Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro

Lightfront QED and intense laser fields

Anton Ilderton

Chalmers University of Technology, Gothenberg, Sweden

LightCone 2013-May-21

 Chris Harvey, Tom Heinzl, Florian Hebenstreit, Pieter Maris, Mattias Marklund and Greger Torgrimsson, James Vary, Xingbo Zhao

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
●00		0000	0	0000	O	0
Outline						

- 1. Lasers and prospects.
- 2. Time-dependent processes.
 - ▷ Front form vs. instant form.
 - ▷ The mass shift.
 - ▷ Pair production: the Wigner formalism.
- 3. Nonperturbative methods.

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
0●0		0000	0	0000	O	0
Experim	nental prosp	ects				

- Low energy, high intensity.
- Femtosecond duration, 10^{20} photons/ pulse.
- 10^{1} - $10^{2} \text{ J} \rightarrow \text{intensity } 10^{22}$ - 10^{23} W/cm^{2}
 - ▷ Light-by-light scattering.
 - ▷ Vacuum birefringence.
 - New particle searches: Light shining through walls
 - Radiation reaction.
 - Schwinger pair production.

Jaeckel & Ringwald, Ann.Rev.Nucl.Part.Sci. (2010)

- Laser \rightarrow background field.
- Dimensionless field strength
- Cannot be treated perturbatively.
- Treat background exactly: use Furry picture.

Furry, 1951

- Fermion propagator: $\left[i\not\!\!\partial -m-e\not\!\!A_{\rm ext}\right]\!S=\delta^4(x-y)$
- $\rightarrow\,$ This talk: Furry picture and simple backgrounds.

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000	●00	0000	0	0000	O	0
Spaceti	me structure	Э				

• Simple field model. $F_{\text{ext}}^{\mu\nu} \equiv F_{\text{ext}}^{\mu\nu}(x^+)$.

- 1. Plane wave (\perp to lightfront)
- 2. Longitudinal electric (pairs)
- $x^+ = x_f^+$ Compare x^0 and x^+ .

• All particles enter at same front times.

• Lorentz orbit:
$$x^+ = rac{p^+}{m} au$$

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000	●00	0000	0	0000	O	0
Spaceti	me structure	Э				

• Simple field model. $F_{\text{ext}}^{\mu\nu} \equiv F_{\text{ext}}^{\mu\nu}(x^+)$.

- 1. Plane wave (\perp to lightfront)
- 2. Longitudinal electric (pairs)
- $x^+ = x_f^+$ Compare x^0 and x^+ .

• All particles enter at same front times.

• Lorentz orbit:
$$x^+ = rac{p^+}{m} au$$

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000	○●○	0000	0	0000	○	0
Physics	in plane wa	ves: a	uantum			

• Scalar field in a plane wave.

$$\phi = \int dp \ b_p \varphi_p + d_p^{\dagger} \varphi_{-p}$$
$$\varphi_p = \exp\left[-ip.x - i \int^{x^+} \frac{2p.a - a^2}{p^+}\right]$$

Volkov Z. Phys. 94 (1953)

• Canonical quantisation, instant form:

$$[\phi, \partial_0 \phi] = i\delta \implies \dots?$$

- **X** Orthogonality of φ_p on spacelike hyperplanes?
- Progress only in recent years.

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000	00●	0000	0	0000	○	O
Physics	in plane wa	ves: qua	ntum			

• Scalar field in a plane wave.

$$\phi = \int dp \ b_p \varphi_p + d_p^{\dagger} \varphi_{-p}$$
$$\varphi_p = \exp\left[-ip.x - i \int^{x^+} \frac{2p.a - a^2}{p^+}\right]$$

Volkov Z. Phys. 94 (1953)

 \checkmark Front form: as in free theory.

$$[b_p, b_q^{\dagger}] = 2p^+ (2\pi)^3 \delta^{\perp,+} (q-p)$$

- ✓ Usual particle interpretation.
- \checkmark Time dependent processes in lightfront QED.

Neville & Rohrlich PRD 8 (1971) 1692, Ilderton & Torgrimsson PRD 87 (2013) 085040

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000		●000	0	0000	○	0
Poles in	the propag	ator				

- Monochromatic plane wave, frequency ω .
- Volkov propagator G: infinite series of poles $(n \in \mathbb{Z})$

$$(p_{\mu} - nk_{\mu})^2 = m_*^2$$

 $m_*^2 = m^2(1 + a_0^2)$

$$k_{\mu} = \omega n_{\mu}$$

$$k.x = \omega x^{+}$$

$$k.p = \omega p^{+}$$

• 'Shifted mass' in a plane wave, intensity a_0 .

Sengupta 1952

• Discrete spectrum?

