β, α) 6n tA−(x, y)

]
N(y)

tA±(x, y) = u†(x)τAu(y) ± u(x)τAu†(y), x =
(α+ β)λn

2
, y =

(α − β)λn

2

F (β, α) are generating funtion for low energy onstants (LECs).

The operator with the same quantum numbers also an be onstruted from pion �elds only:

q̄(
λn

2
) 6n τAq(−

λn

2
) ⇒

−iF2
π

4

∫
dβdα F (β, α)Tr

[
τA

(
U(x)

↔
∂+ U†(y) + U†(x)

↔
∂+ U(y)

)]
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Tree level matrix element of e�etive operator represents GPD at the hiral limit:

∫ 1

−1
dβ

∫ 1−β

−1+β

dα F1(2)(β, α)δ(x − αξ − β) = H̊
(
˚̃
H
)
(x, ξ)

• Fi, F are Double Distributions in the hiral limit, [Radyushkin,97℄.

•
Generating funtions at the forward limit (ξ = 0) are PDFs:

∫ 1−β

−1+β

dαF1(β, α) = q̊(β),

∫ 1−β

−1+β

dαF2(β, α) = ∆q̊(β)

•
Parton distributions are normalized from the form fator operators:

∫ 1

−1
dβq̊(β) = 1,

∫ 1

−1
dβ∆q̊(β) = ga.

ga is axial oupling onstant.
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Next-to-Leading hiral order GPDs.

•
Loop expansion provides us hiral orretions to the tree order GPDs, H̊(x, ξ) ∼ a0χ.

•
One-loop graphs gives next-to-leading hiral orretions ∼ a2χ

•
Diagrams A and B desribes the ontribution of the pion loud to the nuleon. Diagram D
mixes up the vetor and axial PDFs.

•
The alulation has been done in the extended on mass-shell normalization sheme (EOMS)

•
The heavy baryon and similar shemes gives "mostly wrong" results, (often divergent)
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Leading order PDF.

•
We present parton distributions q(x,∆2), ∆q(x,∆2) and E(x,∆2) in one-loop order.

They orrespond to GPDs: H(x, ξ = 0,∆2), H̃(x, ξ = 0,∆2), E(x, ξ = 0,∆2), Ẽ.

qI(x,∆2) = q̊(x) +
1

(4πFπ)2

∫ 1

−1

dβ

β
θ

(
0 <

x

β
< 1

)

×

[
q̊(β)CI

(
x

β
,∆2

)
+∆q̊(β)∆CI

(
x

β

)
+ Q̊(β)CI

π

(
x

β
,∆2

)]

•

C
0
(

y,∆2
)

= −

3g2
a

2
δ(1 − y)m2 ln

m2

µ2
− 3g2

a

∫

ȳ

0

dη
ym2

− ∆2ηȳ

ȳ2 + α2y −
∆2

M2 η(η̄ − y)

∆C
0(y) = −

3ga

2
δ(1 − y)m2 ln

m2

µ2
− 3gaM

2
ȳ ln

(

1 +
yα2

ȳ2

)

C
0
π(y,∆

2) =
3g2

a

2
δ(y)

∫

1

0

dηR(η) ln
R(η)

µ2

+6g2
aM

2
y ln

(

1 +
α2ȳ

y2

)

+ 6g2
ay

∫

ȳ

0

dη
m2

− η∆2

y2 + R(η)

M2 − y
m2

−η∆2

M2
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Leading order PDF.

C
0
(

y,∆
2
)

= −

3g2
a

2
δ(1 − y)m

2
ln

m2

µ2
− 3g

2
a

∫

ȳ

0

dη
ym2

− ∆2ηȳ

ȳ2 + α2y −
∆2

M2 η(η̄ − y)

∆C
0(y) = −

3ga

2
δ(1 − y)m2 ln

m2

µ2
− 3gaM

2
ȳ ln

(

1 +
yα2

ȳ2

)

C
0
π(y,∆

2) =
3g2

a

2
δ(y)

∫ 1

0

dηR(η) ln
R(η)

µ2

+6g2
aM

2
y ln

(

1 +
α2ȳ

y2

)

+ 6g2
ay

∫

ȳ

0

dη
m2

− η∆2

y2 + R(η)

M2 − y
m2

−η∆2

M2

y
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Leading order PDF.

