## Evidence for a narrow anti-charmed baryon state

Katerina Lipka (H1) DESY Zeuthen

for



Collaboration

Exotic Hadrons 2005 Trento

## H1 experiment at HERA accelerator

#### HERA storage ring at DESY (Hamburg, Germany)



K. Lipka

- Evidence for a narrow anti-charmed baryon state -

# H1 experiment at HERA accelerator



• B = 1.15 T ? measure transverse momentum of charged particles

Tracking , Particle ID via dE/dx

Dominated by Boson – Gluon Fusion (BGF) in LO: gg? CC (bb)



#### *ep* kinematics: vs = 300 - 318 GeV

p 920 GeV

- 4-momentum transfer squared Q<sup>2</sup> =-q<sup>2</sup>;
- Bjorken scaling variable  $x = Q^2/(2 q P)$
- inelasticity y = qP/kP
- mass of the hadronic system W<sup>2</sup> = (P + q)<sup>2</sup>

### Kinematic regimes:

•  $Q^2 < 1 \text{ GeV}^2$ : Photoproduction, **g** (scattered electron escapes the main detector)

• Q<sup>2</sup> > 1 GeV<sup>2</sup> : Electroproduction, DIS (scattered electron detected)

### Charmed pentaquark search at H1

Inspired by the evidence for the strange pentaquark  $Q^+$  in  $K^+n$  and  $K^0_s p$ 

Why not a charmed pentaquark ?

If **Q**+ formation is due to fragmentation process

 $\rightarrow$  Features of  $\mathbf{Q}_{c}$  similar to those of  $\mathbf{Q}^{+}$ 

Look for charm pentaquark state via it's decay  $Q_c$ ? charmed hadron + baryon

Charm fragmentation: f(c ® D<sup>+</sup>)= 0.248 ± 0.014 , f(c ® D<sup>\*+</sup>)= 0.233 ± 0.009

D\* production at H1 is much more feasible experimentally

### Selected channel: $\mathbf{Q}_{c} \otimes \mathbf{D}^{*-}\mathbf{p}$ (+c.c.)

### Charm pentaquark search at H1: D\* Signal

- "golden " channel: D\*+? D<sup>0</sup> **p**<sub>s</sub><sup>+</sup> ? K<sup>-</sup>**p**<sup>+</sup> **p**<sub>s</sub><sup>+</sup> (+ c.c.)
- apply "mass difference method":  $\mathbf{D} M(\mathbf{D}^*) = M(\mathbf{K} \mathbf{p} \mathbf{p}_s) M(\mathbf{K} \mathbf{p})$
- 1996-2000 data, DIS regime (Q<sup>2</sup> > 1 GeV<sup>2</sup>), Luminosity = 75 pb<sup>-1</sup>



## Charm pentaquark search at H1: Proton selection

### Particle identification at H1 via energy loss (dE/dx) measurement



average dE/dx resolution (MIP) 8% most probable dE/dx parameterized:

- Bethe-Bloch-like function
- accuracy 3 5 %

#### use dE/dx measurement for background suppression

# Invariant mass of the $D^{*-}p$ ( $D^{*+}\overline{p}$ ) system

use mass difference method again: M(D\*p)=m(K  $\pi \pi$  p)-m(K  $\pi \pi$ )+M<sub>PDG</sub>(D\*)



significant peak in opposite charge D\*p
 no enhancement in D\* Monte Carlo
 no enhancement in wrong charge D

Background well described by D\* MC and "wrong charge D" from data

narrow resonance observed : M=3099± 3(stat.) ± 5 (syst.) MeV

- equally significant signal visible in separate  $D^{*}\overline{p}$  and  $D^{*}\overline{p}$
- signal visible in different data taking periods

