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Soliton Models:

chiral symmetry breaking
chirally inv. manyquark int.
soliton configuration
no quantum numbers except B

rotation generates flavor and spin

is invariant, because one can 
absorb chiral rotation into the 
redefined pseudoscalar meson 
fields πA

Note that π = f (q, q)  → quarks 
do interact

Chiral symmetry is spontaneously 
broken: < πA > = 0

SKYRMION:
Integrating quarks one is left 
with dynamical GB field

Soliton in this model is stabilized 
by specific term in Lagrangian
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Soliton models are quark models
but some are not

fermionspions

integrate out quarks

Skyrme Model

only massless pion fields, kinetic term + interaction terms

constituent quark
mass ~ 350 MeV

Soliton in the Skyrme model is stabilized by the Sk. term



Variational approach to the soliton
hedgehog Ansatz:

π



Collective quantiztion proceeds in both cases
identically → symmetric top

only the coefficients are
given by different expressions

There is no kinetic term
for 8-th angular velocity
→ conjugated momentum

is constant and produces
constraint: 
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=Nc/3

how far we can go?    →
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χQM breaking hamiltonian
calculate next-to-leading contributions to H'

O(Nc)+O(1) O(1)    all O(ms)O(1)

Diakonov, Petrov, Polyakov,  Z.Phys A359 (97) 305

* no handle on I2

* only 2 linear combinations of parameters 

α', β and γ enter nonexotic splittings

* splittings in 10 ≠ 10 because third combination

enters 
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Width

Diakonov, Petrov, Polyakov,  Z.Phys A359 (97) 305

Weigel, Eur.Phys.J.A2 (98) 391, hep-ph/0006619

G.S. Adkins, C.R. Nappi, E. Witten, Nucl. Phys. B228 (1983) 552

operator V has the same structure as axial current

In practice we calculate only matrix elements of
� and plug them into the QM formula dor the width
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NRQM Limit

energy is calculated 
with respect to the vacuum:

Diakonov, Petrov, Polyakov,  Z.Phys A359 (97) 305

MP, A.Blotz K.Goeke, Phys.Lett.B354:415-422,1995

in the NRQM limit only valence level contributes
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Width
Diakonov, Petrov, Polyakov,  Z.Phys A359 (97) 305

Decuplet decay:

Antidecuplet decay:

In small soliton limit:

O(Nc) O(1) O(1)Ö Nc ´

+ O(1) Is this cancellation
consistent with 
large Nc counting?
MP Phys.Lett.B583:96-102,2004 



Three sources of Nc factors:

• QCD: corrections to the effective lagrangian
• parametric       M, I1,2 ~ Nc
• quantum and combinatorial Y' = Nc/3

SU(3) C-G's for arbitrary Nc



Wave functions and allowed states

G. Karl, J. Patera, S. Perantonis,
Phys. Lett 172B (1986) 49,
J. Bijnens, H. Sonoda, M. Wise,
Can. J. Phys. 64 (1986) 1,
Z. Dulinski, M. Praszalowicz,
Acta Phys.Pol. B18 (1988) 1157.
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Width
MP Phys.Lett.B583:96-102,2004

in small soliton limit cancellation takes
place separately in each order in Nc
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Width in the soliton model
- mixing effects

modification
factor

Warning: SU(3) relations 
for Γ's will not hold
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Magnetic transitions
GRAAL

γnàηn



Matching with the bound 
state approach

K

Callan, Klebanov Nucl.Phys.B262:365,1985
Nadeau, Nowak, Rho, VentoPhys.Rev.Lett.57:2127-2130,1986 
Callan, Klebanov , Hornbostel, Phys.Lett.B202:269,1988
Itzhaki, Klebanov, Quyang, Rastelli, Nucl.Phys.B684:264-280,2004 

K- is bound 
K+ is not bound and has

no smooth limit to rigid rotator 

ΓWZ



Summary
1. Soliton models are descendants of QCD, in comparison to 

quark models different approximations are made
2. Soliton models are used to dedscribe many different properties,

not only spectra
3. Phenomenologically both small mass and small width of 10*

are in soliton models natural
4. If Θ exists there must be other states both exotic and cryptoexotic
5. Mixing of 10* with other irreps. is important because primary

transitions 10* → 8 is very small
6. Large Nc limit and chiral limit are very subtle, especially 

for the width
7. Bound state approach (?)


