The NA49 E₅ pentaquark search/update

Tome Anticic

Ruder Boškovic Institute, Zagreb, Croatia

Trento 2005

Outline

- NA49 published experimental results, with:
 - additional systematics/checks/rechecks with original analysis
 - additional channels with original analysis
- Ξ₅ world status
 - still alone...
- Current efforts/reanalysis/new results
 - Ξ_5 still there...
- Plans (besides waiting to be confirmed...)

tome.anticic@cern.ch

NA49 Experiment at CERN

Trento 2005

tome.anticic@cern.ch

Ξ₅ search: **Ξ**⁻ selection

Distance to Bethe- Bloch curve of all daughter tracks:

 $|d_{bb}| < 3 \sigma$

<mark>|Μ(pπ⁻) - Μ(Λ)| < 0.015 GeV</mark>

- E⁻ position at main vertex (b_x, b_y): |b_x| < 2 cm |b_y| < 1 cm
- π (from Ξ⁻ decay) position at main ver |b_y| > 0.5 cm

Trento 2005

VO finding

•

- Longest track in mag field is unchanged
- Shorter track in mag field varied (momentum) to be along above track and to minimize χ^2

Ξ finding

- Extrapolate Λ
- use 4 parameter fit (momentum of π from Ξ and z along Λ path)

V0 and E Invariant Mass Spectra

Trento 2005

tome.anticic@cern.ch

Impose additional selection on primary pion (as it is not purified by Ξ and Λ cuts)

$$(\Xi^-\pi,\,\overline{\Xi}^+\pi)$$

 $|d_{bb}^{\pi}| < 1.5 \sigma$, d_{bb} distance to Bethe-Bloch curve

position at main vertex (b_x, b_y) :

 $|b_{x}| < 1.0 \text{ cm}$

 $|b_v| < 0.5 \text{ cm}$

of points > 10

Trento 2005

>

Additional cuts on primary pion (some not obvious)

Final $\Xi \pi$ Invariant Mass

tome.anticic@cern.

Summed spectra

Trento 2005

Systematics study I

By changing:

- mass cuts around Ξ $\,$ and $\,\Lambda$
- dE/dx cut
- number of points cut
- b_x , b_y cuts
- e.t.c.

Peak remains robust

tome.anticic@cern.ch

Systematics study II

$\Xi^{-}\pi$ (VENUS + GEANT + REC.)

DATA (Ξ shoulders)

No structure at 1.86 GeV

No structure at 1.86 G

Systematic study III – mass cut

Very healthy behavior – if something is faking the Ξ^{--} , it is not background of the Λ and Ξ^{-} spectra

05500

Additional analysis: $\Xi(1530)^0 \pi$

tell one way or the other in the best of cases

To be

Additional analysis: M(pK_s⁰)

 $M_{\Theta_{+}}$ = 1.526±0.002 GeV/c², $\Gamma < 15$ MeV/c²

Additional analysis: M(pK_S⁰) II

Additional proton selection

- 0.5 σ < d_{bb} < 3 σ
 |b_x| < 1 cm, |b_y| < 0.5 cm
- 5 GeV/c < p_p < 30 GeV
- 0.2 GeV/c < p_T < 0.9 GeV/c

+

80 < # of points (primary proton) < 1

Preliminary!

Note the "PRELIMINARY" label: We ourselves are NOT sure we see the θ^+

Pentaquark status

Experiment	Θ_{s}^{+}	Ξ_5	Θ_{c}^{+}	Reaction	Energy
CDF				pp→ (Θ,Ξ)Χ	√ S = 1.9 TeV
E690				pp→(Θ,Ξ)Χ	√5 = 39 GeV
BaBar				<mark>e+e-→(Θ,Ξ)</mark> X	√5 = 10.6 GeV
ZEUS				e p →(Θ,Ξ)Χ	√ 5 =310 GeV
ALEPH				<mark>e-e+→(Θ,Ξ)</mark> Χ	√5 = 91.2 GeV
WA89				Σ ⁻ A → Ξ X	E_{Σ} = 340 GeV
HERA-B				p A 	E _p =920 GeV
FOCUS				eBeO ⊳(Θ,Ξ)Χ	E _e =300 GeV
HERMES				ed ⇒(Θ,Ξ) Χ	E _e =27.6GeV
0					
0					

pp →(Θ,Ξ)**X**

√ 5 =17.6 GeV

NA-49

ZEUS and HERMES vs. NA49

Ξ old and new data (so far our only

J.M. Gago et **a**l " =* Production in Content of the double-strange = hyperon Ecole-Polytechnique-Saclay-RHEL Collaboration, For the CLASS Collaboration, (CERN/EP/PHYS 76-50)

J.W.Price, J.Ducote, J.Goetz, B.M.K.Nefkens, (arXiv:nucl-ex/0402006)

Ξ-*

Frento 2005

tome.anticic@cern.c

E0*

or, what have we been up to since publication of our results at end of 2003?

Create consistent (and debugged!) reconstruction code for all data There were relatively significant code changes for different years/data sets	\checkmark		
Code a new and independent V0/E finder, analysis program to have a completely separate analysis to compare results (very important, and major effort)	\checkmark		
Improved main vertex determination			
■Exclude V0 and Ξ tracks from fit	\checkmark		
Use higher quality tracks			
Further improvement of experimental resolution			
Residual corrections	~		
Use new procedure, with 30% more data, to redo analysis	×		

Use a 13 parameter Levenberg-Marquart minimization:

- Momentum of proton from Λ
- Momentum of pion from Λ
- x,y,z position of lambda vertex
 - z position along extrapolated Λ
 - Momentum of pion from Ξ

Frento 2005

New V0/E finder/fitter - hot off the

- No "exotic" cuts (no cos(θ))
- \cdot Used χ^2 to select very high quality tracks and Ξ^-s
- improved main vertex
- •Also, the new and consistent reconstruction code used

- Ξ⁻⁻clearly seen at 1.86 GeV!
- There is a hint of a peak at 1.78 Get (spin 1/2, 3/2 states ????)

• Like before, with $cos(\theta)$ cut the 1.86 peak much clearer, and with asymmetric d^{π}_{bb} and momentum cut there is a bump at 1.86 GeV in the $\Xi^{-}\pi^{+}$ spectrum

0

New V0/ Ξ finder – Λ mass cut

g

New V0/ Ξ finder – Ξ mass cut

 $\Xi^{-}\pi^{-}$

- More detailed systematic study confirms our previous E₅⁻⁻ conclusion
- An independent analysis/finder/fitter again confirms our previous Ξ₅⁻⁻ conclusion
 - Do new analysis with additional 30 % data, new procedure, new V0/ Ξ finder, higher quality tracks to:
 - Verify old results
 - Look for known resonances (this started as an ordinary, and still unpublished hyperon paper...)
 - Look for other possible decay channels of the Ξ_5 $\Xi_5 \rightarrow \Xi(1530) \pi$ (difficult...) $\Xi_5 \rightarrow \Lambda K$ $\Xi_5 \rightarrow \Lambda K_s^0$
 - Look for other pentaquark states, do a detailed analysis of our Θ^+ signal, including simulation
 - Hope someone else sees the Ξ_5^{--} !

 \succ

>

C. Alt,⁹ T. Antici All life C. D. Barna,⁴ J. Bartke,⁶ M. Behler,¹³ L. Betev,^{10, 9} H. Białkowska,¹⁸
A. Billmeier,⁹ C. Blume,^{7, 9} B. Boimska,¹⁸ M. Botje,¹ J. Bracinik,³ R. Bramm,⁹ R. Brun,¹⁰ P. Bunčić,^{9, 10}
V. Cerny,³ P. Christakoglou,² O. Chvala,¹⁵ J.G. Cramer,¹⁶ P. Csató,⁴ N. Darmenov,¹⁷ A. Dimitrov,¹⁷
P. Dinkelaker,⁹ V. Eckardt,¹⁴ G. Farantatos,² P. Filip,¹⁴ D. Flierl,⁹ Z. Fodor,⁴ P. Foka,⁷ P. Freund,¹⁴
V. Friese,^{7, 13} J. Gál,⁴ M. Gaździcki,⁹ G. Georgopoulos,² E. Gładysz,⁶ S. Hegyi,⁴ C. Höhne,¹ K. Kacilia
A. Karev,¹⁴ S. Kniege,⁹ V.I. Kolesnikov,⁸ T. Kollegger,⁹ R. Korus,¹² M. Kowalski,⁶ I. Kraus,⁷ M. Kreps,⁷
M. van Leeuwen,¹ P. Lévai,⁴ L. Litov,¹⁷ M. Makariev,¹⁷ A.I. Malakhov,⁸ C. Markert,⁷ M. Mateev,¹⁷
B.W. Mayes,¹¹ G.L. Melkumov,⁸ C. Meurer,⁹ A. Mischke,⁷ M. Mitrovski,⁹ J. Molnár,⁴ St. Mrówczyński,¹²
G. Pálla,⁴ A.D. Panagiotou,² D. Panayotov,¹⁷ K. Perl,¹⁹ A. Petridis,² M. Pikna,³ L. Pinsky,¹¹ F. Pühlhofer,¹³
J.G. Reid,¹⁶ R. Renfordt,⁹ W. Retyk,¹⁹ C. Roland,⁵ G. Roland,⁵ M. Rybczyński,¹² A. Rybicki,⁶¹⁰ A. Sandoval,⁷
H. Sann,^{7,*} N. Schmitz,¹⁴ P. Seyboth,¹⁴ F. Siklér,⁴ B. Sitar,³ E. Skrzypczak,¹⁹ G. Stefanek,¹² R. Stock,⁹
H. Ströbele,⁹ T. Sua T. Schmitz,¹⁴ P. Siklár,⁴ J. Sziklai,⁴ T.A. Trainor,¹⁶ D. Varga,⁴ M. Vassiliou,² G.I. Veres,^{4, 5}
G. Vesztergombi,⁴ D. Vranić,⁷ A. Wetzler,⁹ Z. Włodarczyk,¹² I.K. Yoo,⁷ J. Zaranek,⁹ and J. Zimányi⁴

(NA49 Collaboration)

¹NIKHEF, Amsterdam, Netherlands. ⁸Department of Physics, University of Athens, Athens, Greece, ⁸Comenius University, Bratislava, Slovakia. ⁴KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary, ⁶ MIT, Cambridge, MA, USA. ⁶Institute of Nuclear Physics, Cracow, Poland. ⁷Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany, ⁸ Joint Institute for Nuclear Research, Dubna, Russia. ⁹ Fachbereich Physik der Universität, Frankfurt, Germany. ¹⁰CERN, Geneva, Switzerland, "University of Houston, Houston, TX, USA. 13 Świetokrzyska Academy, Kielce, Poland. ¹⁸Fachbereich Physik der Universität, Marburg, Germany. 14 Max-Planck-Institut für Physik, Munich, Germany. ¹⁸Institute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic. ¹⁶Nuclear Physics Laboratory, University of Washington, Seattle, WA, USA. ¹⁷Atomic Physics Department, Sofia University St. Kliment Ohridski, Sofia, Bulgaria. ¹⁸Institute for Nuclear Studies, Warsaw, Poland. Ruder Boskower Astitute Jar Experimental Physics, University Warsaw, Warsaw, Croatia

tome.anticic@cern.ch

Frento 2005