Pion-photon transition form factor in light-cone sum rules: BaBar faces Belle based on 1202.1781[hep-ph], will appear in PRD

S. V. Mikhailov¹

in collaboration with A. P. Bakulev 2 , A. V. Pimikov 1,3 and N. G. Stefanis 4

Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia)¹ pass away on September 2012² Departamento de Física Teórica -IFIC, Universidad de Valencia³ ITP-II, Ruhr-Universität (Bochum, Germany)⁴

Experiments to $e^+e^- \rightarrow e^+e^-\pi^0$

One of the **most accurate** results on exclusive reactions is data on transition FF $F^{\gamma^*\gamma^*\pi^0}(-Q^2 = q_1^2, q_2^2)$ provided by the experiments $e^+e^- \rightarrow e^+e^-\pi^0$, $q_2^2 \approx 0$.

CELLO (1991) $Q^2 : 0.7 - 2.2 \text{ GeV}^2$, CLEO (1998) $Q^2 : 1.6 - 8.0 \text{ GeV}^2$, followed to collinear QCD.

BaBar (2009) $Q^2 : 4 - 40$ GeV² $Q^2 \cdot FF$ certainly growth with Q^2 , creating the "BaBar puzzle",

Belle (2012) $Q^2 : 4 - 40$ GeV² return to collinear QCD?

BESIII (????)
$$Q^2 \le 5$$
 GeV², promises very precise data

Outline:

- 1. Experimental background on Pion-photon transition form factor (TFF)
- 2. Pion-photon TFF in collinear QCD, its components
- 3. Light Cone Sum Rules for Transition FF, there ingredients
- 4. TFF and experiments: predictions and determination of Pion distribution amplitude in 2- and 3-harmonic analysis
- 5. Conclusions

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle

CELLO and CLEO data good agree with QCD collinear factorization, [BMS2003-06] within NLO QCD⊕twist-4⊕[end-point suppressed DA]

LC 2013, Skiathos, Greece, 20.05.2013

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle

[arXiv:1101.1142]: "If the experiment is correct, many theoretical predictions should be revised..."

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle

[NPBSub,234,2013]: "It comes out as a surprising result that the Q^2 dependence of the non-strange TFF is in strong disagreement with the π^0 TFF."

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle

[NPBSub,234,2013]: "Recent of Belle data is in conflict with BaBar." They do not confirm auxetic form factor behavior above 10 GeV².

Factorization $\gamma^*(q_1)\gamma^*(q_2) \rightarrow \pi^0(P)$ in pQCD $\int d^4x e^{-iq_1 \cdot z} \langle \pi^0(P) | T\{j_\mu(z)j_\nu(0)\} | 0 \rangle = i\epsilon_{\mu\nu\alpha\beta} q_1^\alpha q_2^\beta \cdot F^{\gamma^*\gamma^*\pi}(Q^2, q^2) \,,$ where $-q_1^2 = Q^2 > 0, \quad -q_2^2 = q^2 \ge 0$ Collinear factorization at $Q^2, q^2 \gg (hadron scale \sim m_{\rho})^2$ for the leading twist $F^{\gamma^*\gamma^*\pi}(Q^2,q^2) = T(Q^2,q^2,\mu_F^2;x) \otimes \varphi_{\pi}(x;\mu_F^2) + O(rac{1}{Q^4}),$ μ_F^2 – boundary between large scale Q^2 and hadronic one. At the parton level $\gamma^*(q_1)$

$$F^{\gamma^*\gamma^*\pi}(Q^2, q^2) = \frac{\sqrt{2}}{3} f_\pi \int_0^1 dx \frac{1}{Q^2 x + q^2 \bar{x}} \varphi_\pi(x).$$

$$\gamma^*(q_2) = \frac{\sqrt{2}}{\bar{x}P} \int_0^1 dx \frac{1}{Q^2 x + q^2 \bar{x}} \varphi_\pi(x) = \frac{\sqrt{2}}{3} f_\pi \langle x^{-1} \rangle_\pi$$

Pion distribution amplitude $\varphi_{\pi}(x, \mu^2)$

Pion DA parameterizes this matrix element:

$$\langle 0|\bar{d}(z)\gamma_{\nu}\gamma_{5}[z,0]u(0)|\pi(P)\rangle\Big|_{z^{2}=0} = if_{\pi}P_{\nu}\int_{0}^{1}dx \ e^{ix(zP)}\varphi_{\pi}(x,\mu^{2}).$$

where path-ordered exponential

$$[z,0] = \mathcal{P} \exp\left[ig\int\limits_{0}^{z}t^{a}A^{a}_{\mu}(y)dy^{\mu}
ight]$$
 ,

i.e., light-like gauge link, ensures gauge invariance.

Pion DA describes transition of physical pion into two valence quarks, separated at light cone.

Pion distribution amplitude $\varphi_{\pi}(x, \mu^2)$

Pion DA parameterizes this matrix element:

 $\langle 0|\bar{d}(z)\gamma_{\nu}\gamma_{5}[z,0]u(0)|\pi(P)\rangle\Big|_{z^{2}=0} = if_{\pi}P_{\nu}\int_{0}^{1}dx \ e^{ix(zP)}\varphi_{\pi}(x,\mu^{2}).$

Distribution amplitudes are **nonperturbative** quantities to be derived from

NLC QCD SR [M&Radyushkin 1986-91, Bakulev&M&S 1998,2001-04,13]

- instanton-vacuum approaches, e.g.
 [Polyakov et al. 1998, 2009; Dorokhov et al. 2000,07]
- Light-front quark model [Choi&Ji 2007]
- Lattice QCD, [Braun et al. 2006; Donnellan et al. 2007; Arthur et al. 2011]
- from experimental data [Schmedding&Yakovlev 2000, Khodjamirian et al. 2000,2002, BM(P)S 2003–12]

Pion distribution amplitude $\varphi_{\pi}(x, \mu^2)$

Pion DA parameterizes this matrix element:

$$\langle 0|\bar{d}(z)\gamma_{\nu}\gamma_{5}[z,0]u(0)|\pi(P)\rangle\Big|_{z^{2}=0} = if_{\pi}P_{\nu}\int_{0}^{1}dx \ e^{ix(zP)}\varphi_{\pi}(x,\mu^{2}).$$

 $\varphi_{\pi}(x,\mu^2) = 6x\bar{x}(1+a_2C_2^{3/2}(x-\bar{x})+a_4C_4^{3/2}(x-\bar{x})+a_6C_6^{3/2}(x-\bar{x})+\ldots)$

Pion DA from QCD SR with NLC

BMS DA model and bunch were obtained using Gaussian condensate model with single nonlocality parameter $\lambda_q^2 = 0.4 \,\text{GeV}^2$.

● higher Gegenbauer coefficients $a_{n \ge 6} = 0$ be equal to 0, that is supported by QCD SR.

PQCD SR with NLC provides end-poind suppressed pion DA with slope $\varphi'_{\pi}(0) \approx 6$ that depends on behavior of quark-condensate at large distances.

BMS DA model and bunch were obtained using Gaussian condensate model with single nonlocality parameter $\lambda_q^2 = 0.4 \,\text{GeV}^2$.

Iarge uncertainties at $a_6 \approx 0$ are taken into account; higher Gegenbauer coefficients $a_{n\geq 8} = 0$ that is supported by QCD SR.

NLO and NNLO amplitudes.

Collinear factorization [Efremov&Radyushkin 1978] $F^{\gamma^*\gamma^*\pi} \sim \left(T_0(Q^2, q^2; x) + a_s^1 T_1(Q^2, q^2; \mu_F^2; x) + a_s^2 T_2(Q^2, q^2; \mu_F^2; \mu_R^2; x) + \ldots\right) \otimes \varphi_{\pi}^{(2)}(x; \mu_F^2)$ $+ a_s^2 T_2(Q^2, q^2; \mu_F^2; \mu_R^2; x) + \ldots\right) \otimes \varphi_{\pi}^{(2)}(x; \mu_F^2)$ $- \delta_{tw4}^2(\mu_F^2) \cdot T_0^2(Q^2, q^2; x) \otimes \varphi_{\pi}^{(4)}(x)$ Hard amplitudes T_i — calculable in pQCD, coupling constant — $a_s = \alpha_s(\mu_R^2)/(4\pi)$.

Usual setting $\mu_{R}^{2} = \mu_{F}^{2} = \langle Q^{2} \rangle$ to simplify and minimize rad. corrections.

Twist-4 scale parameter $-\delta_{tw4}^2 = (0.19 \pm 0.02) \text{ GeV}^2$.

LO hard amplitude:

$$T_0(Q^2, q^2; x) = rac{1}{x \, Q^2 + ar{x} \, q^2}$$

$\gamma^* \gamma \rightarrow \pi$: Why Light-Cone Sum Rules?

▶ For $Q^2 \gg m_{\rho}^2$, $q^2 \ll m_{\rho}^2$ pQCD factorization valid only in leading twist and higher twists are important [Radyushkin–Ruskov, NPB (1996)].

Provide Reason: if $q^2 \rightarrow 0$ one needs to take into account interaction of real photon at long distances ~ $O(1/\sqrt{q^2})$

pQCD is OK

LCSRs should be applied

$\gamma^*\gamma \rightarrow \pi$: Light-Cone Sum Rules

LCSR effectively takes into account long-distances effects of real photon using **quark-hadron duality** in vector channel and **dispersion relation** in q^2 (Balitsky et. al.-[NPB (1989)], Khodjamirian [EJPC (1999)])

$$F_{\gamma\gamma^*\pi}(Q^2, q^2) = \int_0^{s_0} \frac{\rho^{\mathsf{PT}}(Q^2, s)}{m_\rho^2 + q^2} e^{(m_\rho^2 - s)/M^2} ds + \int_{s_0}^{\infty} \frac{\rho^{\mathsf{PT}}(Q^2, s)}{s + q^2} ds,$$

where $s_0 \simeq 1.5 \text{ GeV}^2$ – effective threshold in vector channel, M^2 – Borel parameter ($0.5 - 0.9 \text{ GeV}^2$). Limit to real-photon $q^2 \rightarrow 0$ can be done.

Spectral density was calculated in QCD:

$$\rho^{\mathsf{PT}}(Q^2,s) = \mathsf{Im}F^{\mathsf{PT}}_{\gamma^*\gamma^*\pi}(Q^2, -s - i\varepsilon) = \mathsf{Tw-2} + \mathsf{Tw-4} + \mathsf{``Tw-6''} + \dots,$$

twists contributions are given in a form of convolution with pion DA:

$$\text{Tw-2} \sim (T_{\text{LO}} + T_{\text{NLO}} + T_{\text{NNLO}_{eta_0}} + \ldots) \otimes \varphi_{\pi}^{\text{Tw2}}(x,\mu)$$

Main Ingredients of Spectral Density

- LO Spectral Density, Tw-4 term [Khodjamirian(1999)]
- NLO Spectral Density, [M&Stefanis(2009)], corr. in [Agaev et.al.(2011)]
- **NNLO**_{Bo} Spectral Density, [M&Stefanis(2009)]
- "Tw-6" contribution, [Agaev et.al.(ABOP 2011)]
- Image: NLO evolution of pion DA [Kadantseva&M&R, S.J.NP.(1986)]

Terms of Pion-Photon FF at $Q^2 = 8$ GeV²

- Result is dominated by the Twist-2 LO and NLO.
- "Twist-6" contribution is taken into account together with $NNLO_{\beta_n}$ one — they has close absolute values and opposite signs.

Red - positive terms

Parameters of LC SR

Pion-gamma transition FF data

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle [PRD86,092007(2012)]

Belle data do not confirm auxetic form factor behavior above 10 GeV² (except outlier at $Q^2 = 27.33$ GeV²).

Predicted FF agrees well with CELLO, CLEO, BaBar $_{Q^2 < 9 \text{ GeV}^2}$ (2009), BaBar $_{\eta'}^{\eta'}$ (2011), and most **Belle** (2012).

Confidential regions in 2D (a_2, a_4)

In vertexes of a triangle – χ^2/ndf , all estimates at $\mu_{SY} = 2.4$ GeV.
On sides of triangle: discrepancy in terms of stand. deviation (1 $\sigma \approx 68\%$)

Confidential regions in 2D (a_2, a_4)

BMS DA (X & green bunch) from QCD SR with nonlocal condensates: $\leq 1\sigma$. **Asymptotic DA, CZ DA:** $> 6\sigma$.

Vertic. lines – lattice constraints: wider – Braun et al.[2006], thinner – [2011].

NLC SR Results vs 3D Constraints (a_2, a_4, a_6)

3D 1σ -error ellipsoid for (a_2, a_4, a_6) at $\mu_{SY} = 2.4$ GeV scale

with theoretical $\mp \Delta \delta_{tw4}^2$ -error shown by green(–) and red(+) length.

NLC SR Results vs 3D Constraints (a_2, a_4, a_6)

3D 1σ -error ellipsoid for (a_2, a_4, a_6) at $\mu_{SY} = 2.4$ GeV scale

with theoretical $\pm \Delta \delta_{tw4}^2$ -error shown by green(–) and red(+) length.

NLC SR Results vs 3D Constraints (a_2, a_4, a_6)

3D 1σ -error ellipsoid for (a_2, a_4, a_6) at $\mu_{SY} = 2.4$ GeV scale

with theoretical $\pm \Delta \delta_{tw4}^2$ -error shown by green(–) and red(+) length.

2D cut of 3D confidence regions (a_2, a_4, a_6)

LC 2013, Skiathos, Greece, 20.05.2013

Conclusions

- 1. Performed **2D** and **3D** analysis of **CELLO**, **CLEO**, **BaBar**, **Belle** data using LCSRs at NLO and Tw-4 term and taking [NNLO_{β} + "twist6"] as uncertainties.
- 2. We showed that the data from CELLO, CLEO, BaBar, and Belle at $Q^2 = 1 9 \text{ GeV}^2$ in 2D analysis favor a pion DA with endpoint suppression, like BMS bunch.
- 3. Beyond $Q^2 = 9 \text{ GeV}^2$, the best fit to data including BaBar on $F_{\gamma^*\gamma \to \pi}$ requires a sizeable coefficient a_6 .
- 4. 2D, 3D analysis of CLEO-CELLO-Belle data agrees with BMS bunch and does not agree with CLEO-CELLO-BaBar one.
- 5. **3D** analysis of CLEO-CELLO-**Belle** certainly **does not agree** with CLEO-CELLO-**BaBar** one.
- 6. The promising **fine accuracy** of future **BESSIII** experiment can clarify choice between **BaBar** and **Belle** results.

Store

Pion TFF Data and Models

Most data points either inside green "Belle" strip (scaling) or within red "BaBar" strip (auxesis).

- BaBar η, η' data are within green strip
- Blue strip mostly theoretical.

Alternatives for Pion-Gamma FF Analysis

Alternative: To consider data as forming **two independent data strips** (left) or **one single data strip** (right) **[1205.3770]**

We suggest to explore the first **Alternative**:

To consider all data as forming

two independent data strips,

namely, CELLO&CLEO&Belle and CELLO&CLEO&BaBar

NLC SR Results vs 3D Constraints

3D 1σ -error ellipsoid for (a_2, a_4, a_6) at $\mu_{SY} = 2.4$ GeV scale with theoretical $\mp \Delta \delta_{tw4}^2$ -error shown by green(-) and red(+) length.

NLC SR Results vs 3D Constraints

3D 1σ -error ellipsoid for (a_2, a_4, a_6) at $\mu_{SY} = 2.4$ GeV scale with theoretical $\pm \Delta \delta_{tw4}^2$ -error shown by green(-) and red(+) length.

NLC SR Results vs 3D Constraints

3D 1σ -error ellipsoid for (a_2, a_4, a_6) at $\mu_{SY} = 2.4$ GeV scale with theoretical $\pm \Delta \delta_{tw4}^2$ -error shown by green(-) and red(+) length.

Data fit of pion DA vs NLC SR profiles

average incline:

 $17.2 \pm 8.5;$

 $\textbf{25.6} \pm \textbf{5.25}$

- The main difference a sharper behaviour of BaBar near endpoints.
- CELLO, CLEO, Belle data agrees with BMS bunch based on NLC QCD SR.
- **BaBar** data above 10 GeV² does not support BMS bunch.