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Covariant light-front dynamics

❑  Control of rotational invariance

  arbitrary position       of the light-front   
       with

  control of rotational invariance at each order of 
perturbation theory or at each order of any approximative 
scheme (ex. Fock space truncation)

  Either calculated physical observables are rotational invariant, or we 
can extract the physical,     -independent contribution

ex. renormalization condition

V. Karmanov 1976, J. Carbonell et al. Phys. Rep. 300 (1998) 215

τ = ω.x ω2 = 0
ω

ω



❑  Sources of violation of rotational invariance

Two very different origins in an ab-initio calculation

  Regularization scheme
➥ ex. cut-off in transverse momentum space 
➥ use of rotational invariant regularization scheme

  Truncation of the Fock space (or any other approximative scheme 
which does not preserve rotational invariance)

➥ use of appropriate counterterms to restore rotational 
invariance if needed



❑  Off-shell energy/momentum

      fixed from the kinematics of the two-body state

  systematic calculations of energy/momentum 
conservation 

p = k1 + k2 − ωτ

τ =
s−M2

2 ω.p
s = (k1 + k2)2

p2 = M2

with

k2
1 = m2 k2

2 = µ2

τ



Non-perturbative calculations

❑  Poincaré group equations  

❑  Fock space expansion 

  Truncation of the Fock space (to order N) for obvious technical 
reasons

 System of coupled equations which sums to all orders a given class 
of irreducible contributions with up to N particles in the intermediate 
states

P 2φ(p) = M2φ(p)

Φ =
�

i

φi(k1 . . . ki)

φ(p) : state vector



❑  Non-perturbative quantity         or more conveniently      

                                                            : vertex function

  ex.                         with                                         for

❑  Covariant decomposition of  

                                                         for the Yukawa model

 in general 
vertex operators

φi

φi =
Γi

si −M2

si = (k1 + . . . ki)2

Γi

Γ2(x, k2
⊥) Γ2(x, k2

⊥)→ cte k2
⊥ →∞

Γi

Γ2 = a2 + b2
M �ω
ω·p

Γ3 = a2 + b2
M �ω
ω·p + Cps

�
c2 + d2

M �ω
ω·p

�
γ5

Cps = i
1

M2ω·p�µνρσ kµ
2 kν

3 pσ ωρ

Γi

Γn =
�

i

ai Oi



❑  General contribution     

  general covariant decomposition

"

"    simplest non-perturbative contribution in the 
 Yukawa model                                                                        

up to a regularization scheme

off-shell 
momentum k

A(k2) + B(k2)
�k
M

+ C(k2)
M �ω
ω·k + D(k2)

�ω �k− �k �ω
ω·k

A(k2) ∼
�

dx dk2
⊥

a2(x, k2
⊥)

k2
⊥ + M2x + µ2(1− x)− k2x(1− x)

Hint



Renormalization scheme
❑  Physical mass

  Solution of the homogeneous coupled equations defines the 
appropriate  (non-perturbative) mass counterterm

❑  Physical coupling constant
  using the standard procedure

   (in the quenched approximation)

  rem.                                should be independent of x (cf V. Karmanov)

                                should be also independent of the position of the 
light front

  necessary condition to define the PHYSICAL coupling constant g

P 2φ(p) = M2φ(p)

physical mass

Γ2(s2 = M2) = g
�

Zf

Γ2(s2 = M2)

Γ2(s2 = M2)

physical coupling constant



  one should extract (or remove with an appropriate counterterm) the            
 - independent contribution to

  this is only possible in the covariant formulation of light-front 
dynamics (unless the calculation is exact!)

