Pentaguark Searches at BaBar

Mathew Graham University of Wisconsin For the BaBar Collaboration

TM & © Nelvana

ECT Workshop on Exotic Hadrons, Trento, Italy 02/24/05

Outline

Introduction

Inclusive searches in e⁺e⁻ for strange pentaguarks

B decays into Baryons

- o Search for the Θ^{*++} in $B^+ \rightarrow ppK^+$
- o Search for charmed pentaquarks

Utlook and Conclusions

Pentaquark Searches

Triggered by a prediction (Diakonov et al. Z.Phys. A359 (1997) 305-314) narrow peak in K⁺n invariant mass was observed.

Pentaquark Searches at BaBar

B-Factories operate at Y(4S) above BB threshold

PEP-II/BaBar Performance

Integrated Luminosity 1999-2004

PEP-II top luminosity: 9.2×10^{33} cm⁻²s⁻¹ 221 fb⁻¹ on Y(4S) 23 fb⁻¹ below Y(4S) 244 fb⁻¹

Current results use only Runs 1-3 113 fb⁻¹ on Y(4S); 10 fb⁻¹ below Y(4S)

The BaBar Detector

Particle Identification dE/dx vs momentum $(\overline{l}_{0.85}^{ad})$ 80% truncated mean (arbitrary units) 10 BABAR မင BABAR 0.8 inclusive 0.75 data sample $D^{*-}\rightarrow D^{0}\pi^{-}$, 0.7 10³ $D^0 \rightarrow K^- \pi^+$ 0.65 e 2 3 Momentum (GeV/c) 10 -1 Can separate protons from Track momentum (GeV/c) kaons/pions very well

Our proton selection: Purity>95%, efficiency ~85%

Inclusive Pentaguark Searches

Hadron production in $e^+e^- \rightarrow Hadrons$

If the Θ₅ were a "normal" baryon... expect a production rate of ~10⁻³/event We should easily see this!

Inclusive $\Theta^+ \rightarrow pK_S$ Search: K_s Selection

- Ks formed from π⁺π⁻ pairs
- tracks must project to within 6mm of each other
- flight length from
 IP to Ks vertex >0
- |cos(θ_H)|<0.8

+ Number of checks: stringent cuts on K_s, require recoiling K⁻ and/or anti-proton with all possible combinations. Λ_c^+ visible but no pentaquark

 $\Lambda_c^+ \rightarrow pK_s$ Sample

Θ_5^+ and Λ_c^+ Mass Resolution

Terrific agreement between data and MC for Λ_c resolution!

Expect the Θ_5 resolution to be ~2 MeV...can measure a width down to <1MeV

Inclusive Search for $\Xi_5^{--} \rightarrow \Xi^- \pi^-$ and $\Xi_5^0 \rightarrow \Xi^- \pi^+$ 123 fb⁻¹

4 NA49 gave evidence of Ξ^{--} (S=+2, dsdsu, 1.862 GeV) and Ξ^{0}

Inclusive Search for Ξ_5 : Λ and Ξ Reconstruction

Inclusive Search for $\Xi_5^0 \rightarrow \Lambda^0 K_s$

Inclusive Search for $\Xi_5^- \rightarrow \Lambda^0 K^-$

More Inclusive Searches...

Setting Limits for Θ_5^+

Perform fits in bins of p*

Setting Limits for Ξ_5^{--}

e⁺e⁻→Ξ(1860)⁻⁻X

95% CL UL σ<

25 (36) fb for

Γ=1 (18) MeV

Same procedure as for Θ_5^+

Again, in no bin is a signal observed efficiency: 6.5%-12% (low-->high p*)

60 BABAR Differential Cross Section fb/(GeV/c) BABAR 三(1860)--Ξ(1862)⁻⁻ 50 40 20 Fitted Signal Yield 0 0 -50 -20 Γ = 1 MeV/c² -100 -40 Γ = 1 MeV/c² Γ = 8 MeV/c² Γ = 8 MeV/c² UL: $\Gamma = 1 \text{ MeV/c}^2$ -60 -150 UL: $\Gamma = 8 \text{ MeV/c}^2$ -80 -200 0 1 2 3 4 5 0 1 2 З 4 5 (GeV/c) p* (GeV/c) p*

Mathew Graham, ECT Workshop on Exotic Hadrons

assume BF for

Ξ(1860)⁻⁻→Ξπ

is 1/2

Baryon Production in B Decays

Little is understood in Baryon production in B decays

- Because of B-Factories, we are starting to get some insight
 - > B \rightarrow Baryons not saturated by B \rightarrow charmed baryons
- Dominance of multi-body final states

 $BR(B \rightarrow 2body) < BR(B \rightarrow 3body) < BR(B \rightarrow 4body)$

Baryon-Antibaryon enhancements? Exotic states?

B Signal Reconstruction

Search for $\Theta^{*++} \rightarrow pK^+$ in $B^+ \rightarrow p\overline{p}K^+$ Preliminary

82 fb⁻¹

Pentaquark $\Theta^{*++} \rightarrow pK^+$ (uūuds) predicted to lie in 1.43<M(pK^+)<1.70 GeV

- 0 No evidence was found for $\Theta^{*++} \rightarrow pK^+$, 90% CL limits were set
- 0 Other experiments have also reported negative searches

 $BF(B^+ \rightarrow \Theta^{*++}\overline{p}) \times BF(\Theta^{*++} \rightarrow pK^+) < 1.49 \times 10^{-7}$

Mass Projections: $B^{0} \rightarrow D^{*-}pp\pi^{+}$ • onpeak B^{16} signal B^{16} signal B^{16} preliminary

Mass Projections: $B^0 \rightarrow D^- p \bar{p} \pi^+$

Dalitz Plot of $B^0 \rightarrow \overline{D}^0 p \overline{p}$

Mass Projections: $B^0 \rightarrow \overline{D}^0 p \overline{p}$

♣ As in the B⁺→ppK⁺, we see an asymmetric pp threshold enhancement

4 No sign of convincing structure in "exotic" combination

Outlook and Conclusions

Pentaquark searches at BaBar so far negative

- No evidence so far of strange (Θ, Ξ₅, N₅) and charmed (Θ_c) pentaquarks in both exclusive B decays and inclusive searches in e⁺e⁻
- o Limits on Θ_5^+ and Ξ_5^{--} production cross sections lower than what's observed for non-exotic baryons
 - Pentaquarks not yet observed in e⁺e⁻ annihilations...?

However, the search continues!

- o New inclusive modes and techniques are being implemented
- o Many exclusive modes to be investigated
 - o interesting physics in the exclusive modes apart from exotics