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Introduction

Perturbative QCD (pQCD) running coupling a(Q2) (≡ αs(Q2)/π, where
Q2 ≡ −q2) has unphysical (Landau) singularities at low spacelike

momenta 0 < Q2 <∼ 1 GeV2.

It is expected that the true QCD coupling A(Q2) has no such singularities
and that it remains smooth and finite at small |Q2|, i.e., that
β(A(Q2)) ≡ ∂A(Q2)/∂ ln Q2 has an infared (IR) fixed point:

β(A(0)) = 0, A(0) <∞ .

.
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Introduction

This (IR fixed point) behavior is suggested by:

lattice calculations [Cucchieri and Mendes (PRL, 2008); Bogolubsky
et al. (PLB, 2009); Furui (PoS LAT, 2009)];

calculations based on (Dyson-Schwinger equations (DSE) [Alkofer et
al. (PLB, 2005); Aguilar et al. (PRD, 2008, 2009); Binosi and
Papavassiliou (Phys. Rept., 2009)];

light-front holographic mapping AdS/CFT modified by a
(positive-sign) dilaton background [Brodsky, de Teramond and Deur,
PRD, 2010]
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Introduction

and is suggested by most of the analytic QCD models, among them:
1 Analytic Perturbation Theory (APT) of Shirkov, Solovtsov, Solovtsova,

Milton et al. (JINR RC, 1996; PRL, 1997; PRD, 1997; PLB, 1997,
1998; EPJC, 2001); also: Karanikas and Stefanis (PLB, 2001).

2 its extension Fractional APT (FAPT) of Bakulev, Mikhailov and
Stefanis (PRD, 2005, 2008; JHEP, 2010);

3 analytic models with A(Q2) very close to a(Q2) at high |Q2| > Λ2:
A(Q2)− a(Q2) ∼ (Λ2/Q2)N with N = 3, 4 or 5 [Webber (JHEP,
1998); [Alekseev (Few Body Syst., 2006); Contreras, G.C., et al. (PRD
2010, 2012)];

4 Perturbative QCD in confining QCD background, for Nc →∞
[Simonov (Phys. Atom. Nucl., 2002)].
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Introduction

Perturbative QCD (pQCD) can give analytic coupling a(Q2) in specific
schemes with IR fixed point, but with problems in the reproduction of the
correct value of rτ ≈ 0.20 [Kögerler, Valenzuela, G.C. (JPG, 2010; PRD,
2010)].
Further, (F)APT also does not reproduce the correct value of rτ .

The analytic (holomorphic) QCD models are based on the simple
requirement that the coupling A(Q2) has similar analyticity properties as
physical spacelike QCD observables D(Q2).
All such couplings, A(Q2), differ from the pQCD couplings a(Q2) at

|Q| >∼ 1 GeV by nonperturbative (NP) terms, typically by some
power-suppressed terms ∼ 1/Q2N or 1/[Q2N lnK (Q2/Λ2)].
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IR fixed point scenarios: APT
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Figure: The typical region of analyticity of a spacelike observable D(Q2) in the complex

Q2-plane.
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Introduction

Evaluations of physical QCD quantities D(Q2) in terms of such A(κQ2):
usually as (truncated) power series in A(κQ2):

D(Q2) ≈ A(κQ2) + d1(κ)A(κQ2)2 + d2(κ)A(κQ2)3 + . . . (1)

We argue that such an evaluation approach is not correct:

The series has increasingly strong κ dependence when the number of
terms increases.

The series has a fast asymptotic divergent behavior due to the
renormalon problem.

We show that an alternative series in terms of logarithmic derivatives of
A(κQ2) should be used instead

Ãn(µ2) ∝ ∂n−1A(µ2)/∂(lnµ2)n−1 (2)

or a Ãn-based resummation (the generalized diagonal Padé method).
Timelike low-energy observables are evaluated analogously, using the
integral transformation which relates the timelike observable with the
corresponding spacelike observable.
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IR fixed point scenarios: effective gluon mass

1A) The simplest case of freezing comes from the use of the the one-loop
perturbative coupling with the replacement Q2 7→ Q2 + m2 where m ∼ 1
GeV is a constant effective gluon mass

A(m)(Q2) =
1

β0 ln
(

Q2+m2

Λ2

) , (3)

where β0 = (1/4)(11− 2Nf /3). It comes from the use of nonperturbative
QCD background [Simonov (Phys.Atom.Nucl., 1995, and
arXiv:1011.5386)]. Was used in analysis of the proton structure functions
(with m = mρ ≈ 0.8 GeV) [Badelek et al. (Z.Phys.C, 1997)]. See also:
Shirkov (arXiv:1208.2103).
This coupling is analytic, in the sense that it has singularities in the
complex Q2-plane on the negative semiaxis only: a pole at Q2 = Λ2 −m2

(< 0), and a cut at Q2 < −m2. At Q2 → 0 the coupling freezes at the
positive value [β0 ln(m2/Λ2)]−1. At large |Q2| > Λ2 it tends to one-loop

pQCD coupling and differs from it by ∼ m2

Q2 ln2(Q2/Λ2)
.
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IR fixed point scenarios: effective gluon mass

1B) A range of models with similar running of the coupling is suggested by
extensive analyses of the Dyson-Schwinger equations for the gluon and
ghost propagators and vertices [Cornwall (PRD, 1982); Aguilar and
Papavassiliou (EPJA, 2008)]

A(DS,1−`.)(Q2) =
1

β0 ln
(

Q2+ρm(Q2)2

Λ2

) , (4)

where ρ ∼ 1 and the running effective gluon mass m(Q2) is associated
with the existence of IR-finite solutions for the gluon propagator
4(Q2) = 1/(Q2 + m(Q2)2): 4(0) < 1/mg

2 <∞. This preferred
dynamical mass has logarithmic running

m(Q2)2 = mg
2

 ln
(

Q2+ρmg
2

Λ2

)
ln
(
ρmg

2

Λ2

)
−1−γ1

, (5)

where γ1 ≈ 0, mg ≈ 0.5 GeV; ρ ≈ 4.
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IR fixed point scenarios: eff.gl.mass extension to n-loops

1C) At higher |Q2| (> Λ2), when going beyond the one-loop level, the
multiplicative renormalizability suggests that the replacement
Q2 7→ (Q2 + ρm(Q2)2) should be made in the perturbative coupling

A(DS,n−`.)(Q2) ≈ a(n−`.)(Q2 + ρm(Q2)2) , (6)

[Luna, dos Santos, Natale (PLB, 2011); when m = const.: Shirkov
(arXiv:1208.2103); Badalian and Kuzmenko (PRD, 2002)]
The dynamical mass m(Q2) of the DSE-approaches introduces
nonperturbative effects which are felt at |Q2| > Λ2 as

A(DS)(Q2)− a(Q2) ∼ m(Q2)2

Q2 ln2(Q2/Λ2)
, (7)

and this behaves approximately as ∼ mg
2/(Q2 ln3(Q2/Λ2)) when m(Q2)

is logarithmically running.
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IR fixed point scenarios: AdS/CFT

2) A model obtained by AdS/CFT correspondence modified by a
(positive-sign) dilaton background [Brodsky, de Teramond and A. Deur
(PRD, 2010)]

A(AdSmod.)(Q2) = A(AdS)(Q2)g+(Q2) + a(fit)(Q2)g−(Q2) , (8)

where at low Q < 0.8 GeV predominates the AdS-part

A(AdS)(Q2) = A(AdS)(0)e−Q2/(4k2) , (9)

with k = 0.54 GeV; and A(AdS)(0) = 1 is the IR fixed point in g1 (Bjorken
sum rule) effective charge scheme. On the other hand, a(fit)(Q2) is
obtained by fit to the data for Q > 0.8 GeV.
g±(Q2) are smeared step functions, e.g., g±(Q2) = 1/(1 + e±(Q2−Q2

0 )/τ2
)

with Q0 = 0.8 GeV and τ = k. At large |Q2| > k2 the difference between
this coupling and the perturbative coupling is very small

A(AdSmod.)(Q2)− a(Q2) ∼ e−Q2/k2
(|Q2| > k2) . (10)
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IR fixed point scenarios: APT

3) Analytic Perturbation Theory (APT) coupling constructed by Shirkov
and Solovtsov (JINR RC, 1996; PRL, 1997)
See also: Shirkov, Solovtsov, Solovtsova, Milton et al. (PRD, 1997; PLB,
1997, 1998; EPJC, 2001); Karanikas and Stefanis (PLB, 2001).
Construction:
The pQCD coupling a(Q2) has singularities on the semiaxis Q2 < Λ2

L,
where the (Landau) cut is 0 < Q2 < Λ2

L.
Application of the Cauchy theorem to the function a(Q

′2)/(Q
′2 − Q2) to

an appropriate closed contour in the complex Q
′2-plane, leads to the

following dispersion relation for a(Q2)

a(Q2) =
1

π

∫ ∞
σ=−ΛL

2

dσ ρ(pt)(σ)

(σ + Q2)
, (11)

where ρ(pt)(σ) ≡ Im a(−σ − iε) is the (pQCD) discontinuity functions
along the cut.
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IR fixed point scenarios: APT
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Figure: Left-hand Figure: the integration path for the integrand a(Q ′2)/(Q ′2 − Q2)

leading to the dispersion relation (11) for a(Q2). Right-hand Figure: the integration

path for the same integrand, leading to the dispersion relation (13) for the APT

coupling A(APT)(Q2).
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IR fixed point scenarios: APT

The APT procedure consists in the elimination, in the above integral, of
the contributions of the Landau cut 0 < (−σ) ≤ Λ2

L, leading to the APT
analytic analog of a

A(APT)(Q2) =
1

π

∫ ∞
σ=0

dσρ(pt)(σ)

(σ + Q2)
. (12)

The APT analogs of powers aν (ν a real exponent) are obtained in the
same way

A(APT)
ν (Q2) =

1

π

∫ ∞
σ=0

dσρ
(pt)
ν (σ)

(σ + Q2)
, (13)

where ρ
(pt)
ν (σ) = Imaν(−σ − iε).
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IR fixed point scenarios: APT

The underlying pQCD coupling a(Q2) can run at any n-loop level and can
be in any chosen renormalization scheme; the corresponding
renormalization group equation (RGE) is

∂a(ln Q2;β2, . . .)

∂ ln Q2
= −

n−1∑
j=0

βj aj+2(ln Q2;β2, . . .), (14)

where the first two beta coefficients are universal
[β0 = (1/4)(11− 2Nf /3), β1 = (1/16)(102− 38Nf /3)], and the other
coefficients βj (j ≥ 2) characterize the perturbative renormalization
scheme. The APT coupling has IR fixed point: A(0) = 1/β0

(= 4/9 ≈ 0.44 if Nf = 3). At one-loop level, it is particularly simple:

A(APT,1−`.)(Q2) =
1

β0

[
1

ln z
− 1

(z − 1)

]
(z ≡ Q2/Λ2) . (15)
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IR fixed point scenarios: APT

Explicit expressions for A(APT)
ν at one-loop level were constructed by

Bakulev, Mikhailov and Stefanis (PRD, 2005 and 2008; JHEP, 2010)

(
a1`(Q

2)ν
)(APT)

an
≡ Aν(Q2)(APT,1`) =

1

βν0

(
1

lnν(z)
− Li−ν+1(1/z)

Γ(ν)

)
,

(16)
where z ≡ Q2/Λ2 and Li−ν+1(z) is the polylogarithm function of order
−ν + 1; extensions to 2- and 3-loop via expansions [Fractional APT
(FAPT)]. For a review of FAPT: Bakulev (Phys. Part. Nucl., 2009).

It turns out that the APT coupling differs from the pQCD coupling by
terms ∼ (Λ2/Q2) at large |Q2| > Λ2

A(APT)(Q2)− a(Q2) ∼
(

Λ2

Q2

)1

, (17)

which may be appreciable even at high energies.
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IR fixed point scenarios: Webber’s model

4) An extension of the APT coupling at one-loop, such that the difference
between it and the pQCD coupling is ∼ (Λ2/Q2)p, was proposed by
Webber (JHEP, 1998)

A(W,1−`.)(Q2) =
1

β0

[
1

ln z
+

1

1− z

z + b

1 + b

(
1 + c

z + c

)p ]
, (18)

where z ≡ Q2/Λ2 and specific values of parameters were chosen such that
the model gives good agreement with a range of data on power
corrections: b = 1/4, c = 4, and p = 4. The coupling has IR fixed point,
A(W,1−`.)(0) = 1/(2β0) ≈ 0.22. At large |Q2|, the difference from the
pQCD coupling is

A(W,1−`.)(Q2)− a(1−`.)(Q2) ∼
(

Λ2

Q2

)4

. (19)
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IR fixed point scenarios: 1δanQCD, 2δanQCD

5) Yet another approach (1δanQCD, 2δanQCD)
by Contreras, Espinosa, Martinez and G.C (PRD, 2010); Ayala, Contreras
and G.C. (PRD, 2012).
Based on the general dispersive relation for analytic couplings,

A(Q2) =
1

π

∫ ∞
σ=0

dσρ(σ)

(σ + Q2)
, (20)

where ρ(σ) ≡ ImA(−σ− iε) is approximated at high momenta σ ≥ M2
0 by

ρ(pt)(σ) [≡ Im a(−σ− iε)], and in the unknown low-momentum regime by
one or two deltas:

ρ(σ)(1δ)(σ) = πF 2
1 δ(σ −M2

1 ) + Θ(σ −M2
0 )ρ(pt)(σ) , (21)

ρ(σ)(2δ)(σ) = πF 2
1 δ(σ −M2

1 ) + πF 2
2 δ(σ −M2

2 ) + Θ(σ −M2
0 )ρ(pt)(σ) .