C
0
(

y,∆2
)

= −

3g2
a

2
δ(1 − y)m2 ln

m2

µ2
− 3g2

a

∫

ȳ

0

dη
ym2

− ∆2ηȳ

ȳ2 + α2y −
∆2

M2 η(η̄ − y)

∆C
0
(y) = −

3ga

2
δ(1 − y)m

2
ln

m2

µ2
− 3gaM

2
ȳ ln

(

1 +
yα2

ȳ2

)

C
0
π(y,∆

2) =
3g2

a

2
δ(y)

∫ 1

0

dηR(η) ln
R(η)

µ2

+6g2
aM

2
y ln

(

1 +
α2ȳ

y2

)

+ 6g2
ay

∫

ȳ

0

dη
m2

− η∆2

y2 + R(η)

M2 − y
m2

−η∆2

M2

•
Red terms are responsible for small-x region x ∼ α2

. They desribe the pion loud at large

impat parameters b⊥.

•
Green terms beome signi�ant in the intermediate region x ∼ α.

•
Blue terms are responsible for the region x ∼ 1.

⊙
The onsideration of the Mellin moments gives ∆C = 0 and C ∼ δ(1 − y) .
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Summation of the singular terms

Why so di�erent?

•

MN =

∫ ∞

−∞

dxxN q(x,∆2) ⇔ q(x,∆2) =

∫ c+i∞

c−i∞

dN

2πi
x−N−1MN

•
The perturbative alulation leads to M̄N = M

(0)
N + a2χM

(1)
N , i.e. MN − M̄N = O(a3χ).

•
The restored from M̄N PDF q̄(x)

•

q(x)− q̄(x) = O(a3χ)??

⊙
The restored from the Mellin moments PDF an be of absolutely di�erent order. It depends

on how the perturbative expansion e�ets the analyti properties of PDF.

•
For QCD, where αs is dimensionless and presumably does not hange the analyti properties

the di�erene would appear only for very small x.

•
For EFT, where aχ is of kinemati origin the (non-aurate) perturbative expansion hanges

the analyti properties of PDF (shifts positions of poles, et).

•
These e�ets are well known for pion PDF (see [Kivel,Polyakov,AV℄), and should be taken

into aount for nuleon ase.
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Mellin moments

OA
πN (λ) =

∫
dβdαN̄(x)

[
F1(β, α)

6n

2
tA+(x, y) + F2(β, α)

6n γ5

2
tA−(x, y)

]
N(y)

The orresponded Mellin moment operator reads (here we extrat the large omponent of nuleon

�eld Nv(x) = eiM(vx)N(x))

ON =

∫
dxxN

∞∫

−∞

dλ e−iλxP+OπN (λ) =
M̊N

PN+1
+

N̄v(0)

[
i
↔
∂+

2
−Mv+

]N

Nv(0) + (pions)

⊙
Sine λ is a dimensional parameter the standard ounting rules of gradient expansion should

be modi�ed, in the regions of large λ.⊙
xP+ and λ are "anonial onjugated" variables (Fourier integral demands xP+λ ∼ 1).

Therefore, x "remembers" about di�erent regions of integration over λ.⊙
Thus, restoration of PDF in di�erent regions of x requires di�erent ounting rules for Mellin

moment.
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Region x ∼ 1

•
Let us onsider standard hiral ounting rules.

xλ(P · n) ∼ 1
Mλ(v · n) ∼ 1

∣∣∣∣∣

∣∣∣∣∣
n ∼ 1
x ∼ 1

⇒ ∂+ ∼ q, λ ∼
1

M
, v+ ∼ 1

•
Small light-one distanes justify the expansion over λ (gives loal MM-operators).

•
Under suh hiral ounting rules one an forget about derivatives (at least for higher

moments). MM-operators orrespond to loal operator for GPD(no parton dynamis!):

M̊N

PN+1
+

N̄v(0)

[
i
↔
∂+

2
−Mv+

]

soft hard

N

Nv(0) ⇒ OπN (λ) =

∫
dβq̊(β)eiMv+βλN̄v(0)

v+

2
Nv(0)

⊙
Implies the multipliative approximation for PDF: q(x,∆2) = q(x)F (∆2),
F (∆2)�orresponding Form Fator.⊙
This regime was onsidered in all previous alulations of nuleon PDF and GPDs

[Belitsky,Ji,02℄,[Diehl,et al,06℄,[Ando,Chen,Kao,06℄,[Dorati,et al,08℄
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Region x ∼
m
M ∼ 10

−1

•
Counting rules for the intermediate region of x:

xλ(P · n) ∼ 1
Mλ(v · n) ∼ 1

∣∣∣∣∣

∣∣∣∣∣
n ∼ 1/q
x ∼ q/M

⇒ ∂+ ∼ 1, λ ∼ 1, v+ ∼
1

M

•
Under suh hiral ounting rules MM-operators orrespond to the truly non-loal operator:

M̊N

PN+1
+

N̄v(0)

[
i
↔
∂+

2
−Mv+

]

same order

N

Nv(0) ⇒

∫
dβq̊(β)eiMv+βλN̄v

(
βλn

2

)
v+

2
Nv

(
−
βλn

2

)

⊙
Consideration of this region requires the all order summation of partiular diagrams in Mellin

moment representations, but automatially overed by the onsideration of the non-loal operator.

