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Motivation

Motivation

Deeply-virtual Compton scattering (DVCS) has been proposed to
determine the generalized-parton distributions (GPDs) of hadrons. It is
commonly assumed that to allow for the extraction the GPDs, the
experiments should be set-up in (approximately) collinear kinematics.
Because such kinematics is not always possible to realize in concrete
experiments, see e.g. JLab proposal E12-06-114, it is important to
determine deviations that occur in a non-collinear kinematics.

We propose to first analyze the experimental data in terms of
Lorentz-invariant amplitudes, Compton form factors (CFFs). By
definition, the CFFs can be determined in any suitable kinematics. Once
they are measured, it is the job of theorists to extract the GPDs.

Here, we devote special attention to the kinematics. Specifically, we
analyze the DVCS limit where the virtuality of the incoming photon is
large compared to the relevant mass scales. Moreover, we determine
whether or not all CFFs can be extracted in collinear kinematics.
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In virtual Compton scattering the physical amplitudes can be written as
the contraction of a tensor operator with the photon polarization vectors.

It is important to use the most general form of that tensor
operator consistent with EM gauge invariance.

Are there preferred reference frames for the extraction of CFFs
from the data?

The quark-gluon structure of hadrons is supposed to manifest itself most
transparently in processes where the hadrons are subjected to strongly
virtual probes.

How about the scaling of the amplitudes with the virtuality Q7
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Tensor Formulation

We write the physical amplitudes as contractions of a tensor with the
polarization vectors of the photons:

A(h',h)y=€*(q's h'). T e(q; h)..
This tensor must be transverse, i.e.,
4 TH =0, Tig, =0

The tensor is written in terms of scalars (CFFs) and basis tensors.

In order to find the number of independent tensor structures we first
identify the independent momenta.

From four-momentum conservation it follows that out of the external
momenta occurring in the hadronic part of the amplitude, namely p, g,

p’, and g’ one may choose 3 independent ones.

We keep g and ¢’, to simplify a check of the transversity of the tensor.
For the remaining one we choose the sum of the hadronic momenta,
P = p' + p. (This choice can also be motivated by perturbation theory.)
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Our basisis ki = P, kr = ¢, ks = q.

The most general second-rank tensor expressed in terms of our basis is
then:
T = To g™ + Z/]TJ k,'#'kjy,
iJ
By contracting 7" with g/, and q,,, which must give the result 0 for the
physical tensor, one can determine the number of independent scalars T.

As there are 10 7s and the number of independent contractions is 5,

there are 5 CFFs in the effective tensor?.

As the 5 independent tensor structures can be chosen in an infinite
number of ways, we look for a synthetic way to construct the effective
tensor.

2This number was mentioned before by M. Perrottet, Lett. Nuovo Cim. 7,
915 (1973) and R. Tarrach, Nuovo Cim. 28 A, 409 (1975) and numerous more

recent papers.
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Following Tarrach, we find it useful to construct the tensor TH#" by
applying a two-sided projector 27 (q, q’) to the most general second rank
tensor expressed in terms of our basis:

TH =g tmn 8™,  tmn = to &mn + Z Lij kimkfn'
i,J
The two-sided projector g(q, q’) is defined as follows:

v

q"q
qg-q

g"(q.q") =g —

This projector has the properties

~ (LM

g

Emn é—”y g,u.y? q;;. g#y — 01 g#l}qu = 0.

Should we write TH*" as the contraction
T = g™ (L, q") tmn 8™ (q, R),

it would also be transverse in the same way as the TH#” we constructed.
Further contractions with g¥(q, q") would not change it.
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The application of g#™ and g removes the parts of t,,, that contain
the left factor g, or the right factor q/,.

We define the following reduced momenta

~Ipe epm ) Il q . ~V ~Nv U q v
G =&"am=q" - 54" GrR=@mg" =4 -4
~ - P.d - _ . P
Pl =g Py = P~ — gt B = P =P -1 g”.
q-q q-q
and write for THY
pH pv pH gY E;,"#- pv a’# ax.
ur o ~ (LU L" R L YR L "R L YR
T =Ho g" + Ha 0> + Ho> 02 + H3 0> + Ha 02

The transverse tensors multiplying ;, i=1,...4, are divided by Q? to
make them dimensionless

Contracting the tensor with € (q") and €,(q) we find that all five pieces
of the tensor contribute, if ¢’> # 0 and g% # 0.

The number of independent tensor structures is equal to the number of

independent physical matrix elements consistent with parity conservation:

A(—H,—h) = (—=1)"=PA(K.h), ' h=+1,0,
A(l*l)* A(]...O).. A(].,—].).. A(O,l), and A(O*O)
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If either of the photons is real, some pieces of the tensor do not
contribute to the physical amplitudes: the tensor is reduced to an
effective tensor.

For instance, consider the case where one of the photons is real, say
g’? = 0, the number of independent physical amplitudes reduces to

three, say A(1,1), A(1,0), and A(1,-1).

The vector g| reduces to g" which is orthogonal to €(g") and thus the
CFFs H3 and H4 do not contribute, reducing the full tensor TH#” to an
effective one with only three independent pieces.

Finally, if both photons are real, the number of active CFFs reduces to
two, which equals the number of independent physical amplitudes A(1,1)
and A(1, —1). The effective tensor has in this case the same form as the
tree-level tensor.

Thus, the number of CFFs in the effective tensor equals the number of
independent physical matrix elements.
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l[lustration: Tree-level DVCS

q q

Seagull s-channel u-channel

The tree-level DVCS amplitude corresponds to the CFFs

1 1
_ N2 | ___ - R
Ho 2 Hh=Q (S—Mr2 u—M2) '

Thus, only 2 out of 5 CFFs contribute. We note that H; and Hg are of
the same order at large Q.

The tree-level amplitude has the same number of CFFs whatever the
kinematics. They are simple functions of the Mandelstam variables, but
will be more complicated if one goes beyond the lowest order in
perturbation theory (dynamical effect).



Motivation Tensor formulation Kinematics Amplitudes Summary and conclusions

Kinematics

We shall in general work in the hadronic CMF. The momenta are

# = (Ec,—qcsinfc,0,—qccosbc),
¢" = (q¢.qcsinfc,0, gc cosbc),
p'" = (EL,—qesinf¢,0, —q¢cosO),
q" = (qc.qcsind:,0, gccosb).

with

. V(M2 4+ Q2 — 5)2 + 45Q? £ s+ M? + Q?
c = , Ec= ;
2,/s | 2./s |
0 S_M2_Q2
dc - y
2./s
;o s — M? E’—S+M2

Superficially, the momenta scale as Q?, but we can use the Bjorken
variable xg;j to relate the Mandelstam variable s to the mass M and Q2.
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Using the definition xg; = Q%/(2p - q) we find

Q? o 1—xgj -
XBj = “s=M+——-Q".
b s+ Q2 — M2 XBj

Thus s is of order @?, which shows that all non-vanishing momentum
components are of order Q.

We calculate the Mandelstam variables t and u for large Q:
1+ cosv

1 — cos}
_ Q21 u— — Q2
2 XBj 2XBj

r —

The quantity ¥ = 6¢ — fc is the scattering angle in the CMF.

If ¥ — 0, t goes to zero up to corrections of O(M2), thus t does not
strictly vanish in the forward limit.

If the experimental set-up limits the scattering angle to values greater
than ¥y, t remains of order Q2.

For large @ and small i, one finds

k2
4 xB;



Kinematics

In collinear kinematics, v/ = 0, and rotating the reference frame such that
6c = 6c = 0, one finds for large Q the simplified expressions

_ 2 — xpi
pro— Q B (1,0,0,-1),
2/xgj(1 — xg))
]_ —
J" = B (1,0,0,1).
2\/XBJ — Xgj)
1
g = Q (1 —2xgj,0,0,1).

2/ xgj(1 — xgj)

The corrections to these expressions are of order MQ/Q.

One may check that ¢’ — g & P in this limit and thus t = (¢’ — q)?> = 0.



Coincidence Experiment

HRS
e |-
e LH2 target
Beam Y
p PbF2
Electromagnetic
calorimeter

Plastic scintillator array

Figure 1.11: E00-110 schematic setup showing the three different detectors used to mea-
sured each of the particles in the final state. Carlos Mufioz Camacho thesis
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Reduced momenta

It is interesting to check the reduced momenta in the limits Q — oo and
Yc — 0. First, we look at the projector:

0 0 1—2xp
0
0 -1 0
0 0 1-—2xg

1

-t
= O O K=

|

-t

o

The reduced momenta that matter for DVCS, in this limit are:

. Q (1 — xgj)(2 — xgj)

P = (1,0,0,1),
2/ xgj(1 — xBj) Xg;
" y P
PR — Q al (1,0,0, 1— 2XBj):'
2\/XBJ'(1 — XBJ') XBj
N Q
grR = (—1,0,0, —(1 — 2xg;)).

2/ xgj(1 — xgj)
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The Compton tensor

We write the tensor TH” in the forward kinematics for the DVCS case
where only three CFFs occur

H; (1—2xgj)H}
Koo o mm
T _ 0 —Ho 0 0
o 0 0 —Ho 0
H] (1—2xg;j)H]
\4;(51] 0 0 4x§; 1 }

where the compound CFF H] is defined by
Hi = 2X§j7{o + (2 — xgj)*H1 — xBj(2 — xg)) Ha2.

Note that this result is effectively the same as the tree-level result, where
only two CFFs occur.

Thus in the forward limit at large @ we cannot distinguish between the
tree level tensor and the complete tensor. This a kinematical effect.
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Polarization vectors

To calculate the amplitudes, we need the polarization vectors.

The polarization vectors of the incoming virtual photon in the CMF are

1
e'(q',£1) = ﬁ(01$c059c,1',isin9c)
ot 1 0 _: 0
e'(q',0) = m(—ch—qcsmﬁc?ojqccos{i’(;)

The ones for the final state are obtained by replacing ¢ by 6 and
dropping the one with helicity 0.

In the forward limit and @ — oo we find

Q
2V —=Q%/xgj(1 — xe;

e(qg,0) = 1.0,0,1 — 2xpg;
j

One may easily check that in this limit g and ¢(q, h) are still orthogonal
for all values of the helicity h.
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Factorized amplitude
Recall the formulas

A’ h) =€ (g h') . T* e(q; h),.

and

i~

Pl
Q2

DM Du
pr Py

" =Ho 8" +Hq Q2

+ Ho

which leads to the expression

Ah'.h) = Hoe (g h)-E-€e(q;h)
+ Hi[e'(d'ih) - P [Pr-e(q; h)]/@°
+ Ho [e*(q:h) - P [Gr - €(q; h)]/ Q.

This factorized form is useful to understand why in forward kinematics
only Hp contributes:

A(l,1)=A(-1,—1)=—-Hy for vc—0,

All other matrix elements are proportional to sin?). The reason is that in
the limit ¥ — 0 the factors €*(q’; h’") - P_ vanish for all A’.
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In detail, we have the following expansions for small

A(1,1) — —Ho+O(1 —cos?) — —Ho + O(V?),
A(1,0) — O(sin®),— O(V),

Al,-1) — O (sin2 g) — O(1?).

If we solve the amplitudes for the CFFs we find, besides the exact
relation A(1,1) + A(1, —1) = —H,,

26 A1) V2e =) ALO)

7‘(1—>—1_ng 2 1—XBj 9 —2 Ho
2x3;(2 — xgj) A(1,—1) A(1,0) &
] J ] . ] Bj
Mooy = L ixejy/2x65(1 — x) —— + 27,

Because A(1, —1)/19? and A(1,0)/¢ are finite for ¥ — 0, the limit ¥ — 0
exists, but it means that H; and H, must be determined from the
angular dependence of the differential cross-section data.
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Simple Model

We consider a simple model. A charged particle of mass M and charge e
interacts with a neutral one of mass 1. The coupling constant is g.

It is known® that to second order in g the following diagrams must be
iIncluded to guarantee EM gauge invariance:

3CRJ and BLGB, Int. J. Mod. Phys. E 22, 1330002 (2013)



Using the usual procedure involving Feynman parametrization of the
integrals over the momenta and performing a shift to reduce the
numerators to an even function of the integration variables, we find the
contributions to the total second-order tensor TH".

Because the tree-level tensor T},.. is transverse by itself, we shall not

discuss It.

The projector § being idempotent, we know that a transverse tensor that

can be written as
" = g_,u.m tmn émj

does not change when the projector is applied again: THY = TH =
GHMT n 8™ . Therefore, we may apply g# to all parts of the
second-rank tensor

T = TE + T + ULG” + V" + WE” + Tl + Ul + Vi + Wy

individually, without changing their sum.

We shall now discuss the transverse parts of the individual tensors.
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Amplitudes

The simplest example is the seagull tensor, given by the integral

11— 4 1/

2 dk* —2gh
T"Lwr / dOfQ/ dCf3 .
2m)* (k* — Mg)?

The as are Feynman parameters and M, is the invariant mass function
obtained following the usual procedure to the calculate the amplitude.

If g is applied, the tensor g"” changes to g/, thus TL" contributes

only to the CFF H,.

Because in our model all invariant mass functions are definite functions
of the Feynman parameters and Mandelstam variables in the physical
domain, the momentum integrals are convergent after performing a Wick

rotation and we can determine their scaling behaviour for large Q: all
scale as 1/Q?.
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The box diagrams T and T, turn out to contribute to all five CFFs. As
an example consider T:

y 1—ao l—anr—a3 C”(4 N#-V
R A Y
NF = (2k+ P+ q—2A7,)'(2k+ P+ 4 —2A71,)"

At, = ap+az(p+q)+agp

After contracting TA" with 2"V, one finds that TA" contributes to all
CFFs. In particular, one finds for the three CFFs occurring in DVCS:

dk* k?
Hor = [loal B (k —WE
B —ap — a3 — ) Q?
Hire = /[d@] 27) (k2 — M%_St)a; ;

4 o 2
o /[da] (dk (a2 —a3 —as)(l — a2 —az — as)Q .

)’ (k2 = MT,)*

The integral [[da] stands for the integral over three Feynman parameters. The
factor Q% occurs owing to our convention for the CFFs. It guarantees that for
R — oo all CFFs scale in the same way.
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We summarize the results for the total tensor.

The CFFs relevant for DVCS are obtained after applying the projector
gH" to the tensor THY.

By splitting the tensor in pieces that correspond to the nine diagrams,
the projection also splits into nine parts. They do not all contribute in
the same way to the three CFFS. Their contributions are

Ho = Hor, + Hor - HoTy:

Hi = Hait, +Hiv, +Hiv, +Hiw, +
Hit, +Hivu, +Hiv, + Hiw,.,

Ho = Hor, +Hou, +Hor, + Hov

In our convention for the CFFs, all of them have the same dimension,
namely 1/Q?. This can be compared to the tree-level contributions,

which are
1 1

which scale as Q°.
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Summary and conclusions

1. We have discussed the kinematical effects of taking the DVCS limit
R — 0o and the collinear limit ¥ — 0. These considerations are
model-independent. They are relevant for DVCS on #He.

2. The question whether one can measure CFFs in experiments is ans-
wered in a model-independent way:
only Ho is measured in strictly collinear kinematics.
To measure the other two CFFs one must measure the angular
dependence of the differential cross section.

3. To estimate the relative importance of the three CFFS, one should
include the leptonic part and the Bethe-Heitler amplitude.

4. For illustration, we have discussed a toy model, inspired by a
quark—di-quark model of a proton. In this model the so-called cat’s
ears diagrams do not exist.

5. To estimate the relative importance of the different pieces contribu-
ting to the CFFs, a numerical calculation would be necessary. Such
an effort should better be made in a more realistic model.