The parameters Fj and Mj of the delta functions and the pQCD-onset scale
M0 were adjusted so that the correct value of the semihadronic tau decay
ratio rτ ≈ 0.20 (V + A channel) was reproduced and that the difference
from the pQCD coupling at high |Q2| > Λ2 is as suppressed as possible.
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IR fixed point scenarios: 1δanQCD, 2δanQCD

A(1δ)(Q2) =
F 2

1

Q2 + M2
1

+
1

π

∫ ∞
M2

0

dσ
ρ(pt)(σ)

(Q2 + σ)
, (22a)

A(2δ)(Q2) =
F 2

1

Q2 + M2
1

+
F 2

2

Q2 + M2
2

+
1

π

∫ ∞
M2

0

dσ
ρ(pt)(σ)

(Q2 + σ)
.(22b)

Both models (1δanQCD, 2δanQCD) have IR fixed point, with A(0) ≤ 1.
The resulting deviations from pQCD at high |Q2| > Λ2 are

A(1δ)(Q2)− a(Q2) ∼
(

Λ2

Q2

)3

, (23a)

A(2δ)(Q2)− a(Q2) ∼
(

Λ2

Q2

)5

. (23b)

This suppression is preferred because then OPE can be used and interpreted in the

same way as OPE in pQCD: that the higher dimensional nonperturbative terms

∼ 1/(Q2)N have purely IR origin (N ≤ 2 in 1δanQCD; N ≤ 4 in 2δanQCD).
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Problems with power series in IR FP frameworks; and
solution

For a spacelike physical quantity D(Q2) (current correlators, structure
function sum rules, etc.) the usual evaluation in pQCD is in power series

D(Q2)pt = a(κQ2) +
∞∑

n=1

dn(κ) a(κQ2)n+1 , (24)

where µ2 = κQ2 is a renormalization scale (κ ∼ 1). Unless this series is
the leading-β0 resummation or some other partial resummation, the series
is known only up to certain order ∼ aN (usually N = 3 or 4)

D(Q2;κ)
[N]
pt = a(κQ2) +

N−1∑
j=1

dj(κ) a(κQ2)j+1 . (25)

The truncated series has unphysical dependence on the renormalization
scale (RS) parameter κ.
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Problems with power series in IR FP frameworks; and
solution

The more terms are included, the weaker the RS dependence generally

∂D[N]
pt

∂ lnκ
= KNa(κQ2)N+1 + KN+1a(κQ2)N+2 + · · · ∼ aN+1 , (26)

where KN ,KN+1, . . . are specific coefficients determined by the original
coefficients dn(κ) (n ≤ N − 1). However, if a(κQ2) large, RS dependence
can be large.
In an IR fixed point framework the coupling A(Q2) has NP parts

A(Q2)− a(Q2) = TNP(Q2) , (27)

where the term TNP(Q2) is nonperturbative, i.e., at |Q2| > Λ2 it is a
function of a(Q2), TNP(Q2) = F (a(Q2)), which is nonanalytic at a = 0.
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Problems with power series in IR FP frameworks; and
solution

For example,

TNP(Q2) ∼
(

Λ2

Q2

)n

≈ exp

[
− n

β0a(Q2)

]
, (28a)

TNP(Q2) ∼ exp

(
−Q2

K 2

)
∼ exp

[
−
(

Λ2

K 2

)
e1/β0a(Q2)

]
. (28b)

If applying now the power series (24) in the IR fixed point scenarios,

D(Q2;κ)
[N]
pt,A = A(κQ2) +

N−1∑
j=1

dj(κ) A(κQ2)j+1 , (29)

the inclusion of more terms in this power series tends to make the result
increasingly more RS-dependent or the RS dependence is more erratic, due
to the NP contributions ∼ TNP(κQ2)kA(κQ2)m in RS dependence.
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Problems with power series in IR FP frameworks; and
solution

These aspects are also reflected in the fact that the beta function in all
the aforedescribed IR fixed point scenarios, β(A(Q2)) ≡ ∂A(Q2)/∂ ln Q2,
cannot be presented with a power expansion in A, due to NP effects

∂A(Q2)

∂ ln Q2
6=−

∑
j≥0

βjA(Q2)j , (30)

in contrast to the perturbative RGE (14).
All this suggests that the analog of the power an is not An, but rather a
nonpower expression An. Within the context of APT, this has been noted
by the authors of APT, and the construction Eq. (13) really gives

A(APT)
ν 6=(A1

(APT))ν . However, in general analytic models with finite
A(0), the APT-type of construction of An cannot be made since APT
uses only the pQCD couplings an (and their discontinuities ρn

(pt)).
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Problems with power series in IR FP frameworks; and
solution

The construction of An (the analog of an), is made in such general
analytic frameworks with IR fixed point, via a detour by construction of
logarithmic derivatives [Valenzuela and G.C. (JPG, 2006; PRD, 2006); for
noninteger n: Kotikov and G.C. (JPG, 2012)]. In pQCD these are

ãn+1(Q2) ≡ (−1)n

βn
0n!

∂na(Q2)

∂(ln Q2)n
, (n = 1, 2, . . .) . (31)

We have ãn+1(Q2) = a(Q2)n+1 +O(an+2) by RGE. The analytization is a
linear operation. Therefore

a(Q2)an = A(Q2)⇒
(
∂a(Q2)

∂ ln Q2

)
an

=
∂A(Q2)

∂ ln Q2
⇒ (32)

ãn+1(Q2)an = Ãn+1(Q2),with : Ãn+1(Q2) ≡ (−1)n

βn
0n!

∂nA(Q2)

∂(ln Q2)n
(33)

where n = 1, 2, . . ..
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Problems with power series in IR FP frameworks; and
solution

In virtually all IR fixed point (analytic) models we have:
|A(Q2)| > |Ã2(Q2)| > |Ã3(Q2)| > · · ·
for any Q2 (even when |Q2| is small).
The basic relation (33) then requires reexpression of the power series (24)
as a series in logarithmic derivatives ãn+1(Q2) (“modified” perturbation
series, mpt)

D(Q2)mpt = a(κQ2) +
∞∑

n=1

d̃n(κ) ãn+1(κQ2) . (34)

This leads, after the analytization (33) term-by-term, to the “modified”
analytic (man) series

D(Q2)man = A(κQ2) +
∞∑

n=1

d̃n(κ) Ãn+1(κQ2) . (35)

This is the basic expression for evaluation of D(Q2) in IR FP scenarios.
Gorazd Cvetič (UTFSM) Evaluations in anQCD/IRFP frameworks May 25, 2013 25 / 81



Problems with power series in IR FP frameworks; and
solution

Also the truncated series in log derivatives (mpt)

D(Q2;κ)
[N]
mpt = a(κQ2) +

N−1∑
j=1

d̃j(κ) ãj+1(κQ2) , (36)

has RS dependence due to truncation, similar to the dependence (26) of
the truncated pt series, but even simpler

∂D[N]
mpt

∂ lnκ
= −β0Nd̃N−1(κ)ãN+1(κQ2) . (37)

The truncated modified analytic series is

D(Q2;κ)[N]
man = A(κQ2) +

N−1∑
j=1

d̃j(κ) Ãj+1(κQ2) . (38)
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Problems with power series in IR FP frameworks; and
solution

The mpt series (34) is just a reorganization of the original perturbation
(pt) series (24), so it is also RS-independent. In conjunction with the
recurrence relation ∂ãn(κQ2)/∂ lnκ = −β0nãn+1(κQ2) which follows from
the definition (31), we obtain simple differential relations between d̃n(κ):

d

d lnκ
d̃n(κ) = nβ0d̃n−1(κ) (n = 1, 2, . . .) . (39)

(d0(κ) = d̃0(κ) = 1 by definition). Integrating them, the renormalization
scale dependence of the coefficients d̃n is particularly simple

d̃n(κ) = d̃n(1) +
n∑

k=1

(
n
k

)
βk

0 lnk(κ)d̃n−k(1) . (40)

(κ ≡ µ2/Q2; d0 = d̃0 = 1).
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Problems with power series in IR FP frameworks; and
solution

The coefficients d̃n(κ) are obtained from dk(κ)’s (k ≤ n) in the following
way. First we express the logarithmic derivatives ãn+1 in terms of the
powers ak+1, at a given scale Q2 or µ2 = κQ2, using the RGE relations in
pQCD for these powers [RGE (14) and its derivatives]

ã2 = a2 + c1a
3 + c2a

4 + · · · , (41a)

ã3 = a3 +
5

2
c1a

4 + · · · , ã4 = a4 + · · · , etc. , (41b)

where we use the notation cj ≡ βj/β0.
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Problems with power series in IR FP frameworks; and
solution

We now invert them

a2 = ã2 − c1ã3 +

(
5

2
c1

2 − c2

)
ã4 + · · · , (42a)

a3 = ã3 −
5

2
c1ã4 + · · · , a4 = ã4 + · · · , etc. (42b)
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Problems with power series in IR FP frameworks; and
solution

Replacing these relations into the original perturbation expansion (24) for
D(Q2), the coefficients d̃n(κ) of the reorganized (“modified”) expansions
(34)-(35) can be read off

d̃1(κ) = d1(κ) , d̃2(κ) = d2(κ)− c1d1(κ) , (43a)

d̃3(κ) = d3(κ)− 5

2
c1d2(κ) +

(
5

2
c1

2 − c2

)
d1(κ) , etc. (43b)
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Problems with power series in IR FP frameworks; and
solution

We can also perform analytization, Eqs. (32)-(33), in relations (42a)-(42b)
term-by-term. In this way we obtain the (IR fixed point) analogs of integer
powers an, An = (an)an

A2 ≡
(
a2
)

an
= Ã2 − c1Ã3 +

(
5

2
c1

2 − c2

)
Ã4 + · · · , (44a)

A3 ≡
(
a3
)

an
= Ã3 −

5

2
c1Ã4 + · · · , A4 ≡

(
a4
)

an
= Ã4 + · · ·(44b)

etc. In general IR FP scenarios, we have

An 6= An .
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Problems with power series in IR FP frameworks; and
solution

This allows us to reexpress the “modified” analytic series (35) in a form
which is in close analogy with the original perturbation series (24)

D(Q2)an ≡ A(κQ2) +
∞∑

n=1

dn(κ) An+1(κQ2) . (45)

This series is κ-independent since it coincides with the series D(Q2)man of
Eq. (35). The truncated series is

D(Q2;κ)[N]
an ≡ A(κQ2) +

N−1∑
n=1

dn(κ) An+1(κQ2) .

= D(Q2;κ)[N]
man ≡ A(κQ2) +

N−1∑
j=1

d̃j(κ) Ãj+1(κQ2) . (46)

[The truncation at ÃN is assumed in the relations (44).]
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Problems with power series in IR FP frameworks; and
solution

The quantities Ãn and ãn have the same RS dependence relations (just
interchanging Ãn ↔ ãn). This implies that the structure of the
RS-dependence of the truncated mpt series in pQCD, Eq. (37), survives in
its analytic form for the truncated (modified) analytic series (38)

∂D[N]
man

∂ lnκ
=
∂D[N]

an

∂ lnκ
= −β0Nd̃N−1(κ)ÃN+1(κQ2) , (47)

These relations, in conjunction with the mentioned hierarchy
|A(Q2)| > |Ã2(Q2)| > ..., at all Q2 (not just high |Q2|), suggest: the

truncated analytic series D[N]
man(Q2;κ) [Eqs. (38) and (46)] have in general

weaker, or less erratic RS dependence (than the power series) when the
number of terms increases. This is true even when |Q2| is low, in contrast

to the case of perturbative truncated series D(Q2;κ)
[N]
pt and D(Q2;κ)

[N]
mpt.

The construction is applicable in any analytic QCD (even without IR FP).
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Problems with power series in IR FP frameworks; and
solution

The above considerations can be extended to the case of dependence on
the scheme parameters cj = βj/β0 (j = 2, 3, . . .).
The basic pQCD relations are the “scheme RGEs” [Stevenson (PRD,
1981)]

∂a

∂c2
= a3 +O(a5) ⇒ ∂a2

∂c2
= 2a4 + · · · , (48a)

∂a

∂c3
=

1

2
a4 + · · · . (48b)

For the IR fixed point scenarios (or any analytic model of A), we can
define the same scheme dependence, under the correspondence an ↔ An

∂A
∂c2

= A3 +O(A5) ⇒ ∂A2

∂c2
= 2A4 + · · · , (49a)

∂A
∂c3

=
1

2
A4 + · · · . (49b)
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Problems with power series in IR FP frameworks; and
solution

These differential equations can be rewritten in terms of Ãn’s using the
relations (44). All the scheme dependence relations in pQCD now carry
over to IR fixed point scenarios, under the correspondence an ↔ An (or
equivalently ãn ↔ Ãn)

∂D[N]
pt

∂cj
= K

(j)
N aN+1(κQ2) + K

(j)
N+1a

N+2(κQ2) + · · · , (50a)

⇒ ∂D[N]
an

∂cj
= K

(j)
N AN+1(κQ2) + K

(j)
N+1AN+2(κQ2) + · · · , (50b)

and analogously for D[N]
man.
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Problems with power series in IR FP frameworks; and
solution

Until now, we took n integer in the construction of Ãn and An. For
noninteger n = ν these quantities were obtained by Kotikov and G.C.
(JPG, 2012), via an analytic continuation of the general formulas in
n 7→ ν. For this, we first obtain a dispersion relation for the logarithmic
derivatives Ãn+1(Q2) of Eq. (33), by applying the logarithmic derivatives
on the dispersion relation (20) for A(Q2)

Ãn+1(Q2) =
1

π

(−1)

βn
0 Γ(n + 1)

∫ ∞
0

dσ

σ
ρ(σ)Li−n(−σ/Q2) , (51)

where we recall that ρ(σ) ≡ ImA(−σ − iε). Then n 7→ ν gives

Ãν+1(Q2) =
1

π

(−1)

βν0 Γ(ν + 1)

∫ ∞
0

dσ

σ
ρ(σ)Li−ν

(
− σ

Q2

)
(−1 < ν) ,

(52)
where ν can now be noninteger.
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Problems with power series in IR FP frameworks; and
solution

The couplings Aν (analytic analogs of powers aν), are then obtained as a
linear combination of the quantities Ãν+m (m = 0, 1, 2, . . .), via a
generalization of the relations (44) to any integer n and then replacing
n 7→ ν

Aν ≡ Ãν +
∑
m≥1

k̃m(ν)Ãν+m (ν > 0) . (53)