Bright representative of this region is parity mixing term ∆C

∆C0(y) = −
3ga

2
δ(1 − y)m2 ln

m2

µ2

−3gaM
2ȳ ln

(
1 +

yα2

ȳ2

) ∆MN = 0 +O

(
m4

M4

)
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x ∼
m2

M2 ∼ 10
−2

•

xλ(P · n) ∼ 1
Mλ(v · n) ∼ 1

∣∣∣∣∣

∣∣∣∣∣
n ∼ M/q
x ∼ q2/M2 ⇒ ∂+ ∼ M, λ ∼

M

q2
, v+ ∼ q2/M2

•
Under suh hiral ounting rules one an forget about Mv+ term. The non-loal operator

loses its exponential fator:

M̊N

PN+1
+

N̄v(0)

[
i
↔
∂+

2
−Mv+

]

hard soft

N

Nv(0) ⇒ OπN (λ) =

∫
dβq̊(β)N̄v

(
βλn

2

)
v+

2
Nv

(
−
βλn

2

)

⊙
In this region one need to sum up all orders diagrams in order.⊙
This region is of the speial importane for the pion PDF, and for the pion loud ontribution

to the nuleon PDF.
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C0
π(y,∆

2) =
3g2a
2

δ(y)

∫ 1

0
dηR(η) ln

R(η)

µ2

+6g2aM
2y ln

(
1 +

α2ȳ

y2

)
+ 6g2ay

∫ ȳ

0
dη

m2 − η∆2

y2 +
R(η)

M2 − ym2−η∆2

M2

⊙
This δ-funtion is only the �rst term for the series of δ-funtions

Cπ(y, 0) = (regular terms)+ c1δ(y)aχ ln aχ + c2δ
′(y)a2χ ln2 aχ + c3δ

′′(y)a3χ ln3 aχ + ...

= (regular terms)+ f

(
x

aχ ln aχ

)

•
The oe�ients cn are proportional to the leading logarithm

oe�ients of ππ-sattering [Kivel, Polyakov, 0707.2208℄.

•
Can be obtained via renormalization group reursive equations

[Kivel,Polyakov,Vladimirov,0809.3236℄

•
Or alternatively an be obtained via the analyti properties of

the amplitude [Koshinski,Polyakov,Vladimirov,1004.2197℄
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⊙
We have performed the detailed analysis for nuleon GPD operators in EFT

[AM,Vladimirov,1208.1714℄.

•
Reonstrution of GPDs in di�erent regions of x requires di�erent ounting rules for Mellin

moment.

•
For non-loal operators we do not need speial ounting rules.

•
At low x ∼

m2
π

M2
N

∼ 10−2
a resummation of the singular terms is required.

⊙
We have alulated GPD funtions at the leading order of hiral expansion

in the limits ξ = 0 and ξ 6= 0.

•
A parity mixing ontribution appears at a2χ hiral order. It was believed to be strongly

suppressed (∼ a4χ) from MM alulations.

•
Calulations with non-loal GPD operators explore a rih struture of hiral orretions in

x-spae.
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⊙
We have performed the detailed analysis for nuleon GPD operators in EFT

[AM,Vladimirov,1208.1714℄.

•
Reonstrution of GPDs in di�erent regions of x requires di�erent ounting rules for Mellin

moment.

•
For non-loal operators we do not need speial ounting rules.

•
At low x ∼

m2
π

M2
N

∼ 10−2
a resummation of the singular terms is required.

⊙
We have alulated GPD funtions at the leading order of hiral expansion

in the limits ξ = 0 and ξ 6= 0.

•
A parity mixing ontribution appears at a2χ hiral order. It was believed to be strongly

suppressed (∼ a4χ) from MM alulations.

•
Calulations with non-loal GPD operators explore a rih struture of hiral orretions in

x-spae.

Thank you for your attention.
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