Zel'dovich 1967, Oleinik 1967

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000		●000	0	0000	O	0
Poles in	the propag	ator				

- Monochromatic plane wave, frequency ω .
- Volkov propagator G: infinite series of poles $(n \in \mathbb{Z})$

$$(p_{\mu} - nk_{\mu})^2 = m_*^2$$

 $m_*^2 = m^2(1 + a_0^2)$

$$k_{\mu} = \omega n_{\mu}$$

$$k.x = \omega x^{+}$$

$$k.p = \omega p^{+}$$

• 'Shifted mass' in a plane wave, intensity a_0 .

Sengupta 1952

• Discrete spectrum?

Zel'dovich 1967, Oleinik 1967

<u>Debate</u>

Divergences?	Higher loops?	No mass shift!	Mass shift is there
Oleinik 1967	Becker & Mitter 1976	Fried & Eberly 1964	Kibble 1965
Finite mass reform. Reiss 1966	Non-pert. effect Reiss 1966	Pert. effect Lavelle 2012	What about pulses? Corson & Peatross PRA 85 (2012) Mackenroth & Di Piazza PRA 85

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000		o●oo	0	0000	O	0
The shi	fted mass: 🤇	osbervatio	on			

- 1. Compton Scattering.
- 2. 'Nonlinear Compton'.

- $m_* \implies$ frequency shift. Kibble 1965
- ightarrow Spectrum ($u' = \omega'/m$)
- ☆ Never observed. (N.B. undulators!)

000	000	0000	0	0000	0	0
Answer	s from light	front qu	antisatio	n		

Llightcone quantisation:

$$P^{-}(x^{+}) | \, p_{\mu} \, \rangle = \pi^{-}(x^{+}) | \, p_{\mu} \, \rangle$$

• Particle content of free theory.

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000		00●0	0	0000	O	0
Answers	from light	front qua	ntisation			

Llightcone quantisation:

$$P^{-}(x^{+}) | p_{\mu} \rangle = \pi^{-}(x^{+}) | p_{\mu} \rangle$$

• Particle content of free theory.

- Time dependence \implies no explicit Lorentz invariance.
- All poles contribute. Resum contributions

 $G \sim \int \mathrm{d}p \ \delta(p^2 - m^2) \varphi_p(x) \varphi_p^*(y)$

- Off shell poles = going onto ordinary mass-shell.
- Källén-Lehmann in a background field.

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000		000●	0	0000	○	0
Living o	on the edge					

- Poles/mass shift: fingerprint of beam shape.
- Requires fine tuning.

Harvey, Heinzl, Ilderton, Marklund PRL 109 (2012)

<u>Laser</u>

- $40\mu m$ spot radius.
- $a_0 \simeq 2$, 800nm.

Electron beam

- 5Mev, 8μ m radius.
- e⁻ see a plane wave.

REGAE at DESY

- Plane wave vs. Gaussian beam.
- Peaks = mass-shift signals.

Intro Front form Mass Recoil Pairs Non-pert Outro Radiation reaction from QED

- Classical radiation reaction: LAD \implies runaways.
- \rightarrow Different classical equations.
 - Measurable at 10^{23} W/cm²?

Di Piazza et al. Rev. Mod. Phys. 84 (2012), Heinzl Int. J. Mod. Phys. A27 (2012), Harvey, Heinzl, Marklund PRD 84 (2011), Di Piazza, Hatsagortsyan, Keitel, PRL 102 (2009), Bulanov et al. PRE 84 (2011)

- Radiation Reaction from QED?
- Progress using lightfront quantisaton. Ilderton & Torgrimsson (2013)

See talk by Greger Torgrimsson

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro	
000		0000	0	●000	O	0	
Pair production \rightarrow zero modes							

• Dirac-Heisenberg-Wigner function W(x, p).

Wigner Phys.Rev.40 (1932), Heisenberg Z.Phys.90 (1934), Dirac Proc.Camb.Phil.Soc.30 (1934)

- Phase space (quasi) probability distribution.
- Instant and front forms:

$$W_I = \left. \int \mathrm{d}^3 \mathbf{y} e^{ip.y} \langle 0 \left| \psi(x + \frac{y}{2}) e^{ie \int \mathrm{d}z.A(z)} \psi^{\dagger}(x - \frac{y}{2}) \right| 0 \right\rangle \right|_{y^0 = 0}$$

$$W_F = \int d^2 y^{\perp} dy^{-} e^{ip.y} \langle 0 | \psi_{+}(x + \frac{y}{2}) e^{ie \int dz.A(z)} \psi_{+}^{\dagger}(x - \frac{y}{2}) | 0 \rangle \bigg|_{y^{+}=0}$$

• $W(x,p) \sim \text{prob.}$ momentum p at time/position x.

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000		0000	0	0●00	O	O
Compar	re: instant v	s. front	form			

- In a pair producing background
- W = momentum (p) distribution at time x.

- Oscillations: transient effects.
- Virtual particles.

Bialynicki-Birula, Gornicki, Rafelski, PRD (1991), Bialynicki-Birula and Rudnicki (2011)

• Bump moving out: real particles

- In a pair producing background
- W = momentum (p) distribution at time x.

