LIGHT AND HEAVY PENTAQUARKS IN THE CONSTITUENT QUARK MODEL Review and recent developements FI. Stancu University of Liège

ECT* Trento, February 21 - 25, 2005

• Dynamical calculations in the Flavour-spin models :

- the light pentaquark antidecuplet

- the charmed antisextet

- New generation of results for Θ^+
- Representation mixing

References:

F. S. PRC58 (1998) 111501
F. S. & D. O. Riska, PLB575 (2003) 242
F. S., PLB595 (2004) 269, PLB598 (2004) 295 (erratum)

D.Diakonov, V.Petrov, M.Polyakov, Z. Phys. A359(1997)305

Chiral soliton model: Θ^+ is a collective excitation of the mean chiral field \rightarrow low mass and narrow width

PRESENT APPROACHES to the **ANTIDECUPLET**

- Spin and parity of $\Theta^+ \rightarrow$ polarization experiments
- Consistency with partial wave analysis
- Photoproduction cross sections on proton, neutron
- Chiral soliton model revisited, masses & widths
- Constituent quark models, masses & widths
- Octet-antidecuplet or higher representation mixing
- Group theoretical classification of
- $q \times q \times q \times q \times \overline{q}$ states \rightarrow mass formulae
- Heptaquarks or $K\pi N$ molecular picture
- Skyrme model (bound state or rigid rotator)
- Description of pentas in the instanton model
- QCD sum rules
- Pentaquarks in lattice calculations
- Magnetic moments of pentaquarks
- Θ^+ in relativistic heavy ion collisions

WHY CONSTITUENT QUARK MODELS ?

 \rightarrow Describes a large number of observables

$$8_F \times 8_F = 27_F + 10_F + \overline{10}_F + 2(8)_F + 1_F$$

THE HAMILTONIAN:

- (1) spin-independent part (mass, kinetic, confinement)
- (2) short-range hyperfine interaction

TWO STANDARD MODELS Colour-Spin (CS)

$$V_{CS} = -\sum_{i < j}^{5} C_{ij}^{CS} \lambda_i^c \cdot \lambda_j^c \vec{\sigma}_i \cdot \vec{\sigma}_j$$

Flavour-Spin (FS)

$$V_{FS} = -\sum_{i < j}^{4} C_{ij}^{FS} \lambda_i^F \cdot \lambda_j^F \vec{\sigma}_i \cdot \vec{\sigma}_j$$

MAIN ISSUES IN ANY QUARK MODEL

- The mass of Θ^+
- The strong decay width
- Spin and Parity
- Splitting between isomultiplets
- SU(3)- flavour representation mixing

WHY THE FS MODEL ?

- Good description of baryon spectra,
- Previous experience in heavy pentaquarks,
 F. S. PRD58(1998)111501
- Symmetry consistent with the large N_c limit of QCD (Jenkins & Manohar, hep-ph/0402024)
 N. B. The irreducible representations at N_c → ∞ are referred to as Skyrme representations
- Support from lattice calculations, F. Lee, PENTAQUARK04, SPring-8, see N. Mathur et al., PLB605(2005)137

CONSTITUENT QUARK MODELS: POSITIVE PARITY SCENARIOS

N.B. Useful to look at the q^4 subsystem I = 0, S = 0 compatible with $uudd\bar{s}$

- FS model (Pseudoscalar meson exchange) : Lowest state has positive parity, F. S. '98 $[31]_O \times [211]_C \rightarrow [1111]_{OC} \rightarrow [4]_{FS}$ allowed
- CS model (One gluon exchange) : Positive parity lowest state is possible schematically (Jennings & Maltman'03), NOT true in realistic calculations $[31]_O \times [22]_F \rightarrow [211]_{OF} \rightarrow [31]_{CS}$ allowed

STABLE uudds F. S. & D. O. Riska, PLB575,242(2003)

1) *qq* pairs, schematic Flavour-Spin interaction Glozman & Riska, PR268(1996)263

$$\begin{split} \mathbf{V}_{\chi} &= -\mathbf{C}_{\chi} \sum_{\mathbf{i} < \mathbf{j}}^{4} \lambda_{\mathbf{i}}^{\mathbf{F}} \cdot \lambda_{\mathbf{j}}^{\mathbf{F}} \, \tilde{\sigma}_{\mathbf{i}} \cdot \tilde{\sigma}_{\mathbf{j}} \\ C_{\chi} &\sim 30 \text{ MeV } (\Delta - N \text{ splitting}) \end{split}$$

enough if the antiquark is heavy

2) $q\overline{s}$ pairs, schematic η -meson exchange

Pion decay $D_s^* \rightarrow D_s \pi^0$ requires $\pi^0 - \eta$ mixing $\rightarrow \eta$ meson couples to *s* or \overline{s} (Laehde and Riska, '02)

$$\mathbf{V}_{\eta} = \mathbf{V}_{\mathbf{0}} \sum_{\mathbf{i}}^{4} \tilde{\sigma}_{\mathbf{i}} \cdot \tilde{\sigma}_{\mathbf{j}}$$

 $V_0 = 2C_{\chi}$ lowers the binding energy by 350 MeV Conclusion: $V_{\chi} + V_{\eta}$ makes uudds $J^P = 1/2^+$, I = 0, S = +1 stable THE ANTIDECUPLET. F. S. PLB595(2004)269 [hep-ph/0402044]

Basic assumptions:

• Consider the lowest q^4 state

$$|1\rangle = |[31]_O[211]_C[1^4]_{OC}; [22]_F[22]_S[4]_{FS}\rangle$$

- Couple \bar{q} to the q^4 state \rightarrow 5-particle state
- qq interaction: Graz parametrization
- the $q\overline{q}$ interaction is spin dependent but flavour independent \rightarrow assume a global shift of the spectrum

REALISTIC FLAVOUR-SPIN HAMILTONIAN Graz parametrization, Glozman, Papp & Plessas, PLB '96

$$H = \sum_{i} m_{i} + \sum_{i} \frac{\vec{p}_{i}^{2}}{2m_{i}} - \frac{\vec{P}^{2}}{2M} + \sum_{i < j} V_{conf}(r_{ij}) + \sum_{i < j} V_{\chi}(r_{ij})$$
$$V_{conf}(r_{ij}) = -\frac{3}{8}\lambda_{i}^{c} \cdot \lambda_{j}^{c} C r_{ij}$$

$$V_{\chi}(r_{ij}) = \left\{ \sum_{F=1}^{3} V_{\pi}(r_{ij}) \lambda_i^F \lambda_j^F + \sum_{F=4}^{7} V_K(r_{ij}) \lambda_i^F \lambda_j^F + V_{\eta}(r_{ij}) \lambda_i^8 \lambda_j^8 + V_{\eta'}(r_{ij}) \lambda_i^0 \lambda_j^0 \right\} \vec{\sigma}_i \cdot \vec{\sigma}_j$$

N. B. Parameters (m_i , meson masses, etc) fitted to baryon spectra \rightarrow good level order

Internal Jacobi coordinates

$$\vec{x} = \vec{r_1} - \vec{r_2} ,$$

$$\vec{y} = (\vec{r_1} + \vec{r_2} - 2\vec{r_3})/\sqrt{3}$$

$$\vec{z} = (\vec{r_1} + \vec{r_2} + \vec{r_3} - 3\vec{r_4})/\sqrt{6} ,$$

$$\vec{t} = (\vec{r_1} + \vec{r_2} + \vec{r_3} + \vec{r_4} - 4\vec{r_5})/\sqrt{10}$$

Basis states of POSITIVE parity: assume s^3p content for $[31]_O$

$$\psi_{1} = \begin{array}{|c|c|} 1 & 2 & 3 \\ \hline 4 & \end{array} = \langle \vec{x} | 000 \rangle \langle \vec{y} | 000 \rangle \langle \vec{z} | 010 \rangle$$

$$\psi_2 = \begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & \end{array} = \langle \vec{x} | 000 \rangle \langle \vec{y} | 010 \rangle \langle \vec{z} | 000 \rangle$$

$$\psi_{3} = \begin{array}{|c|c|} \hline 1 & 3 & 4 \\ \hline 2 & \end{array} = \langle \vec{x} | 010 \rangle \langle \vec{y} | 000 \rangle \langle \vec{z} | 000 \rangle$$

to be multiplied by $\langle \vec{t} | 000 \rangle$

Gaussian Ansatz

$$\psi_1^5 = \psi_0 \ z \ Y_{10} \ (\hat{z})$$

$$\psi_2^5 = \psi_0 \ y \ Y_{10} \ (\hat{y})$$

$$\psi_3^5 = \psi_0 \ x \ Y_{10} \ (\hat{x})$$

$$\psi_0 = \left[\frac{1}{48\pi^5 \alpha \beta^3}\right]^{1/2} \exp\left[-\frac{1}{4\alpha^2} \left(x^2 + y^2 + z^2\right) - \frac{1}{4\beta^2} t^2\right]$$

Variational parameters α , β

Expectation values (MeV) and total energy $E = \sum_{n=1}^{5} m_i + \langle T \rangle + \langle V_c \rangle + \langle V_\chi \rangle$

$\mathrm{q}^4\overline{\mathrm{q}}$	$\sum_{n=1}^{5} m_i$	$\langle { m T} angle$	$\langle { m V_c} angle$	$\langle \mathbf{V}_{\chi} angle$	\mathbf{E}	M	α (fm)	β (fm)
uuddd	1700	1864	442	-2044	1962	1452	0.42	0.92
$\mathbf{uudd}\overline{\mathbf{s}}$	1800	1848	461	-2059	2050	1540	0.42	1.01
uudsd	1800	1535	461	-1563	2233	1723	0.45	0.92
$\mathrm{uuds}\overline{\mathrm{s}}$	1900	1634	440	-1663	2310	1800	0.44	0.87
$ddss\overline{u}$	1900	1418	464	-1310	2472	1962	0.46	0.92
$\mathbf{uuss}\overline{\mathbf{s}}$	2000	1410	452	-1310	2552	2042	0.46	0.87

The antidecuplet members with Y = 1 and Y = 0

$$M(N_{\overline{10}}) = \frac{1}{3}M(uudd\bar{d}) + \frac{2}{3}M(uuds\bar{s}) = 1684 \text{ MeV},$$
$$M(\Sigma_{\overline{10}}) = \frac{2}{3}M(uuds\bar{d}) + \frac{1}{3}M(uuss\bar{s}) = 1829 \text{ MeV}.$$

The octet members with Y = 1 and Y = 0

$$M(N_8) = \frac{2}{3}M(uudd\bar{d}) + \frac{1}{3}M(uuds\bar{s}) = 1568 \text{ MeV},$$
$$M(\Sigma_8) = \frac{1}{3}M(uuds\bar{d}) + \frac{2}{3}M(uuss\bar{s}) = 1936 \text{ MeV}.$$

THE ANTIDECUPLET MASS SPECTRUM (MeV) $\mathbf{P} = +1$

Penta	$\mathbf{Y}, \ \mathbf{I}, \ \mathbf{I}_3$	Present results	Carlson et al.
Θ^+	2 , 0 , 0	1540	1540
${ m N}_{\overline{10}}$	${f 1, 1/2, 1/2}$	1684	1665
$\Sigma_{\overline{10}}$	${f 0, 1, 1}$	1829	1786
$\Xi^{}$	-1, 3/2, -3/2	1962	1906

Carlson et al. PLB579(2004)52

- NO kinetic energy, NO η' -meson exchange
- **NO** symmetry breaking in η -meson exchange
- NO orbital excitation in the radial matrix elements
- \rightarrow conflict with POSITIVE parity

N.B. Updated partial wave analysis gives 1680 MeV or 1730 MeV, Arndt et al., nucl-th/0312126

N.B. Smaller splitting in the CS model V. Dmitrasinovic & F. S.

* Totally antisymmetric q^4 wave fct., NO $\overline{3}$ S=0, I=0 diquarks * Full CS interaction

* Broken SU(3) by the quark masses

 $M = M_0 - 58 Y$

 M_0 is fixed by the Θ^+ mass $\rightarrow M(\Xi^{--}) \simeq 1710$ MeV

Representation mixing

 $8_F \times 8_F = 27_F + 10_F + \overline{10}_F + 2(8)_F + 1_F$

Existing data require mixing \rightarrow Find multiplets by fitting the mass and width \rightarrow some mixing angle

Arbitrary number of quarks and antiquarks, model independent

Diakonov and Petrov, $J^P = 1/2^+$, PRD69(2004)

Pakvasa and Suzuki, PRD70(2004), $J^P = 1/2^+$, $\Xi^{--} = 1862$ masses require large mixing and the widths small mixing

Hyodo and Hosaka, $J^P = 1/2^+, 1/2^-, 3/2^+, 3/2^-$ (hep-ph/0502093) \rightarrow consistent large mixing for 3/2⁻

Hyodo and Hosaka, hep-ph/0502093

Mass spectra and Θ^+ decay width (MeV) For $1/2^-$ the masses of Θ and Ξ are the input parameters, while for $1/2^+, 3/2^\pm$, the masses of Θ and N are the input parameters. Values in brackets are predictions and we show the candidates to be assigned for the states.

J^P	M_{Θ}	M_N	M_{Σ}	M_{\equiv}	Γ_{Θ}
	1540	[1647]	[1753]	1860	
$1/2^{-}$		N(1650)	$\Sigma(1750)$		$156.1 \ ^{+90.8}_{-73.3}$
	1540	1710	[1880]	[2050]	
$1/2^{+}$			$\Sigma(1880)$	三(2030)	$7.2 \ ^{+15.3}_{-4.6}$
	1540	1720	[1900]	[2080]	
3/2+			-	-	$10.6 \ ^{+7.0}_{-5.0}$
	1540	1700	[1860]	[2020]	
$3/2^{-}$			-	三(2030)	$1.3 \ ^{+1.2}_{-0.9}$

Dynamical derivation in the FS model

$$\mathbf{V} = \begin{cases} \frac{2\sqrt{2}}{3}(\mathbf{m}_{s} - \mathbf{m}_{u}) + \frac{\sqrt{2}}{3} \left[\mathbf{S}(\mathbf{uuds}\overline{s}) - \mathbf{S}(\mathbf{uudd}\overline{d}) \right] = \mathbf{166} \text{ MeV} & \text{for N} \\ \frac{2\sqrt{2}}{3}(\mathbf{m}_{s} - \mathbf{m}_{u}) + \frac{\sqrt{2}}{3} \left[\mathbf{S}(\mathbf{uuss}\overline{s}) - \mathbf{S}(\mathbf{uuds}\overline{d}) \right] = \mathbf{155} \text{ MeV} & \text{for } \mathbf{\Sigma} \\ \mathbf{S} = \langle \mathbf{T} \rangle + \langle \mathbf{V}_{\chi} \rangle \end{cases}$$

Physical states

$$\begin{split} |\mathbf{N}^*\rangle &= |\mathbf{N}_8\rangle \cos\theta_{\mathbf{N}} - |\mathbf{N}_{\overline{\mathbf{10}}}\rangle \sin\theta_{\mathbf{N}}, \\ |\mathbf{N}_5\rangle &= |\mathbf{N}_8\rangle \sin\theta_{\mathbf{N}} + |\mathbf{N}_{\overline{\mathbf{10}}}\rangle \cos\theta_{\mathbf{N}} \end{split}$$

The calculated mixing angle $\theta_N = 35.34^0 \rightarrow$ M(N₅) = 1801 MeV is 67 % antidecuplet M(N^{*}) = 1451 MeV is 67 % pentaguark octet

Also a q^3 state N(1440) = 1495 MeV \rightarrow TWO resonances in the Roper region (P. Morsch et al. PRL '99)

N. B. Ideal mixing $\theta_N = 35.26^{\circ}$

The calculated mixing angle $\theta_{\Sigma} = -35.48^0 \rightarrow$ M(Σ_5) = 1719 MeV is 67 % pentaquark antidecuplet M(Σ^*) = 2046 MeV is 67 % pentaquark octet

N. B. Ideal mixing $\theta_{\Sigma} = -35.26^{\circ}$

PENTAQUARK SPECTRUM in the FS MODEL

ongoing searches for Ξ_5 and N_5 at BaBar (SLAC) ?

RECENT CONSTITUENT QUARK MODEL RESULTS Takeuchi & Shimizu, hep-ph/0411016

FS model - semirelativistic version - Graz The lowest state is $J^P = 1/2^+$

CS model - nonrelativistic one gluon exchange 1)The lowest resonant state is $J^P = 3/2^-$ 2)The $J^P = 1/2^-$ states is lower, but in the continuum

Takeuchi & Shimizu, hep-ph/0411016

Five parameter sets.

Each parameter set is denoted by $R\pi$, or $Rg\pi$, etc., according to the kinetic energy term and the qq interaction. Each meson mass is taken to be the observed one, and $m_{\sigma} = 675$ MeV.

Model	qq int.	m_{U}	$m_{\sf S}$	$lpha_s$	Λ_g	$rac{g_8^2}{4\pi}$	$\left(\frac{g_0}{a_\circ}\right)^2$	Λ_0	κ	a_{conf}	V_0
ID		MeV	MeV		$[fm^{-1}]$		90	$[fm^{-1}]$		[MeV/fm]	MeV
$R\pi^\dagger$	$\pi \sigma \eta$	313	530	0	-	0.69	0	1.81	0.92	170	-378.3
$Rg\pi$	OGE $\pi \sigma \eta \eta'$	340	560	0.35	3	0.69	1	1.81	0.92	172.4	-381.7
${\sf Ng}\pi^{\ddagger}$	OGE $\pi \sigma \eta$	313	550	0.35	5	0.592	2 0	2.87	0.81	172.4	-453
Ng	OGE	313	680	1.72	3	0	-	-	-	172.4	-345.5
Graz§	$\pi \eta \eta^\prime$	340	500	0	-	0.67	1.34	2.87	0.81	172.4	-416

Takeuchi & Shimizu, hep-ph/0411016

Masses of meson, baryon, and pentaquark, $P(TJ^P)$, in MeV.

	Ν	Δ	K^*	NK*	$P(0\frac{1}{2}^{-})$	$P(0\frac{3}{2}^{-})$	$P(1\frac{1}{2}^{-})$	$P(0\frac{1}{2}^{+})$
					$m_P \;\; ar{m}'_P$	$m_P \;\; ar{m}'_P$	$m_P \ ar{m}'_P$	m_P m_P^\prime
Rπ	941	1261	979	1921	2109 2054	2141 2083	2143 2083	2165 2045
$Rg\pi$	938	1232	931	1869	1985 1947	2064 2018	2078 2021	2129 2006
${\sf Ng}\pi$	936	1232	814	1846	2029 1996	2106 2066	2106 2061	2321 2144
Ng	938	1232	814	1846	1966 <mark>1971</mark>	2153 <mark>2144</mark>	2170 2145	2345 2197
Graz	937	1239	927	1864	2231 <mark>2160</mark>	2240 <mark>2168</mark>	2251 2173	2248 <mark>2120</mark>
Exp.†	939	1232	892	1831		15	40	

THE DECAY WIDTH

Nakano et al., LEPS Collab. $\Gamma \leq 25$ MeV Scattering of K⁺ on nuclei $\Gamma \leq 1$ MeV

Options to reduce the width in constituent quark models → diquark correlations (JW scenario)

Melikhov, Simula, Stech, hep-ph/0405037

- a) size parameter similar to the nucleon \rightarrow $\Gamma \simeq$ 150 MeV
- b) asymmetric "peanut" structure $\rightarrow \Gamma(\alpha_{\rho\theta}, \alpha_{\lambda\theta}) \simeq 1 \text{ MeV}$

$$\Psi_{\Theta} = N_{\theta} \exp\left(-\frac{\rho_{\theta}^2}{2\alpha_{\rho\theta}^2} - \frac{2\lambda_{\theta}^2}{3\alpha_{\lambda\theta}^2} - \frac{(r_{23}^2 + r_{45}^2)}{2\alpha_D^2}\right)$$

no dynamics

Hosaka, Oka, Shinozaki, hep-ph/0409102 The decay width (MeV)

$$\mathcal{L}_{int} = -ig\overline{\psi}\gamma_5\Phi\psi; \quad g = \frac{g_{\pi NN}}{5} = 2.6$$

$\langle r^2 \rangle^{1/2}$	α^2	$\Gamma(J^P = 1/2^-)$	Г($J^{P} = 1/2$	2+)
			FS	CS	JW
0.7 fm	3 fm ⁻²	890	63	32	11

CHARMED PENTAQUARKS in the 60-plet of SU(4) Bin Wu & Bo-Qiang Ma, hep-ph/0402244

MASSES (MeV) of the antisextet charmed pentaquarks $\mathbf{P}=+1$

Penta	Ι	Content	FS model	$D - D - \overline{c}$	D - T	Lattice
			FS 1998	JW 2003	KL 2003	CH 2004
Θ_{c}^{0}	0	uuddīc	2902	2710	2985 ± 50	2977 ± 109
$\mathbf{N_c^0}$	1/2	uudsīc	3161			3180 ± 70
$\Xi_{\rm c}^0$	1	uussīc	3403			3650 ± 95

FS 1988: F.S. PRD58(1998)111501 JW 2003: Jaffe & Wilczek PRL 91 (2003) 232003 KL 2003: Karliner & Lipkin, PL B575 (2003) 249 CH 2004: Chiu & Hsieh, hep-ph/0404007

N.B. N + D = 2808 MeV

CONSTITUENT QUARK MODELS

* One can accommodate ⊖⁺ and partners
* absolute mass is not determined

* \equiv -- \ominus + mass difference is model dependent * Coupling $\overline{10}_{\rm F}$ & $8_{\rm F}$ due to SU_F(3) breaking \rightarrow IDEAL mixing

* 2 states: q^3 and $q^4\bar{q}$ in the Roper mass region \rightarrow higher Fock components for baryon q^3 states

* small width: $\langle \Theta | KN \rangle$ flavour-spin or orbital space

CONCLUSIONS

• New look of baryon spectroscopy

Difficult problems: Roper resonance, $\Lambda(1405)$, strong decays

• Understand the role of chiral symmetry breaking Negative parity baryons ?