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Covariant light-front dynamics

❑  Control of rotational invariance

  arbitrary position       of the light-front   
       with

  control of rotational invariance at each order of 
perturbation theory or at each order of any approximative 
scheme (ex. Fock space truncation)

  Either calculated physical observables are rotational invariant, or we 
can extract the physical,     -independent contribution

ex. renormalization condition

V. Karmanov 1976, J. Carbonell et al. Phys. Rep. 300 (1998) 215

τ = ω.x ω2 = 0
ω

ω



❑  Sources of violation of rotational invariance

Two very different origins in an ab-initio calculation

  Regularization scheme
➥ ex. cut-off in transverse momentum space 
➥ use of rotational invariant regularization scheme

  Truncation of the Fock space (or any other approximative scheme 
which does not preserve rotational invariance)

➥ use of appropriate counterterms to restore rotational 
invariance if needed



❑  Off-shell energy/momentum

      fixed from the kinematics of the two-body state

  systematic calculations of energy/momentum 
conservation 

p = k1 + k2 − ωτ

τ =
s−M2

2 ω.p
s = (k1 + k2)2

p2 = M2

with

k2
1 = m2 k2

2 = µ2

τ



Non-perturbative calculations

❑  Poincaré group equations  

❑  Fock space expansion 

  Truncation of the Fock space (to order N) for obvious technical 
reasons

 System of coupled equations which sums to all orders a given class 
of irreducible contributions with up to N particles in the intermediate 
states

P 2φ(p) = M2φ(p)

Φ =
�

i

φi(k1 . . . ki)

φ(p) : state vector



❑  Non-perturbative quantity         or more conveniently      

                                                            : vertex function

  ex.                         with                                         for

❑  Covariant decomposition of  

                                                         for the Yukawa model

 in general 
vertex operators

φi

φi =
Γi

si −M2

si = (k1 + . . . ki)2

Γi

Γ2(x, k2
⊥) Γ2(x, k2

⊥)→ cte k2
⊥ →∞

Γi

Γ2 = a2 + b2
M �ω
ω·p

Γ3 = a2 + b2
M �ω
ω·p + Cps

�
c2 + d2

M �ω
ω·p

�
γ5

Cps = i
1

M2ω·p�µνρσ kµ
2 kν

3 pσ ωρ

Γi

Γn =
�

i

ai Oi



❑  General contribution     

  general covariant decomposition

"

"    simplest non-perturbative contribution in the 
 Yukawa model                                                                        

up to a regularization scheme

off-shell 
momentum k

A(k2) + B(k2)
�k
M

+ C(k2)
M �ω
ω·k + D(k2)

�ω �k− �k �ω
ω·k

A(k2) ∼
�

dx dk2
⊥

a2(x, k2
⊥)

k2
⊥ + M2x + µ2(1− x)− k2x(1− x)

Hint



Renormalization scheme
❑  Physical mass

  Solution of the homogeneous coupled equations defines the 
appropriate  (non-perturbative) mass counterterm

❑  Physical coupling constant
  using the standard procedure

   (in the quenched approximation)

  rem.                                should be independent of x (cf V. Karmanov)

                                should be also independent of the position of the 
light front

  necessary condition to define the PHYSICAL coupling constant g

P 2φ(p) = M2φ(p)

physical mass

Γ2(s2 = M2) = g
�

Zf

Γ2(s2 = M2)

Γ2(s2 = M2)

physical coupling constant



  one should extract (or remove with an appropriate counterterm) the            
 - independent contribution to

  this is only possible in the covariant formulation of light-front 
dynamics (unless the calculation is exact!)

   

  defines the minimal number of counterterms to be introduced

ω Γ2(s2 = M2)

Γ2(s2 −M2) = a2(s2 −M2) + b2(s2 −M2)
M �ω
ω·p

g
�

Zf



Systematic regularization 
scheme

❑  The key role of non-perturbative regularization scheme
  first approach with Pauli-Villars boson and fermion  fields

➥ no contact interactions

➥ infinite mass limit for both PV fermion and boson

➥ delicate numerical cancellations

  need for a more systematic approach which preserves rotational 
invariance and which does not involve infinitely large energy/
momentum scales

  Taylor-Lagrange regularization scheme



❑  Reminder of the Taylor-Lagrange regularization scheme

  Fields defined as distributions acting on (super-regular) test 
functions of space-time extension a

 Use of the Lagrange formula (in one dimension X for a simple 
logarithmic divergence)

 Continuum limit                  or in momentum space cut-off 
ultra-soft cut-off

H → H(X) ≡ η
2

X
α + cte η2 > 1

ϕa(x) =
�

d3p

(2π)3
fa(�2p,p2)

2�p

�
a†pe

ip.x + ape
−ip.x

�

a→ 0 H →∞

fa(λX) = −
� ∞

λ
dt ∂t fa(Xt) λ : intrinsic scale

0 ≤ α < 1

P. Grangé, E. Werner (2006)

H →∞ α→ 1for



 Arbitrary scale        plays a very similar rôle to the unit of mass       in 
dimensional regularization: completely arbitrary and physical observables 
should not depend on it

 for an amplitude of the form 

and a singular operator 

 integration by part  and change of variable

in the continuum limit  

η µ

T (X) =
1

X + λ

Aa =
�

dX T (X) fa(X)

a→ 0

A =
�

dY f(Y )
�

1
Y + η2

− 1
Y + λ

�

A =
�

dY

� η2

λ
∂t

�
1
t

T

�
Y

t

��
f(Y )

Y =
X

λ
t



❑  Application to non-perturbative calculations in light-front 
dynamics

 very simple implementation of the Taylor-Lagrange regularization 
scheme in covariant light-front dynamics"

 the properties of the test functions are now embedded in         and in its 
covariant components

"  simplest non-perturbative contribution 
  in the Yukawa model

Γn(k1 . . . kn)→ Γ̄n(k1 . . . kn) = Γn(k1 . . . kn)f(k2
1) . . . (k2

n)

ā2

A(k2) ∼
�

dx dk2
⊥

a2(x, k2
⊥)fa

��
k2
⊥

2xMΛ

�2
�

k2
⊥ + M2x + µ2(1− x)− k2x(1− x)

Γ̄n

Λ : arbitrary momentum scale



 with the identification 

 and the intrinsic scale

 one gets

 with                  one recovers the perturbative result in terms of 
the arbitrary scale 

a2 = 1

X =
k2
⊥

2xMΛ

λ(x) =
M2x + µ2(1− x)− k2x(1− x)

M2

A(k2) ∼
�

dx dk2
⊥

�
1

k2
⊥ + M2 η2 λ(x)

− 1
k2
⊥ + M2 λ(x)2

�
a2(x, k2

⊥)

η2

A(k2) ∼
�

dx
�
Log[η2]− Log[λ(x)]

�



Conclusions

❑  The general framework is now settled 

❑  First non-perturbative calculations in the Yukawa model
 show that it is indeed applicable and successfull in the Yukawa model

 extension to N > 3 to be done (see also V. Karmanov)

❑  Main difficulty : application to gauge theories
 expansion of the vertex functions in covariant components may become 

rather tedious

 is it absolutely necessary? (see also V. Karmanov and J. Vary)





Construction of the 
physical fields

❑  Definition of the physical fields 

  Fields should be considered as distributions 

  Functional       with respect to a test function

  Physical field             by means of the translation operator 

❑  Properties of the test functions 

  belongs to the Schwartz space       of fast decrease functions 

➥ decrease at infinity faster than any power of x, as well as 
all its derivatives

➥ property conserved by Fourier transform

N. Bogoliubov, 1950’s

φ(x)

Φ ρ

Φ(ρ) =
�

d4y φ(y) ρ(y)

ϕ(x) ≡ TxΦ(ρ) =
�

d4y φ(y) ρ(x− y)

ex.: scalar field

ϕ(x) Tx

S



  in momentum space

  decomposition of the physical field

ϕ(x) =
�

d3p

(2π)3
f(�2p,p2)

2�p

�
a†pe

ip.x + ape
−ip.x

�

ρ(x− y) =
�

d4p

(2π)4
eip.(x−y)f(p2

0,p
2)

❑  Physical interpretation of the test function
               : average  over the initial field with a weight 

➥ if      has a space-time extension  a : average over a volume a4  

ϕ(x) ρ

ρ

ρa(x)→ ϕa(x)

  to recover a “local” field theory, one should investigate the limit

  scale invariance inherent to this limit since also                   with

so that a priori                                      and

a→ 0
a

η
→ 0 η > 1

ρa(x)→ ρη(x) ϕa(x)→ ϕη(x)



  for the Fourier transform of   

  it is sufficient to consider 

➥ Poincaré group equations invariant without 
renormalization of the fields

  calculation of any amplitude

with a one dimensional variable X for simplicity

ex.:                          ,             arbitrary scale

             
 :  singular distribution :           divergent if no test functions                      

     

a→ 0

ρa

fη ∼ 1

X =
k2

E

Λ2
Λ

T (X)

fa → fη ∼ cte

Aη =
�

dX T (X) fη(X)

Aη



❑  Explicit construction of the test function
 we shall first consider a sequence of test functions              
     with compact support

     ,  with
so that

         chosen as a partition of unity  (PU)
➥            independent of the particular choice of a PU

  construction of a PU

f(x) =
N−1∑

j=0

u(x − jh)

fα

H ≡ Xmax

Aα =
�

dX T (X) fα(X)

fα

Aa

fα(H) = 0

  in a given limit                             

  in this limit, one should recover the original test function

 

➥ This limit should be independent of    

α→ 1− fα(x)→ 1

lim
α→1−

Aα ≡ Aη

Xmax



  one needs a particular construction of the test function                 

➥ Ultra-soft cut-off  (“dynamical” cut-off)    

Rem.: not at all unique example    

➥ upper limit of         defined by

                     

  the Taylor-Lagrange regularization scheme  

     

fα

H → H(X) ≡ η
2

X
α + cte η2 > 1

Xmax = H(Xmax)

Xmax = (η2)
1

1−α

lim
α→1−

Xmax =∞

fα



Construction of (finite) 
extended bare amplitudes

❑  Extension in the ultra-violet domain

  Apply the Lagrange formula for the Taylor remainder of 

    intrinsic scale    ex.:

 one should thus calculate 

 by integration by part after use of the Lagrange formula

fα = Rk fα

λ T (X) =
1

X + λ

f(λX) = − X

λkk!

� ∞

λ

dt

t
(λ− t)k∂k+1

X

�
Xkf(Xt)

�

Aα =
� ∞

0
dX T (X) fα(X)

Aα =
� ∞

0
dX T̃>

α (X) fα(X)

α→ 1−



 In the limit                         ,                                            with      

  because of the derivatives in                , the amplitude is now completely 
finite             

➥ depends on the arbitrary scale 

➥ if  

❑  Extension in the infra-red domain
  Typical distribution                                             with no intrinsic scale

  extended distribution

   

T̃>
α (X)→ T̃>

η (X)

T>
η (X) =

(−X)k

λkk!
∂k+1

X [XT (X)]
� η2

λ

dt

t
(λ− t)k

α→ 1−

T̃η(X)

Aα → Aη =
� ∞

0
dX T̃>

η (X)

η2

T (X) =
1

X + λ
T̃>

η (X) = Ln
�

η2

λ

�

T<(X) =
1

Xk+1

T̃<(X) =
(−1)k

k!
∂k+1

X Ln(η̃X) ≡ Pf

�
1

Xk+1

�


