Light-front holography and the light-front coupled-cluster method

Work done in collaboration with S. Chabysheva and supported in part by US DoE and MSI.

John R. Hiller
jhiller@d.umn.edu

Department of Physics
University of Minnesota Duluth

Outline

- introduction
- bound-state eigenvalue problem
- light-front coupled-cluster method
- Chabysheva and jrh, PLB 711, 417 (2012) arXiv:1203.0250, 1208.6503, 1208.6076.
, also talk by Chabysheva.
- sample application
- form-factor calculation
- light-front holography
- Brodsky and De Téramond, PRL 96, 201601 (2006).
- quark model for mesons
- Chabysheva and jrh, arXiv:1207.7128.
summary

Introduction

- wish to compute hadron structure in terms of wave functions

- must truncate in some fashion
- the LFCC method avoids Fock-space truncation

Equations for wave functions

Solve (K.E. $+V_{\mathrm{QCD}}$) $|p\rangle=E_{p}|p\rangle$ with $E_{p}=\sqrt{m_{p}^{2}+p^{2}}$ and

Equivalent to coupled integral equations

Uncanceled divergences

- for example, the Ward identity of gauge theories is destroyed by truncation

- analog in Feynman perturbation theory
- separate diagrams into time-ordered diagrams
- discard time orderings that include intermediate states with more particles than some finite limit
- destroys covariance, disrupts regularization, and induces spectator dependence for subdiagrams
- in the nonperturbative case, this happens not just to some finite order in the coupling but to all orders

Light-cone coordinates

Dirac, RMP 21, 392 (1949);
Brodsky, Pauli, and Pinsky, Phys. Rep. 301, 299 (1997).

- time: $x^{+}=t+z$
- space: $\underline{x}=\left(x^{-}, \vec{x}_{\perp}\right), x^{-} \equiv t-z, \quad \vec{x}_{\perp}=(x, y)$
- energy: $p^{-}=E-p_{z}$
- momentum: $\underline{p}=\left(p^{+}, \vec{p}_{\perp}\right), p^{+} \equiv E+p_{z}, \quad \vec{p}_{\perp}=\left(p_{x}, p_{y}\right)$
- mass-shell condition: $p^{2}=m^{2} \Rightarrow p^{-}=\frac{m^{2}+p_{\perp}^{2}}{p^{+}}$

Mass eigenvalue problem

- Pauli and Brodsky, PRD 32, 1993 (1985); 2001 (1985)

$$
\mathcal{P}^{-}|\underline{P}\rangle=\frac{M^{2}+P_{\perp}^{2}}{P^{+}}|\underline{P}\rangle, \quad \underline{\mathcal{P}}|\underline{P}\rangle=\underline{P}|\underline{P}\rangle .
$$

- no spurious vacuum contributions to eigenstates
- $p^{+}>0$ for all particles
- cannot produce particles from vacuum and still conserve p^{+}
- (but difficult to analyze structure of physical vacuum)
- boost-invariant separation of internal and external momenta
- longitudinal momentum fractions $x_{i} \equiv p_{i}^{+} / P^{+}$
- relative transverse momenta $\vec{k}_{i \perp} \equiv \vec{p}_{i \perp}-x_{i} \vec{P}_{\perp}$

Coupled-cluster (CC) method

- originated with Coester, Nucl. Phys. 7, 421 (1958) and Coester and Kümmel, Nucl. Phys. 17, 477 (1960), with applications to the many-body Schrödinger equation in nuclear physics.
- applied to many-electron problem in molecules by Čižek, J. Chem. Phys. 45, 4256 (1966).
- form eigenstate as $e^{T}|\phi\rangle$ where
- $|\phi\rangle$ is product of single-particle states
- terms in T annihilate states in $|\phi\rangle$ and create excited states, to build in correlations
- truncate T at some number of excitations
- review: RJ Bartlett and M Musial, RMP 79, 291 (2007).

Light-front coupled-cluster method

- wish to solve $\mathcal{P}^{-}|\psi\rangle=\frac{M^{2}+P_{1}^{2}}{P^{+}}|\psi\rangle$.
- write eigenstate as $|\psi\rangle=\sqrt{Z} e^{T}|\phi\rangle$
- Z controls normalization: $\left\langle\psi^{\prime} \mid \psi\right\rangle=\delta\left(\underline{P}^{\prime}-\underline{P}\right)$.
- $|\phi\rangle$ is the valence state, with $\left\langle\phi^{\prime} \mid \phi\right\rangle=\delta\left(\underline{P}^{\prime}-\underline{P}\right)$.
- T contains terms that only increase particle number.
- T conserves J_{z}, light-front momentum \underline{P}, charge, ...
- $p^{+}>0 \Rightarrow T$ must include annihilation and powers of T include contractions.
- construct $\overline{\mathcal{P}-}=e^{-T} \mathcal{P}^{-} e^{T}$ and let P_{v} project onto the valence Fock sector. Then, have coupled system:
$P_{v} \overline{\mathcal{P}^{-}}|\phi\rangle=\frac{M^{2}+P_{1}^{2}}{P^{+}}|\phi\rangle$ and $\left(1-P_{v}\right) \overline{\mathcal{P}^{-}}|\phi\rangle=0$.

A soluble model

- light-front analog of the Greenberg-Schweber model
- static fermionic source that emits and absorbs bosons without changing its spin

Chabysheva and jrh, PLB 711, 417 (2012); Brodsky, jrh, and McCartor, PRD 58, 025005 (1998); Greenberg and Schweber, N Cim 8, 378 (1958).

- not fully covariant
- hides some of the power of the LFCC method, but is sufficient to show how the method can be applied.
- states are all limited to having a fixed total transverse momentum \vec{P}_{\perp}, which we take to be zero.

Fock-state expansions

$$
\left.|\psi\rangle=-\psi_{0}\right)+\cdots=\psi_{1}+\underline{+}+\cdots
$$

Instead, in LFCC:

Truncation

$$
?^{7}
$$

$$
\begin{aligned}
& |\psi\rangle=\cdots(6)+\cdots+(4)+\text { 洼 }
\end{aligned}
$$

Effective Hamiltonian

- constructed from Baker-Hausdorff expansion.

$$
\begin{aligned}
& \text {-x+.. } \\
& {\left[\mathcal{P}^{-}, T\right] \rightarrow \text {, }}
\end{aligned}
$$

- list only terms that connect the lowest Fock sectors.
- the self-energy contribution is the same in all Fock sectors
- contains all three of the diagrams analogous to those for the Ward identity in QED

Eigenvalue problems

In LFCC:

Exact solution

- in this special case, the exponential operator e^{T} generates the exact solution, with

$$
t_{l s}(\underline{q}, \underline{p})=\frac{-g}{\sqrt{16 \pi^{3} q^{+}}}\left(\frac{p^{+}}{p^{+}+q^{+}}\right)^{\gamma} \frac{q^{+} / P^{+}}{\mu_{l}^{2}+q_{\perp}^{2}} .
$$

- the fact that the self-energy loop is the same in the valence sector and the one-fermion/one-boson sector plays a critical role. It contributes
$-\frac{g}{P^{+}} \int \frac{d \underline{q}}{\sqrt{16 \pi^{3} q^{+}}} \theta\left(P^{+}-q^{+}\right)\left(\frac{P^{+}-q^{+}}{P^{+}}\right)^{\gamma} \sum_{l}(-1)^{l} t_{l \pm}(\underline{q}, \underline{P}-\underline{q})$,
regulated by the PV $(l=1)$ term.
- the expression for the loop obtained in the valence sector is exactly what is needed to obtain the necessary cancellations.

Dirac form factor

- compute the Dirac form factor for the dressed fermion from a matrix element of the current $J^{+}=\bar{\psi} \gamma^{+} \psi$
- the current couples to a photon of momentum q
- the matrix element is generally

$$
\left\langle\psi^{\sigma}(\underline{P}+\underline{q})\right| 16 \pi^{3} J^{+}(0)\left|\psi^{ \pm}(\underline{P})\right\rangle=2 \delta_{\sigma \pm} F_{1}\left(q^{2}\right) \pm \frac{q^{1} \pm i q^{2}}{M} \delta_{\sigma \mp} F_{2}\left(q^{2}\right)
$$

with F_{1} and F_{2} the Dirac and Pauli form factors.

- in the present model, the fermion cannot flip its spin; therefore, F_{2} is zero, and we investigate only F_{1}

Expectation values

- expectation value for op $\hat{O}:\langle\hat{O}\rangle=\frac{\langle\phi| e^{T^{\dagger}} \hat{O} e^{T}|\phi\rangle}{\langle\phi| e^{T \dagger} e^{T}|\phi\rangle}$
- direct computation requires infinite sum.
- define $\bar{O}=e^{-T} \hat{O} e^{T}$ and $\langle\tilde{\psi}|=\langle\phi| \frac{e^{T \dagger} e^{T}}{\langle\phi| e^{\dagger} e^{T}|\phi\rangle}$
- then $\langle\hat{O}\rangle=\langle\tilde{\psi}| \bar{O}|\phi\rangle$ and

$$
\left\langle\tilde{\psi}^{\prime} \mid \phi\right\rangle=\left\langle\phi^{\prime}\right| \frac{e^{T^{\dagger}} e^{T}}{\langle\phi| e^{T T} e^{T}|\phi\rangle}|\phi\rangle=\delta\left(\underline{P}^{\prime}-\underline{P}\right)
$$

- \bar{O} computed from Baker-Hausdorff expansion:

$$
\bar{O}=\hat{O}+[\hat{O}, T]+\frac{1}{2}[[\hat{O}, T], T]+\cdots
$$

- $\langle\tilde{\psi}|$ is a left eigenvector of $\overline{\mathcal{P}^{-}}$:

$$
\langle\tilde{\psi}| \overline{\mathcal{P}^{-}}=\langle\phi| \frac{e^{T^{\dagger}} \mathcal{P}^{-} e^{T}}{\left\langle\langle | e^{T^{\dagger}} e^{T} \mid \phi\right\rangle}=\langle\phi| \overline{\mathcal{P}^{-}} \frac{e^{T^{\dagger}} e^{T}}{\langle\phi| e^{T} e^{T}|\phi\rangle}=\frac{M^{2}+P^{2}}{P^{+}}\langle\tilde{\psi}|
$$

LFCC approximation

- the form factor is approximated by the matrix element

$$
F_{1}\left(q^{2}\right)=8 \pi^{3}\left\langle\widetilde{\psi}^{ \pm}(\underline{P}+\underline{q})\right| \overline{J^{+}(0)}\left|\phi^{ \pm}(\underline{P})\right\rangle,
$$

with $\overline{J^{+}(0)}=J^{+}(0)+\left[J^{+}(0), T\right]+\cdots$

- for this model, there are no contributions from fermion-antifermion pairs, so that

$$
J^{+}(0)=2 \sum_{s} \int \frac{d \underline{\underline{p}^{\prime}}}{\sqrt{16 \pi^{3}}} \int \frac{d \underline{\underline{p}}}{\sqrt{16 \pi^{3}}} b_{s}^{\dagger}\left(\underline{p}^{\prime}\right) b_{s}(\underline{p}),
$$

- only the first two terms of the Baker-Hausdorff expansion contribute to the matrix element
- the first term contributes $1 / 8 \pi^{3}$

The second term

$$
\begin{array}{r}
{\left[J^{+}(0), T\right]=2 \sum_{l s} \int \frac{d \underline{p^{\prime}}}{\sqrt{16 \pi^{3}}} \int \frac{d \underline{p}}{\sqrt{16 \pi^{3}}} \int d \underline{q}^{\prime}\left[t_{l s}\left(\underline{q}^{\prime}, \underline{p}\right)-t_{l s}\left(\underline{q}^{\prime}, \underline{p}^{\prime}\right]\right.} \\
\times a_{l}^{\dagger}\left(\underline{q}^{\prime}\right) b_{s}^{\dagger}\left(\underline{p^{\prime}}\right) b_{s}(\underline{p}) . \\
\left\langle\widetilde{\psi}^{ \pm}(\underline{P}+\underline{q})\right|\left[J^{+}(0), T\right]\left|\phi^{ \pm}(\underline{P})\right\rangle=\sum_{l} \frac{(-1)^{l}}{8 \pi^{3}} \int d \underline{q}^{\prime} \theta\left(P^{+}+q^{+}-q^{\prime+}\right) \\
\times l_{l \pm}^{ \pm}\left(\underline{q}^{\prime}, \underline{P}+\underline{q}\right)\left[\theta\left(P^{+}-q^{\prime+}\right) t_{l \pm}\left(\underline{q}^{\prime}, \underline{P}-\underline{q}^{\prime}\right)-t_{l \pm}\left(\underline{q}^{\prime}, \underline{P}+\underline{q}-\underline{q}^{\prime}\right)\right],
\end{array}
$$

where $l_{l \pm}^{ \pm}$is the left-hand wave function:
$\left\langle\widetilde{\psi}^{\sigma}(\underline{P})\right|=\left\langle\phi^{\sigma}(\underline{P})\right|+\sum_{l s} \int d \underline{q} \theta\left(P^{+}-q^{+}\right) l_{l s}^{\sigma *}(\underline{q}, \underline{P})\langle 0| a_{l}(\underline{q}) b_{s}(\underline{P}-\underline{q})$.

Evaluation of the form factor

- the left-hand wave function takes the form
$l_{l s}^{\sigma}(\underline{q}, \underline{P})=\delta_{\sigma s} \frac{-g}{\sqrt{16 \pi^{3} q^{+}}}\left(\frac{P^{+}-q^{+}}{P+}\right)^{\gamma} \frac{q^{+} / P^{+}}{\mu_{l}^{2}+q_{\perp}^{2}} \tilde{l}\left(q^{+} / P^{+}\right)$
with \tilde{l} the solution of a 1D integral equation
- if \tilde{l} is computed in quadrature, the integrals remaining in F_{1} can be computed from the same quadrature rule for any chosen value of q^{2}
- if \tilde{l} is instead constructed as an expansion in g^{2}, F_{1} can also be constructed as an expansion
- in any case, in the limit of $q^{2} \rightarrow 0$, we have $F_{1}(0)=1$, consistent with the unit charge in the current $J^{+}=\bar{\psi} \gamma^{+} \psi$

Light-front holographic QCD

A factorized wave function in the valence $(q \bar{q})$ sector

$$
\psi=e^{i L \varphi} X(x) \phi(\zeta) / \sqrt{2 \pi \zeta}
$$

subject to an effective potential \widetilde{U} that conserves L_{z} :

$$
\left[\frac{\mu_{1}^{2}}{x}+\frac{\mu_{2}^{2}}{1-x}-\frac{\partial^{2}}{\partial \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\widetilde{U}\right] X(x) \phi(\zeta)=M^{2} X(x) \phi(\zeta) .
$$

For zero-mass quarks, the longitudinal wave function X decouples, and the transverse wave function satisfies

$$
\left[-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \phi(\zeta)=M^{2} \phi(\zeta),
$$

with U determined by an AdS $_{5}$ correspondence.

Softwall model for massless quarks

Yields oscillator potential $U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$.
Spectrum: $M^{2}=4 \kappa^{2}(n+(J+L) / 2)$
\rightarrow linear Regge trajectory, good fit for light mesons.
Transverse wave functions are 2D oscillator functions.
Longitudinal X constrained by a form-factor duality.

$$
F\left(q^{2}\right)=\int \frac{d x|X(x)|^{2}}{x(1-x)} \int 2 \pi \zeta d \zeta J_{0}\left(\zeta q_{\perp} \sqrt{x /(1-x)}\right)|\phi(\zeta)|^{2} .
$$

To be compared with the form computed in AdS_{5}

$$
F\left(q^{2}\right)=\int d x \int 2 \pi \zeta d \zeta J_{0}\left(\zeta q_{\perp} \sqrt{x /(1-x)}\right)|\phi(\zeta)|^{2}
$$

Thus $X(x)=\sqrt{x(1-x)}$ when the quarks are massless.

Massive quarks

Ansatz by Brodsky and De Téramond:

replace $k_{\perp}^{2} /(x(1-x))$ with $k_{\perp}^{2} / x(1-x)+\mu_{1}^{2} / x+\mu_{2}^{2} /(1-x)$
in transverse harmonic oscillator eigenfunctions,
with μ_{i} as current-quark masses

$$
X_{\mathrm{BdT}}(x)=N_{\mathrm{BdT}} \sqrt{x(1-x)} e^{-\left(\mu_{1}^{2} / x+\mu_{2}^{2} /(1-x)\right) / 2 \kappa^{2}},
$$

Instead, use a longitudinal equation with the ' t Hooft model

$$
\left[\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x}\right] X(x)+\frac{g^{2}}{\pi} \mathcal{P} \int d y \frac{X(x)-X(y)}{(x-y)^{2}}-C X(x)=M_{\|}^{2} X(x),
$$

and m_{i} constituent masses. Then $X(x)$ well approximated by $x^{\beta_{1}}(1-x)^{\beta_{2}}$, with $m_{i}^{2} \pi / g^{2}-1+\pi \beta_{i} \cot \pi \beta_{i}=0$. Need $\beta_{1}=\beta_{2}=1 / 2$ for zero current masses $\Rightarrow g^{2} / \pi=m_{u}^{2}=m_{d}^{2}$.

Numerical solution

Expand solution as $X(x)=\sum_{n} c_{n} f_{n}(x)$ with respect to basis functions

$$
f_{n}(x)=N_{n} x^{\beta_{1}}(1-x)^{\beta_{2}} P_{n}^{\left(2 \beta_{2}, 2 \beta_{1}\right)}(2 x-1) ;
$$

the $n=0$ term represents 90% or more of the probability. Matrix representation of longitudinal equation, for $M_{\|}=0$,

$$
\begin{gathered}
\left(\frac{m_{1}^{2}}{m_{u}^{2}} A_{1}+\frac{m_{2}^{2}}{m_{u}^{2}} A_{2}+B\right) \vec{c}=\xi \vec{c}, \text { with } \xi \equiv C / m_{u}^{2} \text { and } \\
\left(A_{1}\right)_{n m}=\int_{0}^{1} \frac{d x}{x} f_{n}(x) f_{m}(x), \quad\left(A_{2}\right)_{n m}=\int_{0}^{1} \frac{d x}{1-x} f_{n}(x) f_{m}(x), \\
B_{n m}=\frac{1}{2} \int_{0}^{1} d x \int_{0}^{1} d y \frac{f_{n}(x)-f_{n}(y)}{x-y} \frac{f_{m}(x)-f_{m}(y)}{x-y} .
\end{gathered}
$$

Parameters and decay constants

model									
meson	m_{1}	m_{2}	μ_{1}	μ_{2}	$P_{q \bar{q}}$	κ	model	ansatz	exper.
pion	330	330	4	4	0.204	951	131	132	130
kaon	330	500	4	101	1	524	160	162	156
$\mathrm{~J} / \Psi$	1500	1500	1270	1270	1	894	267	238	278

All dimensionful parameters are in units of MeV . Parameter and experimental values are from Vega et al., PRD 80, 055014 (2009) and the Particle Data Group.

The decay constant is given by

$$
f_{M}=2 \sqrt{6} \int_{0}^{1} d x \int_{0}^{\infty} \frac{d k_{\perp}^{2}}{16 \pi^{2}} \psi\left(x, k_{\perp}\right) .
$$

Longitudinal wave functions

Parton distributions

$$
f(x)=P_{q \bar{q}} \frac{X^{2}(x)}{x(1-x)}
$$

Summary

- LFCC method
- divides hadronic eigenproblem into - eigenproblem in valence sector.
- auxiliary equations to define.
- advantages of LFCC
- no Fock-space truncation.
- no sector dependence or spectator dependence.
- systematically improvable.
- light-front holography
- provides model for valence sector.
- can augment for longitudinal wave functions, consistent with Brodsky-de Téramond ansatz.
- leads to natural choice for basis functions, applicable beyond holographic approximation.

