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Covariant light-front dynamics

d Control of rotational invariance

> arbitrary position w of the light-front
T =w.T with w?=0
> control of rotational invariance at each order of

perturbation theory or at each order of any approximative
scheme (ex. Fock space truncation)

> Either calculated physical observables are rotational invariant, or we
can extract the physical, w -independent contribution

ex. renormalization condition



d Sources of violation of rotational invariance

Two very different origins in an ab-initio calculation

> Regularization scheme
w ex. cut-off in transverse momentum space

w use of rotational invariant regularization scheme

> Truncation of the Fock space (or any other approximative scheme
which does not preserve rotational invariance)

w use of appropriate counterterms to restore rotational
invariance if needed



d Off-shell energy/momentum

p’=M?  ki=m’ kj=p’

D= R R OT

A2
i 05 s with 5= (ki + ko)?
2 w.p

> T fixed from the kinematics of the two-body state

> systematic calculations of energy/momentum
conservation



Non-perturbative calculations

d Poincare group equations

P2¢(p) = M?¢(p) ¢(p) : state vector

4 Fock space expansion

@:Z@(kl...ki)

> Truncation of the Fock space (to order N) for obvious technical
reasons

> System of coupled equations which sums to all orders a given class
of irreducible contributions with up to N particles in the intermediate
states



3 Non-perturbative quantity ¢, or more conveniently [,

L';
= p—— I'; :vertex function
SR (kl —I—kZ)Q

> ex. I'o(x, k%) with To(z,k3) — cte for k3 — oo

d Covariant decompositionof [°;

M

> ['s =a9s + bo a for the Yukawa model
W-p
M M

I's = as + b2 sé—i_cps <Cz+d2 gb)%
w-p Ww-p
g 1 1% o
o — ZMQw-pEW'OU kowh; p o

> ingeneral [, = Z a; O

p vertex operators



d General contribution

off-shell

> general covariant decomposition momentum k

H’L’nt
> simplest non-perturbative contribution in the
v Yukawa model
M & k= ko
AR + B2 L 1 o) ML 4 D2
(k) + B(K) = + C(k) —F + D(¥*) ——

i
A(K?) ~ | do di ot
(&%) /x T k2 4+ M2z + p2(1 — z) — k22(1 — o)

up to a regularization scheme



Renormalization scheme

Q Physical mass physical mass

2 2
P ¢(p) = M“¢(p)
> Solution of the homogeneous coupled equations defines the
appropriate (non-perturbative) mass counterterm
d Physical coupling constant
> using the standard procedure physical coupling constant

IR (s> = M2) = g\/Z_f (in the quenched approximation)

> rem. ['5(s9 = MQ) should be independent of x

N (82 — MZ) should be also independent of the position of the
light front

> necessary condition to define the PHYSICAL coupling constant g



> one should extract (or remove with an appropriate counterterm) the
W - independent contribution to '5(so = M2)

> this is only possible in the covariant formulation of light-front
dynamics (unless the calculation is exact!)

Ml

FQ(SQ = M2) = a2(82 -~ MQ) -+ b2(32 N M2) oD

g\ Z¢

> defines the minimal number of counterterms to be introduced



Systematic regularization
scheme

d The key role of non-perturbative regularization scheme

> first approach with Pauli-Villars boson and fermion fields
w no contact interactions
w infinite mass limit for both PV fermion and boson

w delicate numerical cancellations

> need for a more systematic approach which preserves rotational
invariance and which does not involve infinitely large energy/
momentum scales

> Taylor-Lagrange regularization scheme



d Reminder of the Taylor-Lagrange regularization scheme

> Fields defined as distributions acting on (super-regular) test
functions of space-time extension a

d3p fa(ez%a p2) [

pa(T) = / 27 2,

> Use of the Lagrange formula (in one dimension X for a simple
logarithmic divergence)

T _ip.X —ip.x}
ape -+ ape€

R X) = —/ dt 0; fo(Xt) \ :intrinsic scale
A

> Continuum limit @ — O or in momentum space cut-off H — o0
ultra-soft cut-off

H — H(X) =* + cte i o |

H— oo for « — 1



> Arbitrary scale 7) plays a very similar réle to the unit of mass (4 in
dimensional regularization: completely arbitrary and physical observables
should not depend on it

> for an amplitude of the form A, = / doc- T f, (0

1
and a singular operator T'(X) =
D LT
> integration by part and change of variable Y — —¢{

o for [ i )] o

in the continuum limit a — 0

1
o /de [YJrn Y+)\]




d Application to non-perturbative calculations in light-front
dynamics

> very simple implementation of the Taylor-Lagrange regularization
scheme in covariant light-front dynamics

Lrlky ... br) = Lok ikt =SNS5 S )

> the properties of the test functions are now embedded in [',, and in its
covariant components

> simplest non-perturbative contribution
in the Yukawa model

N i N

Y1 P

2 ao

e 5
‘ > CLQ(CCaki)fa [(2:]\7/\) ]
A(k?) ~ [ dx dk
(F) / ; k2 4+ M2z + p2(1 — z) —k2z(1 = 7)

A : arbitrary momentum scale



> with the identification X =

M2z + p?(1 — z) — k%z(1 — )
Ve

> and the intrinsic scale A(QJ) 0

> one gets

1 1
2\ % 2 i 1.2
) /dw Ll [ki +MZ 2 Nz) K2 + M2 A\(z)2 P ),

> with a9 = 1 one recovers the perturbative result in terms of
the arbitrary scale 772

A(K?) ~ / dz (Logli?] — LoglA(x)))



Conclusions

d The general framework is now settled

A First non-perturbative calculations in the Yukawa model

> show that it is indeed applicable and successfull in the Yukawa model

> extension to N > 3 to be done

d Main difficulty : application to gauge theories

> expansion of the vertex functions in covariant components may become
rather tedious

> is it absolutely necessary?






Construction of the
physical fields

 Definition of the physical fields ex.: scalar field ¢(z)
> Fields should be considered as distributions

> Functional & with respect to a test function p

D(p) = / d*y ¢(y) p(y)

> Physical field gﬁ(x) by means of the translation operator 1,

p(x) = T®(p) = /d4y o(y) p(r —y)

4 Properties of the test functions

> belongs to the Schwartz space S of fast decrease functions

w decrease at infinity faster than any power of x, as well as
all its derivatives

w property conserved by Fourier transform



> in momentum space
d4p ip.(x—y) PR

> decomposition of the physical field

d3p f(627p2) ID.X —ID.X
90(55):/(27T)3 5619 [aj?e G, c e }

d Physical interpretation of the test function

> (p(x) : average over the initial field with a weight p

w if 0 has a space-time extension a: average over a volume a*
Pa(T) — o ()
> to recover a “local” field theory, one should investigate the limit a — 0

a
> scale invariance inherent to this limit sincealso — — () with 17 > 1
U

so that a priori  Oq (33) — Pp (x) and ©gq (x) — Pp (x)



> for the Fourier transform of O,

a— 0

faﬁanCte

> it is sufficient to consider [, ~ 1

w Poincaré group equations invariant without
renormalization of the fields

> calculation of any amplitude

Ay = [ dX T(X) (X0
with a one dimensional variable X for simplicity

k2
ex.: T St T A arbitrary scale

A2

T(X) : singular distribution : A, divergent if no test functions



d Explicit construction of the test function

> we shall first consider a sequence of test functions f,,
with compact support

fa(H) =0 , with H = X4,

so that
e / 4X T(X) fa(X)

>> fa chosen as a partition of unity (PU)
AR independent of the particular choice of a PU

> construction of a PU
N-1
Z u(x — jh)
g=A0

> inagivenlimit o« — 1~ fo(z) —

> in this limit, one should recover the original test function

lime¥tl = .

a—1—

w This limit should be independent of X,



> one needs a particular construction of the test function [,

w Ultra-soft cut-off (“dynamical” cut-off)
H— H(X)=B X" + cte -
Rem.: not at all unique example

= upper limit of Ja defined by X H(Xma:c)

KXnaz = (772) Leg

L e — Fo'e)
a—1—

0.02 0.04 0.06 0.08 0.1%

> the Taylor-Lagrange regularization scheme



Construction of (finite)
extended bare amplitudes

1 Extension in the ultra-violet domain

> Apply the Lagrange formula for the Taylor remainder of f, = Ry [

X i
FOXEEE—— | —(\—t) O f (X
ekl | 1
1
A\ intrinsi ] o LX) — e
intrinsic scale ex ( ) X0

> one should thus calculate 4, = / dX T(X) fo(X) o i A
0

> by integration by part after use of the Lagrange formula

Ao = [TAX T2 (X) ful)



In the limit o — 1, Tj(X) i T;(X) with

"
7()\ — )"

e k
17 () = S0k XT()) [

> because of the derivatives in Tn (X) , the amplitude is now completely
finite

Aa%An:/ dXT;(X)
0]

= depends on the arbitrary scale 772

1 - 772
iR ( X ) S— T aEe) — [.n| ==
-0 T =55 T =Ia(%)
1 Extension in the infra-red domain
> Typical distribution 7T'<(X) = b with no intrinsic scale

> extended distribution

) _1\k
T<(X) 2 ( kl') 3§+1 ILn(nX) = Pf [X]Ll]



