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• Outline

Fock space, its truncation and eigenvector equation.

Sector-dependent renormalization.

Illustration: "0D field theory".

Yukawa Model. E.M. form factors and anomalous
magnetic moment.
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• Eigenstate equation:

H |p〉 =M |p〉

In field theory Hamiltonian H does not conserve the
number of particles.

Solution |p〉 of the eigenstate equation is superposition of
the states with different numbers of particles.

Hamiltonian H and the state vector |p〉 are defined the the
LFD framework.
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• State vector

The state vector is represented as the (exact) Fock
decomposition:

|p〉 =

∞
∑

n=1

∫

ψn(k1, . . . , kn, p) |n〉Dk

It contains infinite number of the Fock components ψn.
Approximation: replace this sum by the finite one

(truncation):

|p〉 =

N
∑

n=1

∫

ψn(k1, . . . , kn, p) |n〉Dk

An alternative to the lattice calculations?
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• Eigenvalue equation:

H |p〉 =M |p〉

It results in a system of equations for the Fock
components ψn.
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= M








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


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


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

The coupling constant α in Hij may be large. After

truncation, the numerical solution of the system of equations is

non-perturbative.

The solution requires renormalization.
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• Two-body truncation

g
02.m

2

+
11

=

g02

1

=
2

System of equations for physical and Pauli-Villars particles
(one PV fermion and one PV boson).
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• Three-body truncation

System of equations
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• Higher Fock sectors ( N = 4)
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System of equations for the vertex functions Γ1−4.
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• Higher Fock sectors (N = 6)
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System of equations for the vertex functions Γ1−6.

Equations always couple the near by components: Γn with Γn±1.
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• Two principal problems

1. Quick increase of the matrix dimension.
Solution - supercomputers.

2. Infinities.
Solution - sector dependent renormalizaton.
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• Renormalization

Parameters in Hamiltonian: bare coupling constant g0
and mass counter terms δm must be expressed (from the
renormalization conditions) through physical (observed)

coupling constant g0 and physical mass m.

As a by-product, in any given order of perturbation theory,
infinities canceled.
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• Example: Three-body self-energy
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• Consequences

All the states with N ≤ 3.

For given order of g – not full set of perturbative graphs
(since some graphs exceed N = 3).

Therefore, infinities, after renormalization,
are not cancelled.
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• Sector-dependent renormalization

To provide cancellations of infinities

R. Perry, A. Harindranath, K. Wilson,

Phys. Rev. Lett. 24 (1990) 2959.

V.A. Karmanov, J.-F. Mathiot, A.V. Smirnov,

Phys. Rev. D77 (2008) 085028.

Main aim of this talk is to illustrate
the sector-dependent renormalization

on example of zero-dimensional "field theory".

NTSE-2013 – p. 14/42



• Three-body truncation

System of equations
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• 0D "field theory"

General form of equation:



















δ m V12 0 0 . . .

V21 δ m− 1 V23 0 . . .

0 V32 δm− 1 V34 . . .

0 0 V43 δ m− 1 . . .

. . . . . . . . . . . . . . .





































ψ1

ψ2

ψ3

ψ4

. . .



















= 0

Replace the integral terms by the products:
∫

Vijψj . . . → Vijψj .
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• Interaction Vij

Vij =
g

(i+ j)
– higher sectors suppressed

N = 2 truncation
No any sector dependent scheme., g = 2.





δm V12

V21 δm− 1









ψ1

ψ2



 = 0 ⇒





δm 2
3

2
3

δm− 1









ψ1

ψ2



 = 0

det





δm 2
3

2
3

δm− 1



 = 0 ⇒ δm2 − δm−
4

9
= 0

Quadratic equation, two solutions:

δm =
1

2
∓

5

6
→ δm = −0.333, δm = 1.333
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• N = 3 truncation

No any sector dependent scheme.









δm 2
3

0

2
3

δm− 1 2
5

0 2
5

δm− 1

















ψ1

ψ2

ψ3









= 0

Cubic equation: δm3 − 2δm2 +
89

225
δm+

4

9
= 0

Three solultions:

δ m = −0.358

δ m = 0.792

δ m = 1.566

Reminder: N = 2 truncation: δm = −0.333, δm = 1.333.
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• Truncations N = 1, 2, . . . 10

N δm

1 0.

2 −0.333

3 −0.3582

4 −0.35948

5 −0.3595154

6 −0.3595160702

7 −0.35951607879

8 −0.3595160788796

9 −0.3595160788802941

10 −0.3595160788802980

Solutions were found solving (non-linear) polynomial equation of the N th degree.

Solutions for N = 10 were found solving polynomial equation of the 10th degree.

When N → ∞, it approaches to "exact" solution.

Exact solution is given by the N = 10 solution with precision in 14 digits.
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• State vector

N = 8 truncation

ψ =





































0.870

0.469

0.145

0.312 · 10−1

0.520 · 10−2

0.705 · 10−3

0.806 · 10−4

0.790 · 10−5





































Normalization: 〈ψ|ψ〉 = ψ2
1 + ψ2

2 + . . .+ ψ2
8 = 1.

In red – components which exceed 0.1.

We see that higher sectors decrease.
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• Large coupling constant g = 8
n δmn

1 0

2 −7.1111

3 −1.2810

4 −3.7331

5 −2.0226

6 −2.9588

7 −2.3553

8 −2.7101

9 −2.4889

10 −2.6221

11 −2.5401

12 −2.5899

13 −2.5595

14 −2.5780

exact −2.57097

Converges more slowly.
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• Corresponding state vector (g = 8)

ψ =





































0.675

0.651

0.327

0.112

0.291 · 10−1

0.612 · 10−2

0.108 · 10−2

0.161 · 10−3





































More first components dominate.
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• Quickly decreasing kernel

No any sector dependent scheme.
Direct solution with Vij = 24

(i+j)4

N δm

1 0

2 −0.03760

3 −0.0376264567

4 −0.037626457668227

5 −0.037626457668232862884

6 −0.0376264576682328628897312628

7 −0.03762645766823286288973126446805915

8 −0.037626457668232862889731264468059300385

9 −0.037626457668232862889731264468059300385

10 −0.037626457668232862889731264468059300385

40-digits stability is achieved at N = 8 truncation.

Superfast convergence!
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• State vector
No any sector dependent scheme.

Direct solution with Vij =
24

(i+j)4

ψ =





































0.982

0.187

0.462 · 10−2

0.296 · 10−4

0.696 · 10−7

0.734 · 10−10

0.396 · 10−13

0.127 · 10−16





































One- and two-body components dominate.
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• N = 2 truncation (sector dependent)





δm 2
3

2
3

δm− 1









ψ1

ψ2



 = 0 ⇒





δm2
2
3

2
3

δm1 − 1









ψ1

ψ2



 = 0

det





δm 2
3

2
3

δm− 1



 = 0 ⇒ det





δm2
2
3

2
3

δm1 − 1



 = 0

δm1 = 0 ⇒ det

(

δm2
2
3

2
3

−1

)

= 0

Linear equation δm2 +
(

2
3

)2
= 0, one solution.

δm = −0.333, 1.333 ⇒ δm2 = −
4

9
= −0.444
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• N = 3 truncation (sector dependent)









δm3
2
3

0
g

3
δm2

2
5

0 2
5

δm1 − 1

















ψ1

ψ2

ψ3









= 0

Since are known : δm1 = 0, δm2 = −4/9,
δm3 is found from the linear equation:

det









δm3
2
3

0

2
3

δm2
2
5

0 2
5

δm1 − 1









= 0 → δm3

(

13

9
−

4

25

)

+
4

9
= 0

Linear equation for δm3:

g = 2 →
289

225
δm3 +

4

9
= 0 → δm3 = −

100

289
= −0.346

Etc.
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• N = 8 truncation (sector dependent)

n δmn

1 0

2 −0.444

3 −0.346

4 −0.3617

5 −0.35915

6 −0.359574

7 −0.359506

8 −0.359517

exact −0.3595161

All of them are found from linear equation.

This allows to cancel infinities
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• Renormalization → subtraction

Sector-dependent scheme converges to the exact one.

For any N the counter terms is found from linear
equation!

In perturbation theory
the infinities are canceled due to subtractions of counter

terms. Example: self energy.

Σ( 6k) → Σren( 6k) = Σ( 6k)− Σ( 6k = m)− ( 6k −m)
∂Σ( 6k)

∂ 6k

∣

∣

∣

∣

6k=m

It is difficult to imagine any other mechanism of
cancellation of divergences in the integrals.
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• Straightforward way

Following straightforward way, we find the counter term as a

non-linear function of divergent integral

(like roots of polynomial of 10th degree in the above examples).

Substitute it back in equation:

. . . δm(nonlinear function of a divergent integral) . . .

−

∫

(divergent integral) = 0

How can they be canceled?
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• Sector-dependent scheme

Following sector-dependent renormalization scheme,
in each sector we find the counter term as solution of

linear equation!
Being substituted back in the system of equations for the
Fock components, they can provide the cancellation of

infinities.

This is just what we observe in Yukawa model!

That’s why we use the sector-dependent
renormalization scheme.

NTSE-2013 – p. 30/42



• Explicitly covariant LFD

V.A. Karmanov, JETP, 44 (1976) 201.

J. Carbonell, B. Desplanques, V.A. Karmanov, J.-F. Mathiot,

Phys. Reports, 300 (1998) 215.

t+ z = 0 → ω·x = ω0t− ~ω·~x

where ω = (ω0, ~ω) such that ω2 = 0.

The unit vector ~n = ~ω
|~ω| determines the orientation of the light-front

plane.

Particular case: ω = (1, 0, 0,−1)

corresponds to the standard approach.
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• Renormalization condition

Reminder: ū(k)Γ2u(p) = ū(k)

[

b1 +
m 6ω

ω·p
b2

]

u(p)

On energy shell s = m2 we should impose:

1. b1(s = m2) = g (relation between g03 and g)

2. b2(s = m2) = 0 (kills ω-dependence in Γ2).

3. M = mphys (determines δm3.)

To satisfy 2., we introduce the ω-dependent counter term by

g03 → g03 +
m 6ω

ω·p
Zω
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• Determining counter terms

We must find

not only δmn, but also g0n and Zω,n.
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• x-dependent counter terms

However: s = (k1 + k2)
2 =

k2⊥ + µ2

x
+
k2⊥ +m2

1− x
= m2

This means k2⊥ = −x2m2 − (1− x)µ2 < 0

(non-physical x -dependent value)

Renormalization condition:

bi=0,j=0
1 (g03; k⊥(x), x) = g, k⊥(x) = i

√

x2m2 − (1− x)µ2

bi=0,j=0
1 (g03; k⊥(x), x) depends on x because of truncation.

The same for the ω-dependent counter term: Zω = Zω(x)

to make bi=0,j=0
2 (k⊥, x) = 0 at s = m2, for any x.
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• Sector and x-dependent counter terms
St. Glazek, A. Harindranath, S. Pinsky, J. Shigemitsu, and K.

Wilson, Phys. Rev. D 47, 1599 (1993).

In the initial Hamiltonian, the counter terms do not depend on the

Fock sectors and kinematical variables.

Making truncation, we replace the initial Hamiltonian by a finite

matrix.

The counter terms naturally depend on the dimension of matrix

(sector dependence) and on kinematical variables

(x-dependence).

Inspite of that, the counter terms are found absolutely

unambiguously.

They (hopefully) provide finite results after non-perturbative

renormalization.
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• EM form factors

1- and 2-body components are found from equations
(model-dependent).

3-body components are expressed through 2-body
components (model-dependent).

Form-factors are expressed through 1-, 2- and 3-body
components (model-independent).

q
q

++

q

1-, 2- and 3-body contributions in EM form factors
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• Form factor F1
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• Anomalous magnetic moment
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• Adding antifermion (fff̄ )

x-dependent counter term Zω(x)
Dashed line – without fff̄ . Solid line – with fff̄ .
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• Bare coupling constant g03(x)

δg03(x) = (g03(x)− ḡ03)/ḡ03

Dashed line – without fff̄ . Solid line – with fff̄ .
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• Everything goes in good direction!

Form factors do not depend on the PV masses when
the latter tend to infinity – convergence.

x-dependent counter terms become flat – stop to
depend on x – when we increase the number of
truncated states.
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• Conclusion

Non-perturbative approach, based on the truncation of
Fock space, is developed.

Fock space is truncated up to three-body states,

including state with antifermion (ff f̄ ).

E.M. form factors and anomalous magnetic moment are
calculated in the Yukawa model.

The results are stable (i.e., they converge) vs. increase
of the meson PV mass.

It is the time go to higher truncations (by means of
supercomputers).
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