## Invariant mass of the $D^{*+}p$ ( $D^{*-}\overline{p}$ ) system



no significant peak in like-charge D\*p
 no enhancement in D\* Monte Carlo

no enhancement in wrong charge D

Background well described by D\* MC and "wrong charge D" from data

Exotic Hadrons 2005, ECT Trento 9

# A Typical D\*p Event



### Does the signal come from D\* ?



#### the (D\*p) signal region is richer in D\*

K. Lipka

## Does the signal come from protons ?



### Signal is there for well identified protons

### Does physics change on-resonance ?

- Single particle momentum spectra are steeply falling
- Harder spectrum for particles from decay due to mass release
- Harder spectrum for particles from decay of charmed hadrons due to hard charm fragmentation
- Example: momentum of  $\boldsymbol{p}_{s}$  from D\* harder than combinatorics :



## Does physics change on-resonance ?

look into momentum distribution of proton candidates without dE/dx cut

momentum distribution in the signal region is harder than in sidebands



### Does physics change on-resonance ?

#### look into momentum distribution of proton candidates without dE/dx cut



## **D\*p** signal in photoproduction



Photoproduction more difficult due to large non-charm background

#### but



independent confirmation of the signal

## Significance estimate



Significance estimate based on the background only hypothesis (binning free)  $\rightarrow$  Background fluctuation probability: <u>4 x 10<sup>-8</sup></u> (Poisson) = 5.4 s (Gauss)

Difference in likelihood of background and signal+background fit:  $\sqrt{2}\Delta \log L = 6.2\sigma$  (Test independent of peak position)

## Search for a charmed pentaquark at ZEUS

10 MeV

Combinations per

45

40

35

30 25 20

15

10 5

0 40

35

30 25 20

15 10 5

0 E

(a) 🖕

(b)

з

3.1

3.2

3.3

 $\mathsf{M}(\mathsf{D}^*\mathsf{p}) = \Delta\mathsf{M}^{\mathsf{ext}} + \mathsf{M}(\mathsf{D}^{*+})_{\mathsf{PDG}} (\mathsf{GeV})$ 

1995-2000 data, 127 pb<sup>-1</sup> selection of D\*, p similar to H1

DIS (Q<sup>2</sup>>1 GeV): N (D\*) = 5920 γp (Q<sup>2</sup><1 GeV): N (D\*) = 11670

No signal seen in D\*p

Limits on  $\Theta_c/D^*$  for DI S:

 $R(\Theta_c \rightarrow D^*p/D^*) < 0.51\% @95\% C.L$ 

### H1 vs ZEUS



- $\mathbf{Q}_{c}$  and D\* production mechanism may be different
- more work to understand the differences has to be done

3.4

3.5

3.6

7FUS

ZEUS 1995-2000,  $D^{\star\pm} \rightarrow (K\pi)\pi_{e}$ 

 $Q^2 > 1 \text{ GeV}^2$ , H1 selection criteria

Q<sup>2</sup> < 1 GeV<sup>2</sup>, H1 selection criteria

wrong charge (Kπ)π<sub>s</sub> D\*<sup>±</sup> MC

## **Summary and Outlook**

- evidence for a narrow state decaying to D\*p in DIS at H1, candidate for uuddc + c.c
- signal due to D\* mesons and protons
- harder proton spectrum in the signal region
- signal is visible in photo-production
- no confirmation by ZEUS

more understanding of D\*p production dynamics needed

- acceptance corrected yields on the way
- new data on the way

### D\*p candidate event in HERA-II



### **Recent Results on Q<sup>+</sup> at ZEUS**

### Amita Raval (ZEUS) DESY Hamburg

for



Collaboration

Exotic Hadrons 2005 Trento

## Search for Strange Pentaquark: K<sup>0</sup><sub>S</sub> Selection

- Θ<sup>+</sup>→ K<sup>0</sup><sub>S</sub>p (Θ<sup>-</sup>→ K<sup>0</sup><sub>S</sub>p̄) reconstruct K<sup>0</sup><sub>S</sub>p(p̄) inv mass
- Inclusive DIS event sample:
   96 00 data ⇒ 121 pb<sup>-1</sup>
- ${
  m K}^0_{
  m S}$  Selection  ${
  m p_T}({
  m K}^0_{
  m S}) > 0.3, |\eta({
  m K}^0_{
  m S})| \le 1.5$ remove  $\Lambda$  and  $\gamma$  conversions





- Peak:  $498.12 \pm 0.01 \text{ MeV}$
- Background: < 6%</li>
- Candidates: ~ 870,000
- Resolution: 2  $\pm$  .5 MeV (MC +
  - consistent w/ K\* measurement) Amita Raval Exotic Hadrons 2005

(anti)proton selection  $\implies$  define ionization band in dE/dx



- expectations tuned using tagged protons and pions from Λ and K<sup>0</sup><sub>S</sub> decays
- Strange pentaquark dE/dx > 1.15 mips P(p) < 1.5 GeV  $\sim 60\%$  proton purity
- Charmed pentaquark  $\label{eq:lp} \frac{\text{Charmed pentaquark}}{l_{\rm p} > 0.15 \Rightarrow} \\ \text{A}(l_{\rm p} > 0.15) = 85.0 \pm 0.1\%$

### Search for Strange Pentaquark: (Phys. Lett. B 591)

 $\Theta^+$  Signal  $\Rightarrow p_T(\Theta^+) > 0.5 \text{ GeV}$ ,  $|\eta(\Theta^+)| < 1.5, \ Q^2 > 20 \text{ GeV}^2$ 

- M:  $1521.5 \pm 1.5(\text{stat})^{+2.8}_{-1.7}(\text{syst})$
- Gaussian W: 6.1 ± 1.5 MeV
   BW Fit: Γ= 8 ± 4 MeV
  - $\Rightarrow$  compatible w/ experimental resolution  $\sim 2 \ {\rm MeV}$
- Fit: 3P Background + 2 Gaussians  $\Rightarrow \sim 4.6 \sigma$
- $\chi^2/\text{ndf} = 35/44$
- single Gaussian fit ⇒
   worse χ<sup>2</sup>/ndf, peak robust
- if  $K^0_{SP}$  interpreted as  $\Theta^+$  then  $K^0_{S}\bar{p} \Rightarrow \bar{\Theta}^-$ (antipentaquark)?



## $\Theta^+$ Cross sections and ratios ( $\Theta^+ \rightarrow K^0 p / \Lambda \rightarrow p\pi$ )

 $Q^2 > 20 \ GeV^2$ ,  $P_T > 0.5 \ GeV$ ,  $|\eta| < 1.5$ 



•  $\sigma(ep \to e\Theta^+X)$ :  $125 \pm 27(st)^{+45}_{-40}(sy) \text{ pb}$ 

N(Θ<sup>+</sup> → K<sup>0</sup>p(p̄)) / N(Λ(pπ)) as function of Q<sup>2</sup><sub>min</sub>:
 4.2 ± 0.9(st)<sup>+1.2</sup><sub>-0.9</sub>(sy)% ⇒ production rate consistent w/ a constant

## Search for NA49 signal with ZEUS: I

### NA49 analysis repeated

- $\Xi^{--} \rightarrow \Xi^{-} \pi^{-} \rightarrow \Lambda^{0} \pi^{-} \pi^{-} \rightarrow p \pi^{-} \pi^{-} \pi^{-}$
- Inclusive DIS event sample:  $96 - 00 \text{ data} \Rightarrow 105 \text{ pb}^{-1}$
- high stats, small bground





# Search for NA49 signal with ZEUS: II



# In Summary ...

 $\Theta^+(1522) \Rightarrow peak seen in M(K^0_{S}p) and M(K^0_{S}\bar{p})$ 

• For  $\mathrm{Q}^2>20~\mathrm{GeV^2}$ :

 $M: 1521.5 \pm 1.5(stat)^{+2.8}_{-1.7}(syst)$ 

natural width compatible with detector resolution

 $\implies$  consistent with strange pentaquark

•  $\Theta^+(\rightarrow K^0 p) / \Lambda(\rightarrow p\pi) \Longrightarrow \sim 4\%$ 

production rate consistent with a constant ...

- $\mathrm{K}^0_S\bar{\mathrm{p}}{:}$  first evidence of antipentaquark?  $\Rightarrow$  fragmentation
- $\Xi^{--}$ (1860)  $\Rightarrow$  No Signal
  - not confirmed by ZEUS

 $\Theta_{\rm c}$ (3099)  $\Rightarrow$  No Signal

- more than 62,000 reconstructed D\*'s
- ZEUS data are incompatible with H1 report of
  - $\Theta_{\rm c}~$  contributing 1% of D\* production ratio

# **Spare slides**

## Example of a kinematic test: possible D\*p reflection ?

Assign pion mass hypotheses to the proton candidate



Look into D\***p** invariant mass distribution in D\*p signal region

Pion hypothesis excluded !

## Example of a kinematic test: possible D\*p reflection ?

<u>Reflection</u>: assigning pion a proton mass shifts M(D\***p**) towards higher values

#### Does it happen in our case?

Loose D\* cuts 600 Entries per 20 MeV 40 Entries per 10 MeV & pion selection H1  $D^{*-}p + D^{*+}p$ 30 400 D<sub>1</sub>+D<sub>2</sub> window 20 200 10 D\* cuts of D\*p & pion selection 0 3.2 3.4 3.6 3 0 2.2 2.6 2.8 3 M(D\*p) [ GeV ] **M(D\***π) [ GeV ] D\* cuts of D\*p Expected only 3.5 events from data & proton selection (consistent with MC)

#### D\*p mass spectrum

The signal can not be a reflection !

### **D\* in DIS and Photoproduction**

#### Deep Inelastic Scattering (DIS):

H1

 $K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\pm}$ 

0.15

wrong charge D

0.16

∆M<sub>n\*</sub> [ GeV ]

0.17

scattered electron in SpaCal

1000

800

600

400

200

0

0.13

0.14

Entries per 0.5 MeV

•  $2 < Q^2 < 100 \text{ GeV}^2$ , 0.05 < y < 0.7

#### Photoproduction (gp):



"wrong charge D" : fake D<sup>0</sup> (K<sup>+</sup> p<sup>+</sup>/ K<sup>-</sup> p<sup>-</sup>) + p<sub>s</sub> : non-charm induced background

#### Non-charm induced background much higher in the case of Photoproduction

D\*+ vs D+ in H1 detector

### D pseudoscalar meson fragmentation: f(c ® D<sup>+</sup>)= 0.248 ± 0.014

D\* vector meson f(c ® D<sup>\*+</sup>)= 0.233 ± 0.009



D\* is more feasible for charmed PQ search !

## Summary of additional investigations

- Events are scanned: no anomalies found
- Acceptance effects: looks OK
- Reflections from  $D_1$ ,  $D_2$ ,  $D^{**}$ ?  $D^*p$  (expect 3.5 events in  $D^*p$  signal): no!
- Mass correlations among the particles making the D\* and the D\*p system – search for real or fake peak structures, e.g  $\Lambda$ ,  $\Delta$  ... no enhancement
- All possible mass hypotheses applied to the particles making D\*p system
  - search for real or fake peak structures, e.g  $K_s$ ,  $\phi$ ,  $f_2$  ... no enhancement
- mass correlations among the proton candidate and the remaining charged particles of the event with possible mass assignments have been looked at
  - search for real or fake peak structures, e.g K<sub>s</sub>,  $\phi$ ,  $\Delta$  ... no enhancement

### All tests we could think of are passed !

## Summary of additional investigations



## H1 experiment at HERA accelerator



Tracking , Particle ID via dE/dx