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000		0000	0	0●00	O	O
Compar	e: instant v	s. front	form			

- In a pair producing background
- W = momentum (p) distribution at time x.

- Only real particles.
- W supported on classical worldlines.
- Zero modes essential!

Tomaras et al. JHEP 0111 (2001),

Woodard, Nucl.Phys.Proc.Suppl 108 (2002)

Front form.

Hebenstreit, Ilderton, Marklund, Phys.Rev. D84 (2011) 125022

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000		0000	0	00●0	O	0
Pair pro	oduction?					

 \rightarrow Phenomenology.

 $\ddot{\sim}$ Very far from Sauter-Schwinger limit $E_S \sim 10^{18}$ V/m.

Heisenberg and Euler 1936; Sauter 1931; Schwinger 1951

- Next generation: $E < 10^{-2} E_S$.
- Many ways to 'lower' the threshold.

Schutzhold, Gies, Dunne PRL 101 (2008), PRD 80 (2009)

• Geometry helps. Simple illustration:

Number of pairs
$$\simeq \frac{\text{Vol}}{\lambda_c^4} \frac{E^2}{E_S^2} \exp\left(-\pi \frac{E_S}{E}\right)$$

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000		0000	0	00●0	O	0
Pair pro	oduction?					

 \rightarrow Phenomenology.

 $\ddot{\sim}$ Very far from Sauter-Schwinger limit $E_S \sim 10^{18}$ V/m.

Heisenberg and Euler 1936; Sauter 1931; Schwinger 1951

- Next generation: $E < 10^{-2} E_S$.
- Many ways to 'lower' the threshold.

Schutzhold, Gies, Dunne PRL 101 (2008), PRD 80 (2009)

• Geometry helps. Simple illustration:

Number of pairs
$$\simeq rac{\text{Vol}}{\lambda_c^4} rac{E^2}{E_S^2} \exp\left(-\pi rac{E_S}{E}
ight)$$

• Focal Vol ~ $1\mu m^4$, 1 pair $\implies E \sim 0.06 E_S$.

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000		0000	0	000●	O	0
Focusse	d fields					

• Multiple colliding pulses.

Bulanov et al, PRL 104 (2010)

- Nonperturbative calculations in real fields? / in general?
- \rightarrow Numerical approaches.
 - PIC Codes + Monte-Carlo modules?
 - Would like to retain quantum and lightfront approach.

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000		0000	0	0000	●	0
A non	-perturbativ	e approa	ach			

- Time dependent Basis Light-Front Quantisation.
- For explicitly time-dependent problems in QFT.

Xingbo Zhao, Anton Ilderton, Pieter Maris, James Vary (2013)

$$P^- = P^-_{\mathsf{QED}} + V_{\mathsf{ext}}(x^+)$$

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000		0000	0	0000	●	O
A non-p	perturbative	approac	h			

- Time dependent Basis Light-Front Quantisation.
- For explicitly time-dependent problems in QFT.

Xingbo Zhao, Anton Ilderton, Pieter Maris, James Vary (2013)

$$P^- = P^-_{\mathsf{QED}} + V_{\mathsf{ext}}(x^+)$$

- 1.) Solve QED. $\hat{P}_{\mathsf{QED}}^{-}|\beta\rangle = E_{\beta}|\beta\rangle$
- 2.) Transitions due to V_{ext} :
 - $|\beta\rangle \rightarrow |\beta'\rangle$

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000		0000	0	0000	●	0
A non-	-perturbativ	e approa	ach			

- Time dependent Basis Light-Front Quantisation.
- For explicitly time-dependent problems in QFT.

Xingbo Zhao, Anton Ilderton, Pieter Maris, James Vary (2013)

$$P^- = P^-_{\mathsf{QED}} + V_{\mathsf{ext}}(x^+)$$

1.) Solve QED. $\ddot{-}$ 1.) Fock space truncation.

$$|e_{\mathsf{phys}}\rangle = |e\rangle + |e\gamma\rangle + \dots$$

2.) Transitions due to V_{ext} : $|\beta\rangle \rightarrow |\beta'\rangle$

 $\hat{P}_{\mathsf{QED}}^{-} |\beta\rangle = E_{\beta} |\beta\rangle$

2.) Time step discretisation.

$$\mathcal{T}_+ e^{-\frac{i}{2}\int P^+} \rightarrow (1 - \frac{i}{2}P^+(x_n^+)\delta x^+) \cdots$$

• Fully quantum, real time.

See talk by Xingbo Zhao.

Intro	Front form	Mass	Recoil	Pairs	Non-pert	Outro
000		0000	0	0000	○	•
Conclusions						

- Intense laser fields offer prospects for
 - testing QED
 - new particle searches
- Old problems: lightfront provides answers.
 - Effective mass
 - Radiation reaction

Ilderton & Torgrimsson PRD (2012)

Ilderton & Torgrimsson (2013)

• Nonperturbative methods.

Talk by Xingbo Zhao