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Objectives

z include zero modes in the light-front coupled-cluster method,
to facilitate analysis of theories with symmetry breaking.

z test with applications to φ3 and φ4 theories in two dimensions.

z compare with variational coherent-state analyses.
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LFCC method: Phys Lett B 711, 417 (2012)

To solve P−|ψ〉 = M2+P2
⊥

P+ |ψ〉 without truncation,
build eigenstate as |ψ〉 =

√
ZeT |φ〉 from valence state |φ〉

and operator T that increases particle number:

e−TP−eT |φ〉 = e−T M2+P2
⊥

P+ eT |φ〉,

New effective Hamiltonian P− = e−TP−eT ,
using a Baker–Hausdorff expansion

P− = P− + [P−,T ] + 1
2
[[P−,T ],T ] + . . .

Eigenvalue problem becomes P−|φ〉 = M2+P2
⊥

P+ |φ〉
Project it onto the valence and orthogonal sectors

PvP−|φ〉 = M2+P2
⊥

P+ |φ〉, (1− Pv )P−|φ〉 = 0.

No spectator dependence and no uncanceled divergences!
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φ3 theory: L = 1
2(∂µφ)

2 − 1
2µ

2φ2 − λ
3!φ

3

The mode expansion for the field at zero light-front time is

φ =

∫

dp+
√

4πp+

{

a(p+)e−ip+x−/2 + a†(p+)e ip
+x−/2

}

,

with the modes quantized such that

[a(p+), a†(p′+)] = δ(p+ − p′+).

The normal-ordered light-front Hamiltonian P− = P−
free

+ P−
int

is

P−
free

=

∫

dp+
µ2

p+
a†(p+)a(p+)

+
µ2

2

∫

dp+1 dp
+
2

√

p+1 p
+
2

δ(p+1 + p+2 )
[

a†(p+1 )a
†(p+2 ) + a(p+1 )a(p

+
2 )

]

,

with zero-mode terms included here and in P−
int
.
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φ3 P−
int

The interaction term is

P−
int

=
λ

2

∫

dp+dp′+
√

4πp+p′+(p+ − p′+)

[

a†(p+)a(p′+)a(p+ − p′+)

+a†(p′+)a†(p+ − p′+)a(p+)
]

+
λ

6

∫

dp+1 dp
+
2 dp

+
3

√

4πp+1 p
+
2 p

+
3

δ(p+1 + p+2 + p+3 )

×
[

a†(p+1 )a
†(p+2 )a

†(p+3 ) + a(p+1 )a(p
+
2 )a(p

+
3 )

]
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T operator

Simplest approximation for T is a single zero-mode creation

T =

∫ ∞

0

dp+
√

4πp+g(p+)a†(p+),

with g(p+) having support only at p+ = 0 in an appropriate limit.
This limit, taken at the end of the calculation, restores momentum
conservation. The valence state is the bare vacuum. The
projection 1− Pv is truncated to include only states with one zero
mode. The corresponding transformation of the field is

e−TφeT = φ+ [φ,T ] = φ+

∫

dp+g(p+)e−ip+x−/2,

which provides for a constant shift in the limit that g(p+) ∝ δ(p+).
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Graphical P− and T

P−

T

g

Lines on the right → annihilation ops, on the left → creation ops,
the cross → kinetic energy contribution,
the dot → an interaction.
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Effective Hamiltonian

Compute effective Hamiltonian P− from the Baker–Hausdorff
expansion:

P− =
√
4πµ2

∫

dp+
g(p+)
√

p+
a†(p+)

+
1

2!
4πµ2

∫

dp+1 dp
+
2 δ(p

+
1 + p+2 )g(p

+
1 )g(p

+
2 )

+
1

2!

√
4πλ

∫

dp+dp′+
√

p+
g(p′+)g(p+ − p′+)a†(p+)

+
1

3!
4πλ

∫

dp+1 dp
+
2 dp

+
3 δ(p

+
1 + p+2 + p+3 )g(p

+
1 )g(p

+
2 )g(p

+
3 ),

keeping only terms that do not annihilate the vacuum and create
at most one zero mode!
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Graphical effective Hamiltonian

g

g

g g

g g

g

g
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Vacuum state

The eigenvalue problem in the valence (vacuum |0〉) sector,
PvP−|0〉 = P−|0〉, is

[

1

2
4πµ2

∫

dp+1 dp
+
2 δ(p

+
1 + p+2 )g(p

+
1 )g(p

+
2 )

+
1

6
4πλ

∫

dp+1 dp
+
2 dp

+
3 δ(p

+
1 + p+2 + p+3 )g(p

+
1 )g(p

+
2 )g(p

+
3 )

]

|0〉 = P−|0〉.

For a function g(p+) = αδ(p+), the eigenvalue P− is

P− =
1

2
µ2α24πδ(0) +

1

6
λα34πδ(0),

proportional to the volume
∫

dx− = lim
p+→0

∫

dx−e ip
+x−/2 = 4πδ(0).

Write P− = E−
∫

dx− in terms of an energy density
E− = 1

2
µ2α2 + 1

6
λα3. The spectrum is unbounded from below as

α goes to negative infinity.
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Auxiliary equation

The function g is determined by the auxiliary equation
(1− Pv )P−|φ(P)〉 = 0, truncated to only one zero mode,

√
4πµ2

g(p+)
√

p+
+

1

2

√
4πλ

∫ p+

0

dp′+
√

p+
g(p′+)g(p+ − p′+) = 0

Multiply by
√

p+ and take Laplace transform
G (s) ≡

∫∞

0
e−sp+g(p+)dp+ to obtain

µ2G (s) +
1

2
λG (s)2 = 0,

The possible solutions are G (s)=0 and −2µ2/λ. Because the
inverse transform of a constant is a delta function, we obtain the
expected g(p+) = αδ(p+) with α = 0 and α = −2µ2/λ. These
are the local extrema of E−; the auxiliary equation does miss the
global extrema at ±∞.
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Coherent-state analysis

With the T operator truncated to one zero mode,
|α〉 ≡

√
Zαe

T |0〉 is a coherent state.
Can then minimize the vacuum energy density 〈α|H|α〉 with
respect to α, given the Hamiltonian density

H =
1

2
µ2φ2 +

λ

3!
φ3.

The T operator can be written

T = α

∫ ∞

0

dp+
√

4πp+∆(p+)a†(p+)

where g(p+) = α∆(p+) and, when a specific form is needed
∆(p+) = 1

ǫ e
−p+/ǫ defined so that limǫ→0∆(p+) = δ(p+) for

integrals from 0 to ∞.
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Vacuum energy density

From the commutators

[T †,T ] = 4πα2

∫

dp+p+∆2(p+) → πα2,

[φ,T ] = α

∫

dp+∆(p+)e−ip+x−/2 → α.

[φ,T †] = α

∫

dp+∆(p+)e+ip+x−/2 → α,

we have, for real α, the normalization
√
Zα = e−πα2/2, as well as

φ|α〉 = α|α〉, 〈α|φ = 〈α|α, and

〈:H :〉 = 1

2
µ2α2 +

1

6
λα3 = E−.

The local extrema are at α = 0 and α = −2µ2/λ, and the global
extrema at ±∞, as in the LFCC analysis. The vacuum expectation
value for the field is just 〈α|φ|α〉 = α.
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φ4 theory: L = 1
2(∂µφ)

2 − 1
2µ

2φ2 − λ
4!φ

4

P−
int

=
λ

6

∫

dp+1 dp
+
2 dp

+
3

4π
√

p+1 p
+
2 p

+
3 (p

+
1 + p+2 + p+3 )

×
[

a†(p+1 + p+2 + p+3 )a(p
+
1 )a(p

+
2 )a(p

+
3 )

+a†(p+1 )a
†(p+2 )a

†(p+3 )a(p
+
1 + p+2 + p+3 )

]

+
λ

4

∫

dp+1 dp
+
2

4π
√

p+1 p
+
2

∫

dp′+1 dp′+2
√

p′+1 p′+2

δ(p+1 + p+2 − p′+1 − p′+2 )

× a†(p+1 )a
†(p+2 )a(p

′+
1 )a(p′+2 )

+
λ

24

∫

dp+1 dp
+
2 dp

+
3 dp

+
4

4π
√

p+1 p
+
2 p

+
3 p

+
4

δ(p+1 + p+2 + p+3 + p+4 )

×
[

a†(p+1 )a
†(p+2 )a

†(p+3 )a
†(p+4 ) + a(p+1 )a(p

+
2 )a(p

+
3 )a(p

+
4 )

]
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Graphical P− and T

P−

T = α
∫∞

0
dp+

√

4πp+∆(p+)a†(p+) with ∆(p+) → δ(p+)

α
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Effective Hamiltonian

For the zero modes

P− =
√
4π

[

µ2α+
1

6
λα3

]
∫

dp+
√

p+
∆(p+)a†(p+)

+4π

[

1

2
µ2α2 +

1

24
λα4

]

δ(0).

α

α

α

α

α

α

α

α

α

α
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Vacuum eigenvalue problem

For a vacuum valence state, the valence eigenvalue problem is

PvP−|0〉 = E−

∫

dx−|0〉, with E− =
1

2
µ2α2 +

1

24
λα4.

The auxiliary equation, projected onto the one-zero-mode sector,
yields

µ2α+
1

6
λα3 = 0.

The solutions are α = 0 or α2 = −6µ2/λ, with α the vev for the
field. A coherent-state analysis yields the same results.
If we now consider the wrong-sign case, with µ2 → −µ2, we find
α = ±

√
6λ/µ, which corresponds to the shift of the field φ that

brings the Hamiltonian density to a minimum. Thus, the inclusion
of a zero mode in the LFCC T operator allows for the necessary
shift in the field.
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Symmetry breaking

The effective Hamiltonian will have terms that mix Fock states
with odd and even numbers of particles, which is characteristic of
broken symmetry.
For example, a commutator that contributes to the
Baker–Hausdorff expansion of P− is

[P−
int
,T ] =

λα

2

∫

dp+1 dp
+
2 dp

+

√

4πp+1 p
+
2 p

+

δ(p+ − p+1 − p+2 )

×
[

a†(p+)a(p+1 )a(p
+
2 ) + a†(p+1 )a

†(p+2 )a(p
+)

]

,

which changes particle number by one.
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Summary

z in light-front quantization, the vacuum is trivial without zero
modes.

z the LFCC method, which solves the LF Hamiltonian
eigenvalue problem nonperturbatively, can be extended to
include zero modes.

z in simple theories, we have shown that this provides for the
expected vev and is consistent with a variational
coherent-state analysis.

z a four-zero-mode calculation in φ4 theory is underway, to
compute the critical coupling for dynamical symmetry
breaking.

z another accessible application is a nonperturbative calculation
of the Higgs mechanism.
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