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ABSTRACT: We discuss a few new results in the field of exactly solvable
models in the conventional field theory as well as the light-front field
theory. The models include the Thirring, Rothe-Stamatescu, the massive
and massleess Federbush and the Thirring-Wess model. We work within
the hamiltonian framework and pay a careful attention to the correct
definition of interacting currents, to the right choice of field variables and
the ccorresponding Hamiltonian including its true physical ground state.
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INTRODUCTION

Soluble models: simple relativistic field theories in two-dimenional space-
time in which explicit and non-approximative solutions of the field equations
can be found on the quantum level

massless and massive model with derivative coupling, Rothe-
Stamatescu, Thirring, Federbush, Thirring-Wess, Schwinger

DISADVANTGES : not realistic, ”toy” models, mostly not gauge theories,
2-dimensional - extrapolation of the results to higher dimensions not
guaranteed

ADVANTAGES : non-perturbative studies possible, explicit solutions of
the Heisenberg field equations, complete information on the NP dynamics,
insights into the structure of QFT, vacuum properties (often neglected,
Fock vacuum taken as the physical ground state), comparison between the
conventional (SL) and light-front (LF) forms of the theory
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SL and LF Hamiltonians in many models have different structure:

for example, g2 and gm terms in the LF Yukawa Hamiltonian, only O(g)
terms in the SL counterpart + different status of vacuum states ⇒ do they
agree in the physical predictions?

difficult to answer in realistic theories, solvable models very helpful

studied over decades in the usual SL form

critical reexaminations revealed certain inconsistencies/mistakes

Here we would like to discuss these ”weak points”, to clarify the situation
and to suggest more adequate formulations

IMPORTANT NEW INGREDIENT: choice of the right field variables -
solutions of the field equations automatically expressed in terms of free
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fields ⇒ the Hamiltonian (Lagrangian) has to be reexpressed in terms of
the free fields also

for a few solvable models, this step removed discrepancies between the
SL and LF forms (Hamiltonians)

another element - a consistent definition of quantum currents:

EXAMPLE: free fermionic vector current

defined as normal ordered product

jµ(x) =: ψ†(x)γ0γµψ(x) : (1)

Alternatively regularized by the point splitting, x± ǫ
2

Observation: singular vacuum parts cancel - normal-ordered result
obtained automatically, if one does the point splitting in a hermitean way,
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defining

jµ(x) = lim
ǫ→0

1

2

[

ψ†(x+
ǫ

2
)γ0γµψ(x− ǫ

2
) + ψ†(x− ǫ

2
)γ0γµψ(x+

ǫ

2
)
]

. (2)

Cancelation of the singular parts works also for the interacting currents -
the Rothe-Stamatescu model for a simple illustration

ROTHE-STAMATESCU MODEL

Lagrangian density (Ann. Phys. 95 (1975))

L =
i

2
Ψγµ

↔
∂µ Ψ −mΨΨ +

1

2
∂µφ∂

µφ− 1

2
µ2φ2 − g∂µφJ

µ
5 ,

Jµ
5 = Ψγµγ5Ψ. (3)
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Field equations:

iγµ∂µΨ = mΨ + g∂µφγ
µγ5Ψ,

∂µ∂
µφ+ µ2φ2 = g∂µJ

µ
5 = 2imgΨγ5Ψ. (4)

Scalar field is not free as it was the case for the vector-current interaction
(DCM). Dirac eq. seems to have an operator solution (Belvedere and
Rodrigues, Ann. Phys. 321 (2006)) similar to the one from the DCM:

Ψ(x) = e−igγ5φ(x)ψ(x). (5)

Check:

iγµ∂µΨ(x) = iγµ
[

− igγ5∂µφ(x)Ψ(x) + e−igγ5φ(x)∂µψ(x)
]

=
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= g∂µφ(x)γµγ5Ψ(x) + e+igγ5φ(x)iγµ∂µψ(x), (6)

where iγµ∂µψ = mψ. The sign in the last exponential is opposite due to
γµγ5 = −γ5γµ.

Thus, the massive RS model is not exactly solvable. The original
massless RS model (Rothe and Stamatescu, Annals of Physics 1977): The
massless axial current is conserved, hence scalar field is free and the Dirac
eq. is exactly solved by (5).

Vector and axial-vector anomaly found - based on the definition of the
vector current:

jµ
ǫ (x) = Ψ(x+ ǫ)γµΨ(x) exp

(

ig

x+ǫ
∫

x

dyλǫ
λν∂νφ(y)

)

− V EV. (7)
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GAUGE INVARIANCE?

analogy with the Schwinger model invoked – the point-splitting
regularization of the product of operators at the same point used and gauge
invariance maintained by introducing the gauge exponential: In the RS
model no symmetry present ⇒ construction not correct

Careful regularized treatment based on the known solution

In quantum theory, singular operator products (Lagrangian) have to be
regularized

We do not define quantum solution Ψ(x) (5) as a normal-ordered
exponential, but simply regularize it by the point-splitting of the positive
and negative-frequency part of the scalar field in the exponential and by
applying the BCH operator identity eAeB = e

1
2[A,B]eA+B valid, if A and B
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commute with [A,B]:

Ψ(x) = Z1/2(ǫ)e−igγ5φ(−)(x)e−igγ5φ(+)(x)ψ(x), (8)

where Z1/2(ǫ) = exp
{

g2[φ(+)(x − ǫ
2), φ

(−)(x + ǫ
2)]

}

= exp
{

− ig2D(+)(ǫ)
}

and D(+)(x− y) is the corresponding two-point function.

Difference : we keep the regularized (infinite) constant Z(ǫ) – no need
to define renormalized solution, the regularized factors automatically cancel
in the point-split interacting currents:

Jµ(x) = s lim
ǫ→0

1

2

{

Z(ǫ)ψ(x+
ǫ

2
)eigγ5φ(−)(x+ ǫ

2)eigγ5φ(+)(x+ ǫ
2)

×γµe−igγ5φ(−)(x− ǫ
2)e−igγ5φ(+)(x− ǫ

2)ψ(x− ǫ

2
) +H.c.

}

=

=: ψ(x)γµψ(x) : +
g

2π
ǫµν∂νφ(x). (9)
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s lim designates the symmetric limit, the free-field relation
ψ(x+ ǫ/2)γµψ(x− ǫ/2) =: ψ(x)γµψ(x) : − i

π
ǫµ

ǫ2
used

all singular terms have been automatically cancelled in (9) due to the
manifestly hermitean definition of the current – no vacuum subtractions are
needed. The constant Z(ǫ) got cancelled by the factor Z−1(ǫ) coming from
normal-ordering of the two exponentials sandwiching γµ in (9).

Jµ(x) conserved due to ǫµν in the quantum correction

The axial vector current obtained analogously

Jµ
5 (x) =: ψ(x)γ5γµψ(x) : +

g

2π
∂µφ(x) (10)

NOT conserved, ∂µJ
µ(x) = g

2π∂µ∂
µφ(x).
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the only effect of the anomaly is to renormalize the scalar field mass,

∂µ∂
µφ+ µ̃2φ = 0, µ̃2 =

µ2

1 − g2

2π

. (11)

The conjugate momenta Πφ = ∂0φ(x) − gJ0
5 , ΠΨ = i

2Ψ
†, ΠΨ† = − i

2Ψ lead
from the Lagrangian (3) to the HamiltonianH = H0B+H

′
. H0B corresponds

to the free massive scalar field and

H
′
=

+∞
∫

−∞

dx1
[

− iΨ†α1∂1Ψ + g∂1φJ
1
5

]

. (12)

However, re-expressing the Lagrangian in terms of true dynamical
variables ψ(x) and φ(x) leads to the sum of free fermion and boson
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Hamiltonians – spectrum: free massless fermions and massive bosons
(mass renormalized)

Correlation functions composed from the free fermion and boson
correlation two-point functions, but depend on the coupling constant

the momentum operator contains interacting piece if the knowledge of
the operator solution not taken into account
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THE THIRRING MODEL

one of the prototype quantum field theories

operator solution studied by Klaiber (Boulder lectures 1967)

systematic hamiltonian treatment based on the model’s solvability,
explicit construction of the physical ground state (L. Martinovic, LC Dallas,
Few Body Systems 52)

HERE: generalization – truly interacting current included (L. Martinovic
and P. Grange, accepted in Phys. Lett. B )

The Lagrangian density of the massless Thirring model and the
corresponding field equations read

L =
i

2
Ψγµ

↔
∂µ Ψ − 1

2
gJµJ

µ, (13)
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iγµ∂µΨ(x) = gJµ(x)γµΨ(x), (14)

solution of the Dirac equation (14) (Klaiber)

Ψ(x) = ei(g/
√

π)
(

αj(x)−βγ5j̃(x)
)

ψ(x),

γµ∂µψ(x) = 0. (15)

The coefficients α and β satisfy α+β = 1. The ”potentials” j(x) and j̃(x) are
connected to the free current jµ(x) (taken as normal-ordered product of free
fermion fields) according to ∂µj(x) = −√

πjµ(x) and ∂µj̃(x) =
√
πǫµνj

ν(x).
This corresponds to replacing Jµ(x) by jµ(x) in the field equation (14) –
rather restrictive assumption

MORE GENERAL TREATMENT: β = 0 for simplicity, consider the
solution

Ψ(x) = ei(g/
√

π)J(x)ψ(x), (16)
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with the unknown potential J(x) of the interacting current Jµ(x), i.e.
defining ∂µJ(x) = −√

πJµ(x). Compute the interacting current from the
solution (16) using the point-splitting regularization as in Eq.(9):

Jµ(x) =: ψ(x)γµψ(x) : +
g

2π
Jµ(x). (17)

⇒ the interacting current is simply the renormalized free current:

Jµ(x) = G(g)jµ(x), G(g) = (1 − g

2π
)−1. (18)

The Klaiber’s solution is qualitatively correct, the factor G(g) missed. This
may have consequences for some aspects of bosonization of the massive
Thirring model (Coleman, Phys. Rev. D 11 (1975)).

The rest of the study as before: bosonization of the free vector current
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plus a Bogoliubov transformation to diagonalize the Hamiltonian and to find
the lowest-energy eigenstate

expansion of the massless spinor field, (p̂.x = |p1|t− p1x1)

ψ(x) =

∫

dp1

√
2π

{

b(p1)u(p1)e−ip̂.x + d†(p1)v(p1)eip̂.x
}

, (19)

{b(p1), b†(q1)} = {d(p1), d†(q1)} = δ(p1 − q1),

b(k1)|0〉 = d(k1)|0〉 = 0, u† = (θ(−p1), θ(p1)), v† = (−θ(−p1), θ(p1)).

After the Fourier transformation, the current jµ(x) expressed in terms of
boson operators c(k1):

jµ(x) =
−i√
2π

+∞
∫

−∞

dk1kµ

√

2|k1|
{

c(k1)e−ik̂.x − c†(k1)eik̂.x
}

,
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c(k1) =
i

√

|k1|

+∞
∫

−∞

dp1
{

θ
(

p1k1
)[

b†(p1)b(p1 + k1) −

−(b→ d) + ǫ(p1)θ
(

p1(k1 − p1)
)

d(k1 − p1)b(p1)
}

, (20)

The composite operators c, c† obey the canonical commutation relation
[

c(p1), c†(q1)
]

= δ(p1 − q1), c(k1)|0〉 = 0.

The Hamiltonian derived from the Lagrangian (13) after inserting the

solution (15) into it. The contribution of the term (i/2)Ψγµ
↔
∂µ Ψ reverses

the sign of the interacting term,

H =

+∞
∫

−∞

dx1
[

− iψ†α1∂1ψ − 1

2
g
(

J0J0 − J1J1
)

]

. (21)
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In Fock representation, H = H0 +Hg has the form

H0 =

+∞
∫

−∞

dp1|p1|
[

b†(p1)b(p1) + d†(p1)d(p1)
]

, (22)

Hg = G2(g)
g

π

+∞
∫

−∞

dk1|k1|
[

c†(k1)c†(−k1) + c(k1)c(−k1)
]

.

Hg is not diagonal and thus |0〉 is not an eigenstate of the full Hamiltonian.
To diagonalize H, form the new Hamiltonians Ĥ0 = H0 − T, Ĥg =

Hg + T where T =
+∞
∫

−∞
dk1|k1|c†(k1)c(k1), and implement a Bogoliubov
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transformation by the unitary operator U = eiS,

iS =
1

2

+∞
∫

−∞

dk1γ(k1)
[

c†(k1)c†(−k1) − c(k1)c(−k1)
]

,

with an unknown function γ(k1). Ĥ0 is invariant with respect to U . The
operators c(k1) transform as

c(k1) → c(k1) cosh γ(k1) − c†(−k1) sinh γ(k1). (23)

The new interaction Hamiltonian eiSĤge
−iS will be diagonal,

Ĥd
g =

1

cosh 2γd

+∞
∫

−∞

dk1|k1|c†(k1)c(k1), (24)
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if γ(k1) = γd = 1
2artanh 2G(g)g

π . Then

eiS
(

Ĥ0 + Ĥg

)

e−iS|0〉 = 0 (25)

and |Ω〉 = e−iS|0〉 is the new vacuum state,

|Ω〉 = N exp
[

− κ

+∞
∫

−∞

dp1c†(p1)c†(−p1)
]

|0〉, (26)

κ = 1
2 tanh γd. |Ω〉 is a coherent state of pairs of composite bosons with

zero total momentum, P 1|Ω〉 = 0. The vacuum |Ω〉 is invariant under axial
U(1) transformations

V (β)|Ω〉 = |Ω〉, V (β) = eiβQ5,
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Q5 =

+∞
∫

−∞

dk1ǫ(k1)
[

b†(k1)b(k1) − d†(k1)d(k1)
]

. (27)

Thus, no chiral symmetry breaking occurs (contrary to some claims in
literature).

Correlation functions have to be calculated using the vacuum |Ω〉 and
the solution (16)

J(x) =
G(g)√

2π

+∞
∫

−∞

dq1
c(q1)

√

2|q1|
θ
(

|q1| − η
)

e−iq̂.x +H.c. (28)

η is the conventional infrared cutoff.
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THE FEDERBUSH MODEL

a very brief description of the main steps of the solution in the
hamiltonian form

demonstration that our modified canonical procedure removes the
discrepancy between the structure of the SL and LF Hamiltonians of the
Federbush model

clear advantages of the light-front formalism

very suitable for a detail comparison between the SL and LF forms of
QFT

Lagrangian

L =
i

2
Ψγµ

↔
∂µ Ψ −mΨΨ +

i

2
Φγµ

↔
∂µ Φ − µΦΦ −
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−gǫµνJ
µHν, (29)

two species of coupled fermion fields with masses m and µ. Both currents
Jµ = ΨγµΨ,Hµ = ΦγµΦ are conserved. The coupled field equations

iγµ∂µΨ(x) = mΨ(x) + gǫµνγ
µHν(x)Ψ(x),

iγµ∂µΦ(x) = µΦ(x) − gǫµνγ
µJν(x)Φ(x) (30)

exactly solvable even for non-zero masses:

Ψ(x) = e−i(g/
√

π)h(x)ψ(x), iγµ∂µψ(x) = mψ(x),

Φ(x) = ei(g/
√

π)j(x)ϕ(x), iγµ∂µϕ(x) = µϕ(x). (31)

In quantum theory, the above exponentials regularized by the ”triple-dot
ordering” (Wightman, Schroer et al.) The potentials j(x) and h(x) defined
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as ∂µj(x) =
√
πǫµνj

ν(x), ∂µh(x) =
√
πǫµνh

ν(x) enter into the solutions (31)
in an ”off-diagonal” way. After inserting the solutions into the Lagrangian
(29), the interaction term changes its sign yielding the Hamiltonian (H0 is
the sum of two free Hamiltonians)

H = H0 + g

+∞
∫

−∞

dx1
(

j0h1 − j1h0
)

. (32)

The LF field equations are also solved by (31) with the free LF fields ψ(x),
ϕ(x); j(x), h(x) are given by 2∂−j(x) =

√
πj+(x), 2∂−h(x) =

√
πh+(x).

Usual LF treatment: one inserts the solution of the fermionic constraint into
L. ⇒ free LF Hamiltonian! Only when inserting the full solution like in the
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SL case the four-fermion interaction term also in the LF case:

P−
g =

1

2
g

+∞
∫

−∞

dx−

2

(

j+h− − j−h+
)

. (33)

The interacting SL Hamitonian (32) contains terms composed solely from
creation or annihilation operators, so the Fock vacuum is not its eigenstate.
The diagonalization can be performed by a Bogoliubov transformation using
a massive current bosonization – considerably more complicated than the
massless case. The massive analog (up to the kinematical factors) of the
boson operator c(k1) (20) is

A(k1, t) = i

+∞
∫

−∞

dp1

√

E(k1)

{

[

b†(p1)b(k1 + p1) − (b→ d)
]

– Typeset by FoilTEX – 25



×f̃1(p1, p1 + k1)ei
(

E(p1)−E(k1+p1)
)

tθ(k1p1)

+
1

2

[

b†(−p1)b(k1 − p1) − (b→ d)
]

θ(p1(k1 − p1))

×f̃1(−p1, k1 − p1)ei
(

E(p1)−E(k1−p1)
)

t

+d(p1)b(k1 − p1)ǫ(p1)θ(p1(k1 − p1))

×f̃2(p1, k1 − p1)e−i
(

E(p1)+E(k1−p1)
)

t

+d(p1 + k1)b(−p1)θ(p1k1)

×f̃2(−p1, p1 + k1)e−i
(

E(p1)+E(k1+p1)
)

t

−b(p1)d(−(p1 − k1))θ(k1(p1 − k1))

×f̃2(p1,−(p1 − k1))e−i
(

E(p1)+E(k1−p1)
)

t
}

. (34)
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The quantities

f̃i(p
1, q1) =

fi(p
1, q1)

√

2E(p1)
√

2E(q1)
, i = 1, 2 (35)

with f1(p
1, q1) =

√

p+q+ +
√

p−q−, f2(p
1, q1) =

√

p+q+ −
√

p−q− are
two coefficient functions appearing in four spinor products of the form
u†(p1)γ0γµu(q1) etc., which arise when one calculates the free vector
current in the Fock representation from the expansion of the free massive
fermion field:

j0(x) =

+∞
∫

−∞

dp̃1

+∞
∫

−∞

dq̃1
{

[

b†(p1)b(q1) − (b→ d)
]

×

×ei(p̂−q̂)ẋf1(p
1, q1) +

[

b†(p1)d†(q1)ei(p̂+q̂)ẋ +
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+d(q1)b(p1)e−i(p̂+q̂ẋ
]

f2(p
1, q1)

}

. (36)

For the component j1(x), the functions f1 and f2 are interchanged. A(t, x1)
and A†(t, k1) (34) obtained by an inverse Fourier transformation from the
assumed form of the current density

j0(x) =
1

2π

+∞
∫

−∞

dk1
[

Ã(t, k1)eik1x1
+ Ã†(t, k1)e−ik1x1]

(37)

after inserting the fermion representation (36) for j0(x). They reduce to
Klaiber’s c(k1) for m = 0. These operators are complicated (no common
k̂µ factor, separate time dependence of terms), but a useful concept – their
algebraic properties are simple at equal times and the Hamiltonian of the
model becomes quadratic when expressed in terms of them.
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The corresponding massive charge density in the bosonized form is then
written as

j0(x) =
−i√
2π

∫ +∞

−∞

dk1E(k1)
√

2E(k1)
A(k1, t)eik1x1

+H.c. (38)

The analogous LF operators Â, Â† are much simpler and have a
structure similar to the massless SL case (20):

Â(k+, x+) = i

+∞
∫

0

dp+

√
k+

{

[

b̂†(p+)b̂(k+ + p+) − (b̂→ d)
]

×e
i
2

m2k+x+

p+(k++p+) + d̂(p+)b̂(k+ − p+)e
− i

2
m2k+x+

p+(k+−p+)

}

, (39)
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where

j+(x) =
−i
2π

∞
∫

0

dk+

√
k+

k+Â(k+, x+)e−
i
2k+x−

+H.c. (40)

In deriving Â(k+, x+), the Fock expansion

ψ2(x) =
1√
4π

+∞
∫

0

dp+
[

b̂(p+)e−ip̂.x + d̂†(p+)eip̂.x
]

,

{b̂(p+), b̂†(q+)} = {d̂(p+), d̂†(q+)} = δ(p+ − q+). (41)

The field ϕ2(x) expanded analogously. Due to [Â(k+), Â†(l+)] = δ(k+ −
l+), valid at x+ = y+, the LF form of the solution (31) can be regularized by
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point-splitting,

Φ(x) = Z(ǫ) exp
{

i
g√
π
Â†(x)

}

exp
{

i
g√
π
Â(x)

}

ϕ(x),

Â(x) =
1√
4π

∞
∫

0

dk+

√
k+
A(k+, x+)e−

i
2k+x−

. (42)

Similar formulae hold for the solution Ψ(x) built from the operators
B̂(k+, x+), B̂†(k+, x+) which are constructed from h+(x). The j− and
h− currents contain the boson operators Ĉ(k+, x+), D̂(k+, x+) and their
conjugates, related to Â, Â†, B̂, B̂† via the current conservation. In contrast
to its SL analog, the interacting LF Hamiltonian is diagonal and therefore
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|0〉 is its lowest-energy eigenstate:

P−
g =

g

8π

+∞
∫

0

dk+k+
[

Â†(k+)D̂(k+) + D̂†(k+)Â(k+)

− B̂†(k+)Ĉ(k+) − Ĉ†(k+)B̂(k+)
]

. (43)

The next step – compute the correlation functions in both schemes

not simple since one needs to know the commutators of the composite
boson operators at unequal times. This is the place where complexities
of the usual triple-dot ordering technique enter into our bosonization
approach. Irrespectively of this, the LF calculation will be much simpler:
it works with Fock vacuum and simple operator structures while the
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SL formalism requires nontrivial coherent-state vacuum and complicated
operator terms.

MASSLESS VERSION MUCH SIMPLER

massless limit of the LF correlation functions

truly interacting currents, treatment like in the Thirring model

Ψ(x) = e
−i g√

π

(

αH(x)−βγ5H̃(x)
)

,

Φ(x) = e
i g√

π

(

αJ(x)−βγ5J̃(x)
)

, (44)

where

∂µJ̃ = −
√
πJµ(x), ∂µJ =

√
πǫµνJ

ν,
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∂µH̃ = −
√
πHµ(x), ∂µH =

√
πǫµνH

ν,

(45)

The interacting currents are

Jµ(x) =
(

1 +
g2

4π2

)−1[
jµ(x) +

g

2π
(α− β)ǫµνhν(x)

]

,

Hµ(x) =
(

1 +
g2

4π2

)−1[
hµ(x) − g

2π
(α− β)ǫµνjν(x)

]

. (46)
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SUMMARY AND OUTLOOK

• solvable models – good laboratory for studying subtleties of QFT, the
vacuum problem and comparison between the SL and LF forms of the
relativistic theory

• importance of the correct choice of the field variables and form of the
Hamiltonians

• importance of the correctly defined currents - regularization by the point-
splitting

• the Rothe-Stamatescu model reformulated in a ”minimal way”, quantum
corrections to the currents found, improved regularization of the operator
solution
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• generalization of the Klaiber’s Thirring-model solution, truly interacting
currents, Hamiltonian diagonalization by a Bogoliubov transformation,
true vacuum state derived as a coherent state - a very simple example
of the complicated ground state in the SL field theory

• hamiltonian approach to the Federbush model sketched, bosonization of
the massive current, LF treatment much simpler, study of its massless
limit suggested along with the independent analysis of the massless SL
model – non-trivial (cf. DCM) non-perturbative comparison between the
SL and LF versions of the model

• quantum currents from the regularized operator solution of the Thirring-
Wess model – axial anomaly usually found in the Schwinger model (cf.
talk in Krakow); next step – derive the Hamiltonian and diagonalize it by
a BT
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• axial anomaly in a covariant-gauge Schwinger model based on the
operator solution in terms of the fields present in the starting fermionic
Lagrangian (no Ansaetze), subtleties of the residual gauge invariance
and truly gauge-invariant current definition – anomaly only in the zero-
mode sector, reformulation of the mass generation of the Schwinger
boson

original formulation of Lowenstein and Swieca incomplete - Hamiltonian
in terms of their ”building-block fields” would be non-diagonal

• the biggest challenge: complete solution of the Schwinger model in the
new formulation (new form of the operator solution in the finite-volume
treatment) – role of large gauge transformations, vacuum degeneracy,
chiral symmetry... IN PROGRESS
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