Pentaquark search at HERA-B

A. Sbrizzi - NIKHEF

1

- Detector
- Data sample
- Classical states
- Pentaguark: $p-K^0$ and $\Xi-\pi$ channels
- Conclusion

Experiment location

HERA-B is a fixed target experiment at the HERA storage ring at DESY.

It detects the charged particles generated in the interactions of the 920 GeV proton beam halo with different target wires (¹²C, ¹⁸⁴W, ⁴⁸Ti)

HERA-B detector

- \cdot pA interaction at $E_{\rm cms}$ ~ 41.6 Gev and IR ~ 5 MHz
- Large acceptance at mid-rapidity (y: 15-160 mrad, x: 15-220 mrad)

Silicon Vertex Detector

- 7 superalyers of silicon microstrips
- High primary vertex resolution ($\sigma_x \sim \sigma_y \sim 50 \ \mu$ m, $\sigma_z \sim 450 \ \mu$ m)

Ring Imaging CHerenkov detector

identification probability

π selection

08

06

٥.

02

25

зŔ

08

06

ρ.,

02

01

ø

0.2

зØ

good kaon ID for 10good proton ID for 20(Arino et al., hep-ex/0303012)

Pentaquark search at HERA-B, ECT, Trento

5

зŔ

Data Sample

Data taken in November 2002 - February 2003

 210×10^6 "minimum bias" events (¹²C, ¹⁸⁴W and ⁴⁸Ti)

• Interaction trigger: events with a minimum number of hits in the RICH or in the ECAL were written to tape at the speed of \sim 1 kHz.

In addition (for possible further improvement):

 150×10^6 events (¹²C, ¹⁸⁴W) using J/ Ψ trigger: events with at least 2 muon or electron candidates were written to tape at the speed of ~ 100 Hz (~300.000 J/ Ψ)

Reconstruction of K^0 , Λ

stat.: ~3.400.000 K_s, σ ~ 4,9 MeV stat.: ~940.000 (~450.000) Λ, σ ~ 1,8 MeV

-> good starting point for PQ

cuts applied:

- \bullet impact to primary vertex < 500 μm
- + dist. closest approach < 300 μm
- p_tcτ > 0.02 (Gev/c)×cm Backgound rejection: 95% Signal efficiency: 90%

7

Tracking efficency

Using the large sample of $K^0 \rightarrow \pi\pi$ decays, it is possible to estimate the tracking efficiency.

For tracks hitting all superlayers, the average efficiency in the full kinematical range is (96.7 \pm 0.9)% and it is almost constant.

Reconstruction of $\phi \to K \ K$

Reconstruction of $\Lambda(1520) \rightarrow p K$

cuts applied: p likelihood > 0.95 K likelihood > 0.95

A strong signal visible at 1520 Gev for both particle and antiparticle.

Simulation of kinematic reflections of two-body decays are also shown.

```
\overline{\Lambda}: ~ 2000, \sigma ~ 8 MeV
\Lambda: ~ 1000, \sigma ~ 8 MeV
```

Reconstruction of $\Xi \rightarrow \Lambda \pi$

All targets

For this analysis a subsample of ~ 160 M events has been used.

- $\boldsymbol{\cdot}$ $\boldsymbol{\Lambda}$ selection has been shown.
- Ξ^- candidate point to the primary.
- Λ and π have large impact to primary

The peak is at the correct position

statistics: ~11.300 Ξ^- , ~7.700 $\overline{\Xi}^+$, resolution: ~ 2,6 MeV

PQ and HERA-B data

Use the full minimum bias data sample (~210M events) to:

- confirm the reported pentaguark signals
- possibly determine physical quantities (width, spin, parity, charge) of pentaquarks for different final states (p-K⁰, Ξ - π)

Acceptance for $p-K^0$ and p-K is similar at mid-rapidity (the average in the full acceptance range is ~ 4%).

Similar arguments for Ξ - π .