Systematic regularization (and renormalization) scheme in non-perturbative calculations within covariant light-front dynamics

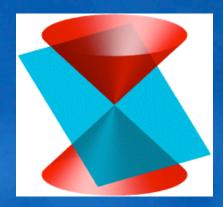
> Jean-François Mathiot Laboratoire de Physique Corpusculaire Clermont-Ferrand, France

in collaboration with V. Karmanov, A. Smirnov P. Grangé, E. Werner

Covariant light-front dynamics
 Non-perturbative calculations
 Renormalization conditions
 Systematic regularization scheme
 Conclusions

Covariant light-front dynamics

Control of rotational invariance



> arbitrary position $\,\omega$ of the light-front $au=\omega.x\,$ with $\,\omega^2=0\,$

control of rotational invariance at each order of perturbation theory or at each order of any approximative scheme (ex. Fock space truncation)

> Either calculated physical observables are rotational invariant, or we can extract the physical, ω -independent contribution

ex. renormalization condition

V. Karmanov 1976, J. Carbonell et al. Phys. Rep. 300 (1998) 215

Sources of violation of rotational invariance

Two very different origins in an ab-initio calculation

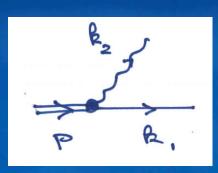
> Regularization scheme

- ► ex. cut-off in transverse momentum space
- use of rotational invariant regularization scheme

Truncation of the Fock space (or any other approximative scheme which does not preserve rotational invariance)

> use of appropriate counterterms to restore rotational invariance if needed

□ Off-shell energy/momentum



$$p^{2} = M^{2} \qquad k_{1}^{2} = m^{2} \qquad k_{2}^{2} = \mu^{2}$$

$$p = k_{1} + k_{2} - \omega\tau$$

$$\tau = \frac{s - M^{2}}{m} \qquad \text{with} \qquad s = (k_{1} + k_{2})$$

 $\mathbf{2}$

T fixed from the kinematics of the two-body state
 systematic calculations of energy/momentum conservation

 $2 \omega.p$

Non-perturbative calculations

Poincaré group equations

$$P^2\phi(p) = M^2\phi(p)$$

 $\phi(p)$: state vector

Fock space expansion

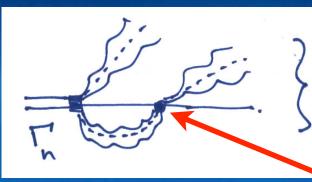
$$\Phi = \sum_{i} \phi_i(k_1 \dots k_i)$$

Truncation of the Fock space (to order N) for obvious technical reasons

System of coupled equations which sums to all orders a given class of irreducible contributions with up to N particles in the intermediate states \Box Non-perturbative quantity ϕ_i or more conveniently Γ_i > $\phi_i = \frac{\Gamma_i}{s_i - M^2}$ Γ_i : vertex function $s_i = (k_1 + \ldots k_i)^2$ \gg ex. $\Gamma_2(x,k_\perp^2)$ with $\Gamma_2(x,k_\perp^2)
ightarrow cte$ for $k_\perp^2
ightarrow \infty$ \Box Covariant decomposition of Γ_i > $\Gamma_2 = a_2 + b_2 \frac{M \ \psi}{\omega m}$ for the Yukawa model $\Gamma_3 = a_2 + b_2 \, \frac{M \, \psi}{\omega \cdot p} + C_{ps} \left(c_2 + d_2 \, \frac{M \, \psi}{\omega \cdot p} \right) \gamma_5$ $C_{ps} = i \frac{1}{M^2 \omega \cdot p} \epsilon_{\mu\nu\rho\sigma} k_2^{\mu} k_3^{\nu} p^{\sigma} \omega^{\rho}$ > in general $\ \ \Gamma_n = \sum a_i \ O_i$ vertex operators

General contribution

>> general covariant decomposition



off-shell momentum k

 H_{int}

simplest non-perturbative contribution in the Yukawa model

$$\begin{split} A(k^2) + B(k^2) \; \frac{\not{k}}{M} + C(k^2) \frac{M \; \psi}{\omega \cdot k} + D(k^2) \frac{\psi \; \not{k} - \not{k} \; \psi}{\omega \cdot k} \\ A(k^2) \sim \int dx \; dk_{\perp}^2 \frac{a_2(x, k_{\perp}^2)}{k_{\perp}^2 + M^2 x + \mu^2(1-x) - k^2 x(1-x)} \end{split}$$

up to a regularization scheme

Renormalization scheme

Physical mass

physical mass

 $P^2\phi(p) = M^2\phi(p)$

> Solution of the homogeneous coupled equations defines the appropriate (non-perturbative) mass counterterm

Physical coupling constant

> using the standard procedure

 $\Gamma_2(s_2 = M^2) = g\sqrt{Z_f}$ (in the quenched approximation)

physical coupling constant

> rem. $\Gamma_2(s_2 = M^2)$ should be independent of x (c) V. Karmanov)

 $> \Gamma_2(s_2 = M^2)$ should be also independent of the position of the light front

necessary condition to define the PHYSICAL coupling constant g

> one should extract (or remove with an appropriate counterterm) the ω - independent contribution to $\Gamma_2(s_2=M^2)$

> this is only possible in the covariant formulation of light-front dynamics (unless the calculation is exact!)

$$\Gamma_2(s_2 - M^2) = a_2(s_2 - M^2) + b_2(s_2 - M^2) \frac{M \,\psi}{\omega \cdot p}$$

$$g\sqrt{Z_f}$$

> defines the minimal number of counterterms to be introduced

Systematic regularization scheme

The key role of non-perturbative regularization scheme

First approach with Pauli-Villars boson and fermion fields

- no contact interactions
- infinite mass limit for both PV fermion and boson
- delicate numerical cancellations

> need for a more systematic approach which preserves rotational invariance and which does not involve infinitely large energy/ momentum scales

> Taylor-Lagrange regularization scheme

Reminder of the Taylor-Lagrange regularization scheme

P. Grangé, E. Werner (2006)

Fields defined as distributions acting on (super-regular) test functions of space-time extension a

$$\varphi_a(x) = \int \frac{d^3p}{(2\pi)^3} \frac{f_a(\epsilon_p^2, \mathbf{p}^2)}{2\epsilon_p} \left[a_p^{\dagger} e^{i\mathbf{p}.\mathbf{x}} + a_p e^{-i\mathbf{p}.\mathbf{x}} \right]$$

> Use of the Lagrange formula (in one dimension X for a simple logarithmic divergence)

$$f_a(\lambda X) = -\int_{\lambda}^{\infty} dt \; \partial_t \; f_a(Xt) \qquad \lambda$$
 : intrinsic scale

> Continuum limit $a \to 0$ or in momentum space cut-off $H \to \infty$ ultra-soft cut-off

$$\begin{split} H &\to H(X) \equiv \eta^2 \ X^{\alpha} \ + \ cte & \eta^2 > 1 & 0 \leq \alpha < 1 \\ H &\to \infty \quad \text{for} \quad \alpha \to 1 \end{split}$$

> Arbitrary scale η plays a very similar rôle to the unit of mass μ in dimensional regularization: completely arbitrary and physical observables should not depend on it

 \gg for an amplitude of the form $~~\mathcal{A}$

and a singular operator

$$\mathcal{A}_{a} = \int dX \ T(X) \ f_{a}(X)$$
$$T(X) = \frac{1}{X + \lambda}$$

> integration by part and change of variable Y

$$Y = \frac{X}{\lambda}t$$

$$\mathcal{A} = \int dY \int_{\lambda}^{\eta^2} \partial_t \left[\frac{1}{t} T\left(\frac{Y}{t}\right) \right] f(Y)$$

in the continuum limit a
ightarrow 0

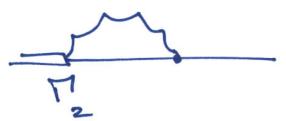
$$\mathcal{A} = \int dY \ f(Y) \left[\frac{1}{Y + \eta^2} - \frac{1}{Y + \lambda} \right]$$

Application to non-perturbative calculations in light-front dynamics

very simple implementation of the Taylor-Lagrange regularization scheme in covariant light-front dynamics

$$\Gamma_n(k_1 \dots k_n) \to \overline{\Gamma}_n(k_1 \dots k_n) = \Gamma_n(k_1 \dots k_n) f(k_1^2) \dots (k_n^2)$$

 \gg the properties of the test functions are now embedded in $\ \Gamma_n$ and in its covariant components



> simplest non-perturbative contribution in the Yukawa model

 $A(k^2) \sim \int dx \ dk_{\perp}^2 \frac{a_2(x, k_{\perp}^2) f_a \left[\left(\frac{k_{\perp}^2}{2xM\Lambda} \right)^2 \right]}{k_{\perp}^2 + M^2 x + \mu^2 (1-x) - k^2 x (1-x)}$

 Λ : arbitrary momentum scale

 \overline{a}_2

> with the identification $X = {k_{\perp}^2 \over 2 x M \Lambda}$

> and the intrinsic scale

$$\lambda(x) = \frac{M^2 x + \mu^2 (1 - x) - k^2 x (1 - x)}{M^2}$$

➢ one gets

$$A(k^2) \sim \int dx \ dk_{\perp}^2 \left[\frac{1}{k_{\perp}^2 + M^2} \frac{1}{\eta^2 \ \lambda(x)} - \frac{1}{k_{\perp}^2 + M^2 \ \lambda(x)^2} \right] a_2(x, k_{\perp}^2)$$

> with $\ a_2=1$ one recovers the perturbative result in terms of the arbitrary scale η^2

$$A(k^2) \sim \int dx \left(Log[\eta^2] - Log[\lambda(x)] \right)$$

The general framework is now settled

First non-perturbative calculations in the Yukawa model

> show that it is indeed applicable and successfull in the Yukawa model

> extension to N > 3 to be done (see also V. Karmanov)

Main difficulty : application to gauge theories

> expansion of the vertex functions in covariant components may become rather tedious

> is it absolutely necessary? (see also V. Karmanov and J. Vary)