   

  defines the minimal number of counterterms to be introduced

ω Γ2(s2 = M2)

Γ2(s2 −M2) = a2(s2 −M2) + b2(s2 −M2)
M �ω
ω·p

g
�

Zf



Systematic regularization 
scheme

❑  The key role of non-perturbative regularization scheme
  first approach with Pauli-Villars boson and fermion  fields

➥ no contact interactions

➥ infinite mass limit for both PV fermion and boson

➥ delicate numerical cancellations

  need for a more systematic approach which preserves rotational 
invariance and which does not involve infinitely large energy/
momentum scales

  Taylor-Lagrange regularization scheme



❑  Reminder of the Taylor-Lagrange regularization scheme

  Fields defined as distributions acting on (super-regular) test 
functions of space-time extension a

 Use of the Lagrange formula (in one dimension X for a simple 
logarithmic divergence)

 Continuum limit                  or in momentum space cut-off 
ultra-soft cut-off

H → H(X) ≡ η
2

X
α + cte η2 > 1

ϕa(x) =
�

d3p

(2π)3
fa(�2p,p2)

2�p

�
a†pe

ip.x + ape
−ip.x

�

a→ 0 H →∞

fa(λX) = −
� ∞

λ
dt ∂t fa(Xt) λ : intrinsic scale

0 ≤ α < 1

P. Grangé, E. Werner (2006)

H →∞ α→ 1for



 Arbitrary scale        plays a very similar rôle to the unit of mass       in 
dimensional regularization: completely arbitrary and physical observables 
should not depend on it

 for an amplitude of the form 

and a singular operator 

 integration by part  and change of variable

in the continuum limit  

η µ

T (X) =
1

X + λ

Aa =
�

dX T (X) fa(X)

a→ 0

A =
�

dY f(Y )
�

1
Y + η2

− 1
Y + λ

�

A =
�

dY

� η2

λ
∂t

�
1
t

T

�
Y

t

��
f(Y )

Y =
X

λ
t



❑  Application to non-perturbative calculations in light-front 
dynamics

 very simple implementation of the Taylor-Lagrange regularization 
scheme in covariant light-front dynamics"

 the properties of the test functions are now embedded in         and in its 
covariant components

"  simplest non-perturbative contribution 
  in the Yukawa model

Γn(k1 . . . kn)→ Γ̄n(k1 . . . kn) = Γn(k1 . . . kn)f(k2
1) . . . (k2

n)

ā2

A(k2) ∼
�

dx dk2
⊥

a2(x, k2
⊥)fa

��
k2
⊥

2xMΛ

�2
�

k2
⊥ + M2x + µ2(1− x)− k2x(1− x)

Γ̄n

Λ : arbitrary momentum scale



 with the identification 

 and the intrinsic scale

 one gets

 with                  one recovers the perturbative result in terms of 
the arbitrary scale 

a2 = 1

X =
k2
⊥

2xMΛ

λ(x) =
M2x + µ2(1− x)− k2x(1− x)

M2

A(k2) ∼
�

dx dk2
⊥

�
1

k2
⊥ + M2 η2 λ(x)

− 1
k2
⊥ + M2 λ(x)2

�
a2(x, k2

⊥)

η2

A(k2) ∼
�

dx
�
Log[η2]− Log[λ(x)]

�



Conclusions

❑  The general framework is now settled 

❑  First non-perturbative calculations in the Yukawa model
 show that it is indeed applicable and successfull in the Yukawa model

 extension to N > 3 to be done (see also V. Karmanov)

❑  Main difficulty : application to gauge theories
 expansion of the vertex functions in covariant components may become 

rather tedious

 is it absolutely necessary? (see also V. Karmanov and J. Vary)





Construction of the 
physical fields

❑  Definition of the physical fields 

  Fields should be considered as distributions 

  Functional       with respect to a test function

  Physical field             by means of the translation operator 

❑  Properties of the test functions 

  belongs to the Schwartz space       of fast decrease functions 

➥ decrease at infinity faster than any power of x, as well as 
all its derivatives

➥ property conserved by Fourier transform

N. Bogoliubov, 1950’s

φ(x)

Φ ρ

Φ(ρ) =
�

d4y φ(y) ρ(y)

ϕ(x) ≡ TxΦ(ρ) =
�

d4y φ(y) ρ(x− y)

ex.: scalar field

ϕ(x) Tx

S



  in momentum space

  decomposition of the physical field

ϕ(x) =
�

d3p

(2π)3
f(�2p,p2)

2�p

�
a†pe

ip.x + ape
−ip.x

�

ρ(x− y) =
�

d4p

(2π)4
eip.(x−y)f(p2

0,p
2)

❑  Physical interpretation of the test function
               : average  over the initial field with a weight 

➥ if      has a space-time extension  a : average over a volume a4  

ϕ(x) ρ

ρ

ρa(x)→ ϕa(x)

  to recover a “local” field theory, one should investigate the limit

  scale invariance inherent to this limit since also                   with

so that a priori                                      and

a→ 0
a

η
→ 0 η > 1

ρa(x)→ ρη(x) ϕa(x)→ ϕη(x)



  for the Fourier transform of   

  it is sufficient to consider 

➥ Poincaré group equations invariant without 
renormalization of the fields

  calculation of any amplitude

with a one dimensional variable X for simplicity

ex.:                          ,             arbitrary scale

             
 :  singular distribution :           divergent if no test functions                      

     

a→ 0

ρa

fη ∼ 1

X =
k2

E

Λ2
Λ

T (X)

fa → fη ∼ cte

Aη =
�

dX T (X) fη(X)

Aη



❑  Explicit construction of the test function
 we shall first consider a sequence of test functions              
     with compact support

     ,  with
so that

         chosen as a partition of unity  (PU)
➥            independent of the particular choice of a PU

  construction of a PU

f(x) =
N−1∑

j=0

u(x − jh)

fα

H ≡ Xmax

Aα =
�

dX T (X) fα(X)

fα

Aa

fα(H) = 0

  in a given limit                             

  in this limit, one should recover the original test function

 

➥ This limit should be independent of    

α→ 1− fα(x)→ 1

lim
α→1−

Aα ≡ Aη

Xmax



  one needs a particular construction of the test function                 

➥ Ultra-soft cut-off  (“dynamical” cut-off)    

Rem.: not at all unique example    

➥ upper limit of         defined by

                     

  the Taylor-Lagrange regularization scheme  

     

fα

H → H(X) ≡ η
2

X
α + cte η2 > 1

Xmax = H(Xmax)

Xmax = (η2)
1

1−α

lim
α→1−

Xmax =∞

fα



Construction of (finite) 
extended bare amplitudes

❑  Extension in the ultra-violet domain

  Apply the Lagrange formula for the Taylor remainder of 

    intrinsic scale    ex.:

 one should thus calculate 

 by integration by part after use of the Lagrange formula

fα = Rk fα

λ T (X) =
1

X + λ

f(λX) = − X

λkk!

� ∞

λ

dt

t
(λ− t)k∂k+1

X

�
Xkf(Xt)

�

Aα =
� ∞

0
dX T (X) fα(X)

Aα =
� ∞

0
dX T̃>

α (X) fα(X)

α→ 1−



 In the limit                         ,                                            with      

  because of the derivatives in                , the amplitude is now completely 
finite             

➥ depends on the arbitrary scale 

➥ if  

❑  Extension in the infra-red domain
  Typical distribution                                             with no intrinsic scale

  extended distribution

   

T̃>
α (X)→ T̃>

η (X)

T>
η (X) =

(−X)k

λkk!
∂k+1

X [XT (X)]
� η2

λ

dt

t
(λ− t)k

α→ 1−

T̃η(X)

Aα → Aη =
� ∞

0
dX T̃>

η (X)

η2

T (X) =
1

X + λ
T̃>

η (X) = Ln
�

η2

λ

�

T<(X) =
1

Xk+1

T̃<(X) =
(−1)k

k!
∂k+1

X Ln(η̃X) ≡ Pf

�
1

Xk+1

�


