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Introduction

wish to compute hadron structure in terms of wave
functions

|p〉 ψuud ψuudg ψuudqq̄

ψuudgg

= + +

+ + · · ·

must truncate in some fashion

the LFCC method avoids Fock-space truncation
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Equations for wave functions

Solve
(
K.E. + VQCD

)
|p〉 = Ep|p〉 with Ep =

√
m2

p + p2 and

VQCD = + +

+ + + + · · ·

Equivalent to coupled integral equations

ψuud×

×

×

+ ψuudg = ψuudEp

ψuudg

×

×

×

×

+ ψuud + ψuudqq̄ + ψuudgg + · · · = ψuudgEp

.

.
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Uncanceled divergences

for example, the Ward identity of gauge theories is
destroyed by truncation

analog in Feynman perturbation theory
separate diagrams into time-ordered diagrams
discard time orderings that include intermediate
states with more particles than some finite limit
destroys covariance, disrupts regularization, and
induces spectator dependence for subdiagrams

in the nonperturbative case, this happens not just to
some finite order in the coupling but to all orders
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Light-cone coordinates

Dirac, RMP 21, 392 (1949);
Brodsky, Pauli, and Pinsky, Phys. Rep. 301, 299 (1997).

time: x+ = t+ z

space: x = (x−, ~x⊥), x− ≡ t− z, ~x⊥ = (x, y)

energy: p− = E − pz

momentum: p = (p+, ~p⊥), p+ ≡ E + pz, ~p⊥ = (px, py)

mass-shell condition: p2 = m2 ⇒ p− = m2+p2⊥
p+
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Mass eigenvalue problem

Pauli and Brodsky, PRD 32, 1993 (1985); 2001 (1985)

P−|P 〉 = M2 + P 2
⊥

P+
|P 〉, P|P 〉 = P |P 〉.

no spurious vacuum contributions to eigenstates
p+ > 0 for all particles
cannot produce particles from vacuum and still
conserve p+

(but difficult to analyze structure of physical vacuum)

boost-invariant separation of internal and external
momenta

longitudinal momentum fractions xi ≡ p+i /P
+

relative transverse momenta ~ki⊥ ≡ ~pi⊥ − xi ~P⊥
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Coupled-cluster (CC) method

originated with Coester, Nucl. Phys. 7, 421 (1958) and
Coester and Kümmel, Nucl. Phys. 17, 477 (1960), with
applications to the many-body Schrödinger equation in
nuclear physics.

applied to many-electron problem in molecules by
Čižek, J. Chem. Phys. 45, 4256 (1966).

form eigenstate as eT |φ〉 where
|φ〉 is product of single-particle states
terms in T annihilate states in |φ〉 and create excited
states, to build in correlations
truncate T at some number of excitations

review: RJ Bartlett and M Musial, RMP 79, 291 (2007).
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Light-front coupled-cluster method

wish to solve P−|ψ〉 = M2+P 2
⊥

P+ |ψ〉.

write eigenstate as |ψ〉 =
√
ZeT |φ〉

Z controls normalization: 〈ψ′|ψ〉 = δ(P ′ − P ).

|φ〉 is the valence state, with 〈φ′|φ〉 = δ(P ′ − P ).
T contains terms that only increase particle number.
T conserves Jz, light-front momentum P , charge, . . .
p+ > 0 ⇒ T must include annihilation
and powers of T include contractions.

construct P− = e−TP−eT and let Pv project onto the
valence Fock sector. Then, have coupled system:

PvP−|φ〉 = M2+P 2
⊥

P+ |φ〉 and (1− Pv)P−|φ〉 = 0.
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A soluble model

light-front analog of the Greenberg–Schweber model
static fermionic source that emits and absorbs
bosons without changing its spin

Chabysheva and jrh, PLB 711, 417 (2012);
Brodsky, jrh, and McCartor, PRD 58, 025005 (1998);
Greenberg and Schweber, N Cim 8, 378 (1958).

not fully covariant
hides some of the power of the LFCC method, but is
sufficient to show how the method can be applied.
states are all limited to having a fixed total transverse
momentum ~P⊥, which we take to be zero.
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Fock-state expansions

|ψ〉 = ψ0 ψ1 ψ2+ + + · · ·

Instead, in LFCC:

T = + + + · · ·t1 t2 t3

eT |φ〉 = 1 + t1 +t1 ++ t1 t1 + t2

+ +t1 t1 t1 t1 t2

+ · · · φ+ t3
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Truncation

|ψ〉 = ψ0 ψ1 ψ2+ + + · · ·

T = + + + · · ·t1 t2 t3

eT |φ〉 = 1 + t1 +t1 ++ t1 t1 + t2

+ +t1 t1 t1 t1 t2

+ · · · φ+ t3
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Effective Hamiltonian

constructed from Baker–Hausdorff expansion.

[P−, T ] →

[[P−, T ], T ] →

list only terms that connect the lowest Fock sectors.

the self-energy contribution is the same in all Fock
sectors

contains all three of the diagrams analogous to those
for the Ward identity in QED
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Eigenvalue problems

ψ1 + ψ1 + ψ1

ψ1 = M
2

P+
ψ1

In LFCC:

+φ = M
2

P+
t1 φ φ

t1 +
t1 t1 +

t1 t1

+ =t1 t1
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Exact solution

in this special case, the exponential operator eT

generates the exact solution, with

tls(q, p) =
−g√
16π3q+

(
p+

p++q+

)γ
q+/P+

µ2
l+q2⊥

.

the fact that the self-energy loop is the same in the
valence sector and the one-fermion/one-boson sector
plays a critical role. It contributes

− g
P+

∫ dq√
16π3q+

θ(P+− q+)
(
P+−q+

P+

)γ ∑
l(−1)ltl±(q, P − q),

regulated by the PV (l = 1) term.

the expression for the loop obtained in the valence
sector is exactly what is needed to obtain the necessary
cancellations.
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Dirac form factor

compute the Dirac form factor for the dressed fermion
from a matrix element of the current J+ = ψγ+ψ

the current couples to a photon of momentum q

the matrix element is generally

〈ψσ(P + q)|16π3J+(0)|ψ±(P )〉 = 2δσ±F1(q
2)± q1±iq2

M δσ∓F2(q
2),

with F1 and F2 the Dirac and Pauli form factors.

in the present model, the fermion cannot flip its spin;
therefore, F2 is zero, and we investigate only F1
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Expectation values

expectation value for op Ô: 〈Ô〉 = 〈φ|eT
†
ÔeT |φ〉

〈φ|eT†eT |φ〉

direct computation requires infinite sum.

define O = e−T ÔeT and 〈ψ̃| = 〈φ| eT
†
eT

〈φ|eT†eT |φ〉

then 〈Ô〉 = 〈ψ̃|O|φ〉 and

〈ψ̃′|φ〉 = 〈φ′| eT
†
eT

〈φ|eT†eT |φ〉
|φ〉 = δ(P ′ − P )

O computed from Baker–Hausdorff expansion:
O = Ô + [Ô, T ] + 1

2 [[Ô, T ], T ] + · · ·

〈ψ̃| is a left eigenvector of P−:

〈ψ̃|P− = 〈φ| eT
†
P−eT

〈φ|eT†eT |φ〉
= 〈φ|P−

† eT
†
eT

〈φ|eT†eT |φ〉
= M2+P 2

⊥

P+ 〈ψ̃|
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LFCC approximation

the form factor is approximated by the matrix element

F1(q
2) = 8π3〈ψ̃±(P + q)|J+(0)|φ±(P )〉,

with J+(0) = J+(0) + [J+(0), T ] + · · ·
for this model, there are no contributions from
fermion-antifermion pairs, so that

J+(0) = 2
∑

s

∫
dp′

√
16π3

∫
dp

√
16π3

b†s(p
′)bs(p),

only the first two terms of the Baker–Hausdorff
expansion contribute to the matrix element

the first term contributes 1/8π3
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The second term

[J+(0), T ] = 2
∑

ls

∫
dp′

√
16π3

∫
dp

√
16π3

∫
dq′[tls(q

′, p)− tls(q
′, p′]

× a†l (q
′)b†s(p

′)bs(p).

〈ψ̃±(P + q)|[J+(0), T ]|φ±(P )〉 =
∑

l

(−1)l

8π3

∫
dq′θ(P+ + q+ − q′+)

×l±l±(q
′, P + q)[θ(P+ − q′+)tl±(q

′, P − q′)− tl±(q
′, P + q − q′)],

where l±l± is the left-hand wave function:

〈ψ̃σ(P )| = 〈φσ(P )|+
∑

ls

∫
dqθ(P+−q+)lσ∗ls (q, P )〈0|al(q)bs(P−q).
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Evaluation of the form factor

the left-hand wave function takes the form
lσls(q, P ) = δσs

−g√
16π3q+

(
P+−q+

P+

)γ
q+/P+

µ2
l+q2⊥

l̃(q+/P+)

with l̃ the solution of a 1D integral equation

if l̃ is computed in quadrature, the integrals remaining in
F1 can be computed from the same quadrature rule for
any chosen value of q2

if l̃ is instead constructed as an expansion in g2, F1 can
also be constructed as an expansion

in any case, in the limit of q2 → 0, we have F1(0) = 1,
consistent with the unit charge in the current J+ = ψ̄γ+ψ
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Light-front holographic QCD

A factorized wave function in the valence (qq̄) sector

ψ = eiLϕX(x)φ(ζ)/
√

2πζ

subject to an effective potential Ũ that conserves Lz:
[
µ21
x

+
µ22

1− x
− ∂2

∂ζ2
− 1− 4L2

4ζ2
+ Ũ

]
X(x)φ(ζ) =M2X(x)φ(ζ).

For zero-mass quarks, the longitudinal wave function X
decouples, and the transverse wave function satisfies

[
− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

]
φ(ζ) =M2φ(ζ),

with U determined by an AdS5 correspondence.
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Softwall model for massless quarks

Yields oscillator potential U(ζ) = κ4ζ2 + 2κ2(J − 1).
Spectrum: M2 = 4κ2 (n+ (J + L)/2)
→ linear Regge trajectory, good fit for light mesons.
Transverse wave functions are 2D oscillator functions.
Longitudinal X constrained by a form-factor duality.

F (q2) =

∫
dx |X(x)|2
x(1− x)

∫
2πζdζJ0

(
ζq⊥

√
x/(1− x)

)
|φ(ζ)|2.

To be compared with the form computed in AdS5

F (q2) =

∫
dx

∫
2πζdζJ0

(
ζq⊥

√
x/(1− x)

)
|φ(ζ)|2.

Thus X(x) =
√
x(1− x) when the quarks are massless.
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Massive quarks

Ansatz by Brodsky and De Téramond:
replace k2⊥/(x(1− x)) with k2⊥/x(1− x) + µ21/x+ µ22/(1− x)

in transverse harmonic oscillator eigenfunctions,
with µi as current-quark masses

XBdT(x) = NBdT

√
x(1− x)e−(µ2

1/x+µ2
2/(1−x))/2κ2

,

Instead, use a longitudinal equation with the ‘t Hooft model
[
m2

1

x
+

m2
2

1− x

]
X(x)+

g2

π
P
∫
dy
X(x)−X(y)

(x− y)2
−CX(x) =M2

‖X(x),

and mi constituent masses. Then X(x) well approximated
by xβ1(1− x)β2, with m2

iπ/g
2 − 1 + πβi cot πβi = 0. Need

β1 = β2 = 1/2 for zero current masses ⇒ g2/π = m2
u = m2

d.
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Numerical solution

Expand solution as X(x) =
∑

n cnfn(x) with respect to basis
functions

fn(x) = Nnx
β1(1− x)β2P

(2β2,2β1)
n (2x− 1);

the n = 0 term represents 90% or more of the probability.
Matrix representation of longitudinal equation, for M‖ = 0,

(
m2

1

m2
u
A1 +

m2
2

m2
u
A2 +B

)
~c = ξ~c, with ξ ≡ C/m2

u and

(A1)nm =

∫ 1

0

dx

x
fn(x)fm(x), (A2)nm =

∫ 1

0

dx

1− x
fn(x)fm(x),

Bnm =
1

2

∫ 1

0

dx

∫ 1

0

dy
fn(x)− fn(y)

x− y

fm(x)− fm(y)

x− y
.
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Parameters and decay constants

model ansatz decay constant

meson m1 m2 µ1 µ2 Pqq̄ κ model ansatz exper.

pion 330 330 4 4 0.204 951 131 132 130

kaon 330 500 4 101 1 524 160 162 156

J/Ψ 1500 1500 1270 1270 1 894 267 238 278

All dimensionful parameters are in units of MeV. Parameter
and experimental values are from Vega et al., PRD 80,
055014 (2009) and the Particle Data Group.

The decay constant is given by

fM = 2
√
6

∫ 1

0

dx

∫ ∞

0

dk2⊥
16π2

ψ(x, k⊥).
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Longitudinal wave functions
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Parton distributions

f(x) = Pqq̄
X2(x)
x(1−x)
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Summary

LFCC method
divides hadronic eigenproblem into

eigenproblem in valence sector.
auxiliary equations to define.

advantages of LFCC
no Fock-space truncation.
no sector dependence or spectator dependence.
systematically improvable.

light-front holography
provides model for valence sector.
can augment for longitudinal wave functions,
consistent with Brodsky-de Téramond ansatz.
leads to natural choice for basis functions,
applicable beyond holographic approximation.
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