Light-front holography and the light-front coupled-cluster method

Work done in collaboration with S. Chabysheva and supported in part by US DoE and MSI.

John R. Hiller

jhiller@d.umn.edu

Department of Physics University of Minnesota Duluth

LC2013 - 22 May 2013 - p. 1/28

Outline

introduction

- bound-state eigenvalue problem
- light-front coupled-cluster method
 - Chabysheva and jrh, PLB 711, 417 (2012) arXiv:1203.0250, 1208.6503, 1208.6076.
 - also talk by Chabysheva.
 - sample application
 - form-factor calculation
- light-front holography
 - Brodsky and De Téramond, PRL 96, 201601 (2006).
- quark model for mesons
 - Chabysheva and jrh, arXiv:1207.7128.

summary

Introduction

wish to compute hadron structure in terms of wave functions

- must truncate in some fashion
- the LFCC method avoids Fock-space truncation

Equations for wave functions

Uncanceled divergences

for example, the Ward identity of gauge theories is destroyed by truncation

- analog in Feynman perturbation theory
 - separate diagrams into time-ordered diagrams
 - discard time orderings that include intermediate states with more particles than some finite limit
 - destroys covariance, disrupts regularization, and induces spectator dependence for subdiagrams
- in the nonperturbative case, this happens not just to
 some finite order in the coupling but to all orders

Light-cone coordinates

Dirac, RMP **21**, 392 (1949); Brodsky, Pauli, and Pinsky, Phys. Rep. **301**, 299 (1997).

- time: $x^+ = t + z$
- space: $\underline{x} = (x^-, \vec{x}_\perp), \ x^- \equiv t z, \ \vec{x}_\perp = (x, y)$

• energy:
$$p^- = E - p_z$$

- momentum: $\underline{p} = (p^+, \vec{p}_\perp), \ p^+ \equiv E + p_z, \ \vec{p}_\perp = (p_x, p_y)$
- mass-shell condition: $p^2 = m^2 \Rightarrow p^- = \frac{m^2 + p_\perp^2}{p^+}$

Mass eigenvalue problem

Pauli and Brodsky, PRD 32, 1993 (1985); 2001 (1985)

$$\mathcal{P}^{-}|\underline{P}\rangle = \frac{M^{2} + P_{\perp}^{2}}{P^{+}}|\underline{P}\rangle, \quad \underline{\mathcal{P}}|\underline{P}\rangle = \underline{P}|\underline{P}\rangle.$$

no spurious vacuum contributions to eigenstates

- $p^+ > 0$ for all particles
- cannot produce particles from vacuum and still conserve p^+
- (but difficult to analyze structure of physical vacuum)
- boost-invariant separation of internal and external momenta
 - longitudinal momentum fractions $x_i \equiv p_i^+/P^+$
 - relative transverse momenta $\vec{k}_{i\perp} \equiv \vec{p}_{i\perp} x_i \vec{P}_{\perp}$

Coupled-cluster (CC) method

- originated with Coester, Nucl. Phys. 7, 421 (1958) and Coester and Kümmel, Nucl. Phys. 17, 477 (1960), with applications to the many-body Schrödinger equation in nuclear physics.
- applied to many-electron problem in molecules by Čižek, J. Chem. Phys. 45, 4256 (1966).
- form eigenstate as $e^T |\phi\rangle$ where
 - $|\phi\rangle$ is product of single-particle states
 - terms in T annihilate states in $|\phi\rangle$ and create excited states, to build in correlations
 - truncate T at some number of excitations
 - review: RJ Bartlett and M Musial, RMP 79, 291 (2007).

Light-front coupled-cluster method

• wish to solve
$$\mathcal{P}^-|\psi\rangle = \frac{M^2 + P_\perp^2}{P^+}|\psi\rangle$$
.

• write eigenstate as $|\psi\rangle = \sqrt{Z}e^T |\phi\rangle$

- Z controls normalization: $\langle \psi' | \psi \rangle = \delta(\underline{P}' \underline{P}).$
- $|\phi\rangle$ is the valence state, with $\langle \phi' | \phi \rangle = \delta(\underline{P}' \underline{P})$.
- T contains terms that only increase particle number.
- T conserves J_z , light-front momentum <u>P</u>, charge, ...
- $p^+ > 0 \Rightarrow T$ must include annihilation and powers of T include contractions.
- construct $\overline{\mathcal{P}}^- = e^{-T} \mathcal{P}^- e^T$ and let P_v project onto the valence Fock sector. Then, have coupled system:

$$P_v \overline{\mathcal{P}^-} |\phi\rangle = \frac{M^2 + P_\perp^2}{P^+} |\phi\rangle$$
 and $(1 - P_v) \overline{\mathcal{P}^-} |\phi\rangle = 0$.

A soluble model

light-front analog of the Greenberg–Schweber model

 static fermionic source that emits and absorbs bosons without changing its spin

Chabysheva and jrh, PLB **711**, 417 (2012); Brodsky, jrh, and McCartor, PRD **58**, 025005 (1998); Greenberg and Schweber, N Cim **8**, 378 (1958).

- not fully covariant
 - hides some of the power of the LFCC method, but is sufficient to show how the method can be applied.
 - states are all limited to having a fixed total transverse momentum \vec{P}_{\perp} , which we take to be zero.

Fock-state expansions

Instead, in LFCC:

Truncation

LC2013 - 22 May 2013 - p. 12/28

Effective Hamiltonian

constructed from Baker–Hausdorff expansion.

- Iist only terms that connect the lowest Fock sectors.
- the self-energy contribution is the same in all Fock sectors
- contains all three of the diagrams analogous to those for the Ward identity in QED

Eigenvalue problems

In LFCC:

Exact solution

in this special case, the exponential operator e^T generates the exact solution, with

$$t_{ls}(\underline{q},\underline{p}) = \frac{-g}{\sqrt{16\pi^3 q^+}} \left(\frac{p^+}{p^+ + q^+}\right)^{\gamma} \frac{q^+/P^+}{\mu_l^2 + q_\perp^2}.$$

the fact that the self-energy loop is the same in the valence sector and the one-fermion/one-boson sector plays a critical role. It contributes

$$-\frac{g}{P^+}\int\frac{d\underline{q}}{\sqrt{16\pi^3q^+}}\theta(P^+-q^+)\left(\frac{P^+-q^+}{P^+}\right)^{\gamma}\sum_{l}(-1)^{l}t_{l\pm}(\underline{q},\underline{P}-\underline{q}),$$

regulated by the PV (l = 1) term.

the expression for the loop obtained in the valence sector is exactly what is needed to obtain the necessary cancellations.

Dirac form factor

- compute the Dirac form factor for the dressed fermion from a matrix element of the current $J^+ = \overline{\psi} \gamma^+ \psi$
- the current couples to a photon of momentum q
- the matrix element is generally

 $\langle \psi^{\sigma}(\underline{P}+\underline{q})|16\pi^{3}J^{+}(0)|\psi^{\pm}(\underline{P})\rangle = 2\delta_{\sigma\pm}F_{1}(q^{2}) \pm \frac{q^{1}\pm iq^{2}}{M}\delta_{\sigma\mp}F_{2}(q^{2})$

with F_1 and F_2 the Dirac and Pauli form factors.

• in the present model, the fermion cannot flip its spin; therefore, F_2 is zero, and we investigate only F_1

Expectation values

- expectation value for op \hat{O} : $\langle \hat{O} \rangle = \frac{\langle \phi | e^{T^{\dagger}} \hat{O} e^{T} | \phi \rangle}{\langle \phi | e^{T^{\dagger}} e^{T} | \phi \rangle}$
- direct computation requires infinite sum.
- define $\overline{O} = e^{-T} \hat{O} e^T$ and $\langle \tilde{\psi} | = \langle \phi | \frac{e^{T^{\dagger}} e^T}{\langle \phi | e^{T^{\dagger}} e^T | \phi \rangle}$

• then
$$\langle \hat{O} \rangle = \langle \tilde{\psi} | \overline{O} | \phi \rangle$$
 and
 $\langle \tilde{\psi}' | \phi \rangle = \langle \phi' | \frac{e^{T^{\dagger}} e^{T}}{\langle \phi | e^{T^{\dagger}} e^{T} | \phi \rangle} | \phi \rangle = \delta(\underline{P}' - \underline{P})$

- \overline{O} computed from Baker–Hausdorff expansion: $\overline{O} = \hat{O} + [\hat{O}, T] + \frac{1}{2}[[\hat{O}, T], T] + \cdots$
- $\langle \tilde{\psi} | \text{ is a left eigenvector of } \overline{\mathcal{P}^{-}}:$ $\langle \tilde{\psi} | \overline{\mathcal{P}^{-}} = \langle \phi | \frac{e^{T^{\dagger}} \mathcal{P}^{-} e^{T}}{\langle \phi | e^{T^{\dagger}} e^{T} | \phi \rangle} = \langle \phi | \overline{\mathcal{P}^{-}}^{\dagger} \frac{e^{T^{\dagger}} e^{T}}{\langle \phi | e^{T^{\dagger}} e^{T} | \phi \rangle} = \frac{M^{2} + P_{\perp}^{2}}{P^{+}} \langle \tilde{\psi} |$

LFCC approximation

the form factor is approximated by the matrix element

$$F_1(q^2) = 8\pi^3 \langle \widetilde{\psi}^{\pm}(\underline{P} + \underline{q}) | \overline{J^+(0)} | \phi^{\pm}(\underline{P}) \rangle,$$

with $\overline{J^+(0)} = J^+(0) + [J^+(0), T] + \cdots$

for this model, there are no contributions from fermion-antifermion pairs, so that

$$J^{+}(0) = 2\sum_{s} \int \frac{d\underline{p}'}{\sqrt{16\pi^3}} \int \frac{d\underline{p}}{\sqrt{16\pi^3}} b_s^{\dagger}(\underline{p}') b_s(\underline{p}),$$

- only the first two terms of the Baker–Hausdorff expansion contribute to the matrix element
 - the first term contributes $1/8\pi^3$

The second term

$$[J^{+}(0),T] = 2\sum_{ls} \int \frac{d\underline{p}'}{\sqrt{16\pi^3}} \int \frac{d\underline{p}}{\sqrt{16\pi^3}} \int d\underline{q}' [t_{ls}(\underline{q}',\underline{p}) - t_{ls}(\underline{q}',\underline{p}')] \times a_l^{\dagger}(\underline{q}') b_s^{\dagger}(\underline{p}') b_s(\underline{p}).$$

$$\langle \widetilde{\psi}^{\pm}(\underline{P}+\underline{q}) | [J^{+}(0),T] | \phi^{\pm}(\underline{P}) \rangle = \sum_{l} \frac{(-1)^{l}}{8\pi^{3}} \int d\underline{q}' \theta(P^{+}+q^{+}-q'^{+})$$
$$\times l_{l\pm}^{\pm}(\underline{q}',\underline{P}+\underline{q}) [\theta(P^{+}-q'^{+})t_{l\pm}(\underline{q}',\underline{P}-\underline{q}') - t_{l\pm}(\underline{q}',\underline{P}+\underline{q}-\underline{q}')],$$

where $l_{l\pm}^{\pm}$ is the left-hand wave function:

$$\left| \underbrace{\langle \widetilde{\psi}^{\sigma}(\underline{P}) |}_{ls} = \langle \phi^{\sigma}(\underline{P}) | + \sum_{ls} \int d\underline{q} \theta(P^{+} - q^{+}) l_{ls}^{\sigma*}(\underline{q}, \underline{P}) \langle 0 | a_{l}(\underline{q}) b_{s}(\underline{P} - \underline{q}) \right|_{ls}$$

Evaluation of the form factor

• the left-hand wave function takes the form $l_{ls}^{\sigma}(\underline{q},\underline{P}) = \delta_{\sigma s} \frac{-g}{\sqrt{16\pi^{3}q^{+}}} \left(\frac{P^{+}-q^{+}}{P^{+}}\right)^{\gamma} \frac{q^{+}/P^{+}}{\mu_{l}^{2}+q_{\perp}^{2}} \tilde{l}(q^{+}/P^{+})$

with \tilde{l} the solution of a 1D integral equation

- if \tilde{l} is computed in quadrature, the integrals remaining in F_1 can be computed from the same quadrature rule for any chosen value of q^2
- if \tilde{l} is instead constructed as an expansion in g^2 , F_1 can also be constructed as an expansion
- in any case, in the limit of $q^2 \rightarrow 0$, we have $F_1(0) = 1$, consistent with the unit charge in the current $J^+ = \bar{\psi}\gamma^+\psi$

Light-front holographic QCD

A factorized wave function in the valence $(q\bar{q})$ sector

$$\psi = e^{iL\varphi}X(x)\phi(\zeta)/\sqrt{2\pi\zeta}$$

subject to an effective potential \widetilde{U} that conserves L_z :

$$\left[\frac{\mu_1^2}{x} + \frac{\mu_2^2}{1-x} - \frac{\partial^2}{\partial\zeta^2} - \frac{1-4L^2}{4\zeta^2} + \widetilde{U}\right] X(x)\phi(\zeta) = M^2 X(x)\phi(\zeta).$$

For zero-mass quarks, the longitudinal wave function X decouples, and the transverse wave function satisfies

$$\left[-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U(\zeta) \right] \phi(\zeta) = M^2 \phi(\zeta),$$

with U determined by an AdS₅ correspondence.

Softwall model for massless quarks

Yields oscillator potential $U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (J-1)$. Spectrum: $M^2 = 4\kappa^2 (n + (J+L)/2)$

 \rightarrow linear Regge trajectory, good fit for light mesons. Transverse wave functions are 2D oscillator functions. Longitudinal X constrained by a form-factor duality.

$$F(q^2) = \int \frac{dx \, |X(x)|^2}{x(1-x)} \int 2\pi \zeta d\zeta J_0 \left(\zeta q_\perp \sqrt{x/(1-x)}\right) |\phi(\zeta)|^2.$$

To be compared with the form computed in AdS_5

$$F(q^2) = \int dx \int 2\pi \zeta d\zeta J_0 \left(\zeta q_\perp \sqrt{x/(1-x)} \right) |\phi(\zeta)|^2.$$

Thus $X(x) = \sqrt{x(1-x)}$ when the quarks are massless.

Massive quarks

Ansatz by Brodsky and De Téramond: replace $k_{\perp}^2/(x(1-x))$ with $k_{\perp}^2/x(1-x) + \mu_1^2/x + \mu_2^2/(1-x)$ in transverse harmonic oscillator eigenfunctions, with μ_i as current-quark masses

$$X_{\rm BdT}(x) = N_{\rm BdT} \sqrt{x(1-x)} e^{-(\mu_1^2/x + \mu_2^2/(1-x))/2\kappa^2}$$

Instead, use a longitudinal equation with the 't Hooft model

$$\left[\frac{m_1^2}{x} + \frac{m_2^2}{1-x}\right] X(x) + \frac{g^2}{\pi} \mathcal{P} \int dy \frac{X(x) - X(y)}{(x-y)^2} - CX(x) = M_{\parallel}^2 X(x),$$

and m_i constituent masses. Then X(x) well approximated by $x^{\beta_1}(1-x)^{\beta_2}$, with $m_i^2 \pi/g^2 - 1 + \pi \beta_i \cot \pi \beta_i = 0$. Need $\beta_1 = \beta_2 = 1/2$ for zero current masses $\Rightarrow g^2/\pi = m_u^2 = m_d^2$.

Numerical solution

Expand solution as $X(x) = \sum_{n} c_n f_n(x)$ with respect to basis functions

$$f_n(x) = N_n x^{\beta_1} (1-x)^{\beta_2} P_n^{(2\beta_2, 2\beta_1)} (2x-1);$$

the n = 0 term represents 90% or more of the probability. Matrix representation of longitudinal equation, for $M_{||} = 0$,

$$\left(\frac{m_1^2}{m_u^2}A_1 + \frac{m_2^2}{m_u^2}A_2 + B\right)\vec{c} = \xi\vec{c}, \text{ with } \xi \equiv C/m_u^2 \text{ and }$$

$$(A_1)_{nm} = \int_0^1 \frac{dx}{x} f_n(x) f_m(x), \quad (A_2)_{nm} = \int_0^1 \frac{dx}{1-x} f_n(x) f_m(x),$$
$$B_{nm} = \frac{1}{2} \int_0^1 dx \int_0^1 dy \frac{f_n(x) - f_n(y)}{x-y} \frac{f_m(x) - f_m(y)}{x-y}.$$

Parameters and decay constants

	model		ansatz				decay constant		
meson	m_1	m_2	μ_1	μ_2	$P_{qar{q}}$	κ	model	ansatz	exper.
pion	330	330	4	4	0.204	951	131	132	130
kaon	330	500	4	101	1	524	160	162	156
J/Ψ	1500	1500	1270	1270	1	894	267	238	278

All dimensionful parameters are in units of MeV. Parameter and experimental values are from Vega *et al.*, PRD **80**, 055014 (2009) and the Particle Data Group.

The decay constant is given by

$$f_M = 2\sqrt{6} \int_0^1 dx \int_0^\infty \frac{dk_{\perp}^2}{16\pi^2} \psi(x, k_{\perp}).$$

Longitudinal wave functions

Parton distributions

$$f(x) = P_{q\bar{q}} \frac{X^2(x)}{x(1-x)}$$

Summary

LFCC method

- divides hadronic eigenproblem into
 - eigenproblem in valence sector.
 - auxiliary equations to define.
- advantages of LFCC
 - no Fock-space truncation.
 - no sector dependence or spectator dependence.
 - systematically improvable.
- light-front holography
 - provides model for valence sector.
 - can augment for longitudinal wave functions, consistent with Brodsky-de Téramond ansatz.
 - leads to natural choice for basis functions, applicable beyond holographic approximation.