The coefficients k̃m(ν) involve Gamma functions Γ(x) and their derivatives
(up to m derivatives) at the values x = 1, ν + 1, ν + 2, . . . , ν + m,
cf. App. A of Kotikov and G.C. (JPG, 2012).
It turns out that in the (fractional) APT model of (of Shirkov, Solovtsov
et al.; and of Bakulev, Mikhailov and Stefanis), the (fractional) power

analogs A(APT)
ν , Eq. (13), constructed entirely from the discontinuities of

the pQCD coupling aν , coincide with the result of the general approach
described here, for the corresponding special (APT) case: ρ(σ) = ρ(pt)(σ),
i.e., when ImA(−σ − iε) = Ima(−σ − iε).
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Numerical evidence (Adler function): RScl dependence of
truncated series

Renormalization scale dependence of truncated series
We illustrate numerically the arguments of the previous Section, for the
various truncated series within various IR fixed point frameworks. We use
for the spacelike observable D(Q2) the massless effective charge of the
Adler function

dAdl(Q
2) ≡ −(2π2)

dΠ(Q2)

d ln Q2
− 1 , (54)

whose pQCD power expansion (pt) is

dAdl(Q
2)pt = a(Q2) + d1a(Q2)2 + · · · , (55)

and where Π(Q2) = ΠV (Q2) + ΠA(Q2) (= 2ΠV (Q2), in the massless
case) is the correlator of the nonstrange charged hadronic currents

ΠV
µν(q) = i

∫
d4x exp(iq · x)〈TVµ(x)Vν(0)†〉 = (qµqν − gµνq

2)ΠV (Q2),

where: Vµ = uγµd .
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Numerical evidence (Adler function): RScl dependence of
truncated series

The leading-β0 (LB) part of this spacelike quantity is known

d
(LB)
Adl (Q2)(m)pt =

∫ ∞
0

dt

t
FD(t)a(tQ2eC) (56a)

= a(Q2) + d̃
(LB)
1 ã2(Q2) + · · ·+ d̃

(LB)
n ãn+1(Q2) + · · · (56b)

= a(Q2) + d
(LB)
1 a(Q2)2 + · · · d (LB)

n a(Q2)n+1 + · · · , (56c)

where FD(t) ≡ wD(t)t is the characteristic function of the Adler function
obtained by Neubert (PRD, 1995) on the basis of the LB expansion

coefficients d̃
(LB)
n ≡ d̃n,nβ

n
0 . The latter were obtained from the LB Borel

transform [Beneke (PLB, 1993; NPB, 1993); Broadhurst (ZPC, 1993)] in

the “V” scale convention (C = 0). Here d̃
(LB)
n ’s are changed to the MS

scale convention (C = −5/3). We note that in general d̃
(LB)
n 6= d

(LB)
n

(only at one-loop level d
(LB)
n = d̃

(LB)
n ).
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Numerical evidence (Adler function): RScl dependence of
truncated series

The coefficients d̃
(LB)
n can be represented as

d̃n
(LB) = (−β0)n

∫ ∞
t=0

d(ln t) lnn
(
teC
)

FD(t) . (57)

We perform the evaluations in the c2 = c3 = . . . = 0 renormalization
scheme, where the pQCD running coupling a(κQ2) is expressed with the
Lambert function W∓1(z)

a(κQ2) = − 1

c1

1

[1 + W∓1(z)]
. (58)

Here, Q2 = |Q2| exp(iφ); W−1 and W +1 are the branches of the Lambert
function for 0 ≤ φ < +π and −π < φ < 0, respectively, and z is defined as

z = − 1

c1e

(
κ|Q2|
Λ2

Lam.

)−β0/c1

exp (−iβ0φ/c1) , (59)

where ΛLam. is the Lambert QCD scale.
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Numerical evidence (Adler function): RScl dependence of
truncated series

We vary the renormalization scheme µ2 = κQ2, and perform evaluations
in various IR fixed point frameworks, with Nf = 3:

The case of constant effective gluon mass m (Simonov; Badelek et
al.): Eq. (6), applying it to the coupling a of Eq. (58)

A(m)(µ2) = a(µ2 + m2) , (60)

where we take m = 0.8 GeV and ΛLam. = 0.487 GeV, giving at
µ2 = m2

τ the value A(m2
τ ) = 0.293/π.

The DSE-motivated case of a logarithmically running effective gluon
mass m(µ2) [Cornwall; Aguilar and Papavassiliou] Eq. (5) in
conjunction with Eq. (6) applied to the coupling a

A(mgl)(µ2) = a(µ2 + m(µ2)2) , (61)

where we choose the parameter values ρ = 4, γ1 = 1/11 (Cornwall,
1982), mg = 0.4 GeV, and Λ = ΛLam. × 0.72882 = 0.355 GeV. This
gives A(m2

τ ) = 0.300/π.
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Numerical evidence (Adler function): RScl dependence of
truncated series

The (fractional) analytic perturbation theory (F)APT case (of
Shirkov, Solovtsov el al.; and of Bakulev, Mikhailov and Stefanis),
Eq. (13). The APT scale is fixed at ΛLam.(APT) = 0.572 GeV, and
Nf = 3, giving the value A1

(APT)(m2
τ ) = 0.295/π.

The analytic QCD case with one delta function in the low-σ region
for the analyticity function (Contreras, Espinosa, Martinez and G.C.),
Eqs. (22a) and (23a). This model is numerically very close to pQCD
coupling (58), with the exception of the regime |µ2| < 1 GeV2. The
input values of the model are those used in Kotikov and G.C. (JPG,
2012) (among them: ΛLam. = 0.487 GeV) and give the value
A1

(1δ)(m2
τ ) = 0.306/π.
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Numerical evidence (Adler function): RScl dependence of
truncated series

Furthermore, the first three full (i.e., LB+beyondLB) coefficients d1, d2

and d3 of the Adler function are now exactly known [Baikov, Chetyrkin
and Kühn (PRL, 2008)]

dAdl(Q
2)

[4]
pt = a(Q2) + d1a(Q2)2 + d2a(Q2)3 + d3a(Q2)4 . (62)

So the full Adler function can be evaluated at order 4 (TS[4]) or lower, in
any scheme and at any scale µ2 = κQ2, for example in pQCD and in the
aforementioned four IR fixed point frameworks.
The results of the LB Adler function, truncated at order 4 and 6, as power
series and as series in log derivatives, for Q2 = 1 GeV2, are presented as
functions of the squared (spacelike) renormalizations scale µ2 = κQ2 in
Fig. 3 for the pQCD case, and in Figs. 4 and 5 for the four considered IR
fixed point frameworks. Truncations are made at ∼ A4 and ∼ A6 for
power series, and at Ã4 and Ã6 for the series in log derivatives.
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Numerical evidence (LB Adler function): RScl dependence
of truncated series
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Figure: 3: The effective charge of the massless Adler function dAdl(Q
2), at leading-β0

(LB), for Q2 = 1 GeV2, as a function of the (squared) spacelike renormalization scale
µ2, in the case of pQCD [Eq. (58)]. The results of the truncated power series, and of
the truncated series in log derivatives, are given. The truncations are made at ∼ a4 (ea4)
and ∼ a6 (ea6).
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Numerical evidence (LB Adler function): RScl dependence
of truncated series
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Figure: 4: The same as in Fig. 3, but for the s of the truncated power series, and of the
truncated IR fixed point frameworks: (a) with the constant effective gluon mass
m = 0.8 GeV (the left-hand Figure); (b) with the logarithmically running effective gluon

mass (the right-hand Figure). The truncations are made at ∼ A4 ( eA4) and ∼ A6 ( eA6).
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Numerical evidence (LB Adler function): RScl dependence
of truncated series
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Figure: 5: The same as in Fig. 3, but for the (a) the (fractional) analytic perturbation
theory (F)APT (the left-hand Figure); and (b) the analytic model 1δanQCD which has,
in the discontinuity function of A(Q2), one delta function in the low-σ regime (the

right-hand Figure). The truncations are made at ∼ A4 ( eA4) and ∼ A6 ( eA6).
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Numerical evidence (LB+bLB Adler function): RScl
dependence of truncated series

Furthermore, the analogous results based on the truncated series (62) with
s of the truncated power series, and of the truncated full (LB+bLB)
coefficients, are given for pQCD in Fig. 6, and for the four considered IR
fixed point cases in Figs. 7 and 8. Truncations are made at ∼ A3 (Ã3)
and ∼ A4 (Ã4).
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Numerical evidence (LB+bLB Adler function): RScl
dependence of truncated series

0.6 0.8 1.0 1.2 1.4
0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

Μ2IGeV2M

d
A

d
lIQ

2
M

powers TSH3L

powers TSH4L

logderivs TSH3L

logderivs TSH4L

bLB TS@3D, TS@4D, pQCD, Q2=1 GeV2

Figure: 6: The same as in Fig. 3, in pQCD, but for the truncated series with the full
(LB+beyondLB) coefficients, cf. Eq. (62). The truncations are made at ∼ a3 (ea3) and
∼ a4 (ea4).
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Numerical evidence (LB+bLB Adler function): RScl
dependence of truncated series
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Figure: 7: The same as in Fig. 4, for IR fixed point frameworks with effective gluon
mass, but for the truncated series with the full (LB+beyondLB) coefficients,

cf. Eq. (62). The truncations are made at ∼ A3 ( eA3) and ∼ A4 ( eA4).
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Numerical evidence (LB+bLB Adler function): RScl
dependence of truncated series
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Figure: 8: The same as in Fig. 5, for IR fixed point frameworks (F)APT and 1δanQCD,
but for the truncated series with the full (LB+beyondLB) coefficients, cf. Eq. (62). The

truncations are made at ∼ A3 ( eA3) and ∼ A4 ( eA4).
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Numerical evidence (Adler function): RScl dependence of
truncated series

These figures show how the arguments of the previous Section manifest
themselves in practice. In the IR fixed point frameworks, the truncated
power expansions have increasingly strong renormalization scale
dependence (when the number of terms increases), due to the wrong
incorporation of the NP contributions at higher orders there. This effect is
stronger when Q2 values are lower. On the other hand, the truncated
expansions in log derivatives, in the IR fixed point frameworks, have
weaker scale dependence, and this dependence gets in general weaker
when the number of terms in the truncated series increases. Furthermore,
these figures indicate that the power series has divergent behavior already
at relatively low orders, in contrast to the series in log derivatives.
On the other hand, in pure pQCD scenario, the two types of truncated
series give comparable results, not clear which one is better, as
demonstrated also in: Loewe, Martinez, Valenzuela and G.C. (PRD, 2010).
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Numerical evidence (Adler function): convergence
properties

Convergence properties
We present, for D(Q2) = dAdl(Q

2), the convergence properties: (a) of
truncated series in powers; (b) in log derivatives; (c) of a resummed
version of the latter based on generalized diagonal Padé’s (dPA). This
method was introduced by G.C. (NPB, 1998; PRD, 1998) in the context
of pQCD, later applied to analytic QCD frameworks in [Kögerler and G.C.
(PRD, 2011); Villavicencio and G.C. (PRD, 2012)]. It has the form

G[M/M]
D (Q2) =

M∑
j=1

α̃j A(κjQ
2) , (63)

where κj and α̃j (α̃1 + . . .+ α̃M = 1) are determined from the known
truncated series of the observable D(Q2) up to ã2M (∼ a2M)

D(Q2;µ2)
[2M]
mpt = a(µ2) +

2M−1∑
j=1

d̃j(µ
2/Q2) ãj+1(µ2) . (64)

Gorazd Cvetič (UTFSM) Evaluations in anQCD/IRFP frameworks May 25, 2013 52 / 81



Numerical evidence (Adler function): convergence
properties

κj and α̃j are obtained by regarding the log derivatives series (64) as
formally a series in powers of one-loop coupling (ãj+1 7→ a1`

j+1)

D̃(Q2;µ2)
[2M]
pt = a1`(µ

2) +
2M−1∑
j=1

d̃j(µ
2/Q2) a1`(µ

2)j+1 , (65)

and constructing for it the diagonal Padé (dPA) [M/M] which is then
decomposed in a linear combination of simple fractions

[M/M] eD(a1`(µ
2)) =

M∑
j=1

α̃j
x

1 + ũjx

∣∣∣∣
x=a1`(µ2)

. (66)

[M/M] eD is by definition a ratio of two polynomials in a1`(µ2) of order M each,

and whose coefficients are determined by the condition:

[M/M] eD − D̃(Q2;µ2)
[2M]
pt ∼ a1`

2M+1.
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Numerical evidence (Adler function): convergence
properties

We have x/(1 + ũjx) = a1`(κjQ
2) (with: x = a1`(µ

2)), i.e.

[M/M] eD(a1`(µ
2)) =

M∑
j=1

α̃j a1`(κjQ
2) , where κjQ

2 = µ2 exp(ũj/β0) .

(67)
This procedure gives α̃j and κj ; they are exactly-independent of the

chosen renormalization scale µ2, and G[M/M]
D (Q2), Eq. (63), fulfills the

basic order N = 2M approximant requirement

D(Q2)− G[M/M]
D (Q2) = O(Ã2M+1) = O(A2M+1) . (68)

As shown in [Kögerler and G.C. (PRD, 2011); Villavicencio and G.C.
(PRD, 2012)], these approximants work very well in the analytic QCD
frameworks.
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Numerical evidence (LB Adler function): convergence
properties

Using the LB Adler function, Eqs. (56) and (57), as a test case, at
Q2 = 1 GeV2, we present in Figs. 9 the results of the evaluation of this
“quasi-observable” as a function of the truncation order N in the case of
pQCD coupling a, Eq. (58), as: truncated power series, truncated series in
logarithmic derivatives, and the generalized dPA’s Eq. (63) (in that case:
N = 2M = 2, 4, . . .).
We can see that the power series and the series in log derivatives increase
with increasing N above the exact value1, while the generalized dPA
oscillates uncontrollably around it.

1The “exact” value is here taken as the Principal Value of the integral (56a) which
has ambiguity due to Landau singularities of pQCD coupling. No such ambiguity
problems appear in the other considered cases, because they have IR fixed point.

Gorazd Cvetič (UTFSM) Evaluations in anQCD/IRFP frameworks May 25, 2013 55 / 81



Numerical evidence (LB Adler function): convergence
properties
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Figure: 9: The convergence (divergence) behavior of the LB Adler function at
Q2 = 1 GeV2, as a function of the truncation order N, in pQCD. The left-hand Figure
is for a larger interval of values of the LB Adler function - the vertical axis represents
ln d

(LB)
Adl (Q2)). The right-hand Figure is for a narrower interval of values d

(LB)
Adl (Q2), and

for a larger N-interval.
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Numerical evidence (LB Adler function): convergence
properties

In Figs. 10 and 11 we present the corresponding results for the gluon
effective mass case: m = 0.8 GeV case of Eq. (60), and the running mass
case of Eq. (61), respectively.
Finally, In Figs. 12 and 13 we present the results for the (F)APT model of
Eq. (13), and 1δanQCD model of Eqs. (22a) and (23a), respectively.
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Numerical evidence (for: LB Adler function): convergence
properties
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Figure: 10: The same as in Fig. 9, but for the case of freezing with the constant gluon
effective mass m = 0.8 GeV.
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Numerical evidence (LB Adler function): convergence
properties
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Figure: 11: The same as in Fig. 9, but for the case of the running gluon effective mass
mgl(Q

2).
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Numerical evidence (LB Adler function): convergence
properties
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Figure: 12: The same as in Fig. 9, but for the case of (F)APT model.
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Numerical evidence (for: LB Adler function): convergence
properties
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Figure: 13: The same as in Fig. 9, but for the case of 1δ analytic QCD model.
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Numerical evidence (LB Adler function): convergence
properties

We can see that, in any framework with IR fixed point, the series in log
derivatives has a clearly better convergence than the power series.
The power series (although with A(Q2) < 1) is badly divergent.
Both series (in powers and in log derivatives) have renormalon growth of
the coefficients: dn ∼ d̃n ∼ n! when n large. And at any Q2, the
hierarchies hold:
a) A(Q2) > A(Q2)2 > A(Q2)3 > . . .
b) A(Q2) > |Ã2(Q2)| > |Ã3(Q2)| > . . ..
Nonetheless, the log derivatives Ãn(Q2) have alternating signs at large n,
which numerically explains why such a series has better convergence than
the power series.
The results of the Figures further indicate that the generalized dPA
method works very well in all the frameworks with IR fixed point, there
appears no divergent behavior.
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Numerical evidence (LB+bLB Adler function):
convergence properties

Finally, in Fig. 14 we present analogous results as in Fig. 9, for pQCD, but
this time with the known full (LB+beyondLB) coefficients dn (d̃n),
cf. Eq. (62). Since only up to d4 (d̃4) coefficients are known exactly, the
results are shown only up to the order N = 4.
In Figs. 15 and 16 the analogous results for the four considered IR fixed
point frameworks are shown.
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Numerical evidence (LB+bLB Adler function):
convergence properties
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Figure: 14: Analogous results as those of Fig. 9, in pQCD, but for the truncated series
based on the full (LB+beyondLB) coefficients, cf. Eq. (62)
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Numerical evidence (LB+bLB Adler function):
convergence properties
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Figure: 15: The same as in Fig. 14, but for the two cases of effective gluon mass.
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Numerical evidence (LB+bLB Adler function):
convergence properties
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Figure: 16: The same as in Fig. 14, but for (F)APT and 1δanQCD model.
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Numerical evidence (LB+bLB Adler function):
convergence properties

Also in this (LB+beyondLB) case, we can see that in the IR fixed point
frameworks the series in log derivatives behave significantly better than
the corresponding power series; and that the generalized dPA method is
often even better. These Figures include also the result of the LB
resummation [i.e., the integral (56a)]2 with the three known beyond-LB
terms added (here added in the form of log derivatives). This latter
method is also considered as probably competitive with the generalized
dPA method, at least at the considered order (N = 4).
On the other hand, in pQCD all methods are comparably bad.

2In the case of pQCD, the LB-integral has ambiguity due to the Landau singularities,
and we took the Principal Value in this case.
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Evaluation of timelike physical quantities in IR fixed point
scenarios: massless case

Massless case
The described formalism is extended to timelike physical quantities T (s)
(s = −Q2 > 0), where we assume the existence of an integral
transformation which relates T (s) with the corresponding spacelike
quantity F(Q2). The latter is evaluated as explained, for any complex Q2,
and the integral trasformation is applied on it to get T (s).
Often the integral transformation is the same as when T (s) is the
(e+e− → hadrons) ratio R(s) and F(Q2) is the Adler function
(log-derivative of the quark-current correlator)

F(Q2) = Q2

∫ ∞
0

dσ T (σ)

(σ + Q2)2
. (69)

The inverse transformation is

T (σ) =
1

2πi

∫ −σ+iε

−σ−iε

dQ
′2

Q ′2
F(Q

′2) . (70)
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Evaluation of timelike physical quantities in IR fixed point
scenarios: massless case

Figure: Possible paths C1 and C2 in the complex Q
′2-plane, for the integral (70).
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Evaluation of timelike physical quantities in IR fixed point
scenarios: massless case

Let us consider the case when the perturbation expansion of the spacelike
quantity F(Q2) in pQCD starts with a(Q2)ν0 (often: ν0 = 1; can be
ν0 > 1, or noninteger)

F(Q2)pt = a(Q2)ν0 + F1a(Q2)ν0+1 + F2a(Q2)ν0+2 + · · · . (71)

In IR fixed point scenarios this implies the following nonpower expansion,
as explained in the previous Section:

F(Q2)an = Aν0(Q2) + F1Aν0+1(Q2) + F2Aν0+2(Q2) + · · · . (72)
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Evaluation of timelike physical quantities in IR fixed point
scenarios: massless case

The application of the integral transformation (70) to this expression then
gives the desired result. This can be performed term-by-term, leading to

T (σ)man = Aν0(σ) + F1Aν0+1(σ) + F2Aν0+2(σ) + · · · , (73)

where the timelike (Minkowskian) couplings Aν(σ) are defined as

Aν(σ) ≡ 1

2πi

∫ −σ+iε

−σ−iε

dQ
′2

Q ′2
Aν(Q

′2) , (74)

and the inverse transformation is

Aν(Q2) = Q2

∫ ∞
0

dσ Aν(σ)

(σ + Q2)2
. (75)
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Evaluation of timelike physical quantities in IR fixed point
scenarios: massless case

For example, to calculate the effective charge T (s) = r e+e−(s) of the
(e+e− → hadrons) ratio R(s), we apply the mentioned evaluation to the
effective charge F(Q

′2) = d(Q
′2) (= A(Q

′2) +O(A2)) of the Adler
function D(Q

′2), for complex Q
′2 = s exp(iφ), and integrate this

expression in the contour integral (70).
Another example is the effective charge rτ of the strangeless V + A
semihadronic τ decay ratio Rτ . After removing the effects of nonzero
quark masses, this quantity can be expressed in terms of the effective
charge of the Adler function dAdl(Q

2), defined in Eqs. (54)-(55), as the
following contour integral [Braaten, Narison, Pich (1988)]:

rτ =
1

2π

∫ +π

−π
dφ (1 + e iφ)3(1− e iφ) dAdl(Q

2 = mτ
2e iφ) . (76)

Gorazd Cvetič (UTFSM) Evaluations in anQCD/IRFP frameworks May 25, 2013 72 / 81



Evaluation of timelike physical quantities in IR fixed point
scenarios: massive case

Massive case; fractional powers
An example of a mass-dependent timelike observable which, in addition,
involves noninteger (fractional) power analogs, is the partial decay width
of the Higgs to bb̄

Γ(H → bb̄)(s) =
NcGF

4π
√

2

√
s T (s) . (77)

Here, GF is the Fermi constant, s = MH
2 is the Higgs mass squared, and

T (s) is the imaginary part ImΠ(−s − iε)/(6πs) of the correlator of the
scalar current Jb = mbb̄b

Π(Q2) = i(4π)2

∫
dx exp(iq · x)〈0|T [Jb(x)Jb(0)]|0〉 , (78)

(Q2 = −q2), cf. Djouadi (Phys. Rept., 2008); Broadhurst, Kataev et al.
(NPB, 2001; PoS A, 2008).

Gorazd Cvetič (UTFSM) Evaluations in anQCD/IRFP frameworks May 25, 2013 73 / 81



Evaluation of timelike physical quantities in IR fixed point
scenarios: massive case

The timelike quantity T (s) has the naive power expansion

T (s) = mb(s)2

(
1 +

∞∑
n=1

tna(s)n

)
, (79)

where RS scale µ2 = s was chosen. The corresponding spacelike quantity
F (Q2) (a heavy scalar analog of the Adler function) is

F (Q2) = Q2

∫ ∞
0

dσ T (σ)

(σ + Q2)2
, (80)
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Evaluation of timelike physical quantities in IR fixed point
scenarios: massive case

and its power expansion is

F (Q2) = mb(Q2)2

(
1 +

∞∑
n=1

fna(Q2)n

)
, (81)

The coefficients fn in the expansion (81) were obtained by Chetyrkin
(PLB, 1997) for n = (1, 2, 3); and for n = 4 by Baikov, Chetyrkin and
Kühn (PLB, 2006). When Nf = 5 (which applies here) they are:
f1 = 5.66667; f2 = 42.032; f3 = 353.229; f4 = 3512.2.
Relations between the (dimensionless) coefficients fn and tn are given by
Chetyrkin, Kniehl and Sirlin (PLB, 1997).
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Evaluation of timelike physical quantities in IR fixed point
scenarios: massive case

Before evaluating F (Q2) in IR fixed point frameworks, and then T (s) via
the inverse integral transformation

T (σ) =
1

2πi

∫ −σ+iε

−σ−iε

dQ
′2

Q ′2
F (Q

′2) , (82)

we must now first express mb(Q2)2 in terms of powers of a(µ2) in pQCD.
The RGE for the MS running mass is

dm(µ2)

d lnµ2
≡ −m(µ2) γm(a) = −m(µ2)a

1 +
∑
j≥1

γja
j

 , (83)

where a ≡ a(µ2); γj (j = 1, 2, 3) are known [Tarasov (NPB, 1981; JINR-Rep.,

1982); Larin(PLB, 1993); Chetyrkin (PLB, 1997); Vermaseren et al. (PLB, 1997)];
γ4 can be estimated, γ4 ≈ 12. [Kotikov, G.C. (JPG, 2012)].
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Evaluation of timelike physical quantities in IR fixed point
scenarios: massive case

Integration of the RGE (83) and the RGE for a(µ2), Eq. (14), then gives

mb
2(µ2) = m̂b

2 a(µ2)ν0

1 +
∑
j≥1

Mja(µ2)j

 (84)

where m̂b
2 is a renormalization scale invariant mass, ν0 = 2/β0 = 1.04348.

The coefficients Mj (j = 1, 2, 3, 4) are functions of β0, ck ≡ βk/β0 and γk

(k ≤ j), i.e., they are known. For the case here (Nf = 5) they are:
M1 = 2.35098; M2 = 4.38319; M3 = 3.87308; M4 = −22.2155.
The invariant mass m̂b can be determined from the MS mass
mb(mb

2) = 4.232 GeV, and is:
m̂b = 15.33 GeV.
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Evaluation of timelike physical quantities in IR fixed point
scenarios: massive case

The dimensionless analogs of the spacelike F (Q2) and timelike T (s) can
be defined now: F(Q2) ≡ F (Q2)/m̂b

2 and T (s) ≡ T (s)/m̂b
2. Applying

the analytization aν0+n 7→ Aν0+n in the IR fixed point scenarios, this gives

F(Q2) ≡ 1

m̂b
2
F (Q2) = a(Q2)ν0 +

∑
n≥1

Fna(Q2)ν0+n

7→ Aν0(Q2) +
∑
n≥1

FnAν0+n(Q2) , (85)

for any complex Q2, where the coefficients Fn are now combinations of
the coefficients fj (of F ) and Mk (of mb(Q2))

Fn = fn + fn−1M1 + · · · f1Mn−1 +Mn . (86)
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Evaluation of timelike physical quantities in IR fixed point
scenarios: massive case

The timelike dimensionless quantity T (s) (with s = MH
2)

T (s) ≡ T (s)

m̂b
2

=
Γ(H → bb̄)(s)

m̂b
2NcGF

√
s/(4π

√
2)

, (87)

and thus the partial decay width Γ(H → bb̄), are obtained in such
scenarios by applying to the (truncated) nonpower series (85) the integral
transformation (70).

In fractional APT (FAPT) [Bakulev, Mikhailov and Stefanis (BMS)], this
quantity was calculated by BMS (PRD, 2007). In other (analytic) models
which are closer to pQCD at high energies, this quantity was evaluated by
Kotikov and G.C. (JPG, 2012). It turns out that the result of the
described method for Γ(H → bb̄) is the same in pQCD and in any such IR
fixed point scenarios where ρ(σ) = ρ(pt)(σ) at σ ≥ MH

2. These results are
given in Fig. 18.
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Evaluation of timelike physical quantities in IR fixed point
scenarios: massive case
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Figure: (a) The (dimensionless) T (s), as defined in equation (87), as a function of the
Higgs mass MH =

√
s: for our approach (“fractional analytic” – FAA) of Eqs. (70),(85),

87); for the usual pQCD approach of equation (79) (in both cases Λ = 0.213 GeV at
Nf = 5); and for the APT/MA model with FAA approach (ΛAPT = 0.260 GeV at
Nf = 5); (b) the same but now for the decay width Γ(H → bb̄).
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Summary

Lattice calculations and calculations using DSE and/or BSE indicate
that the QCD coupling A(Q2) freezes to a finite value A(0) (IR FP).

We considered the IR FP frameworks: with effective gluon mass;
(F)APT; 1δanQCD. And compared them with pQCD.

We argued that power expansions should not be used, but rather the
log derivative expansions and a resummation based on them
(generalized dPA), because then: the NP contributions are correctly
accounted for, the RScl dependence is in general weaker, and the
convergence properties improve.

We numerically showed how this works in practice, by evaluations of
dAdl(Q

2) (LB, and LB+bLB).

Extension of the formalism to the timelike quantities.

Only part of NP can be incorporated in a universal IRFP A(Q2);
higher-twist OPE terms should be added to account for other NP
contributions. Therefore, IRFP scenarios should fulfill at |Q2| > Λ2:
A(Q2)− a(Q2) ∼ (Λ2/Q2)N with a large N (e.g., N ≥ 3, 4, 5).

Gorazd Cvetič (UTFSM) Evaluations in anQCD/IRFP frameworks May 25, 2013 81 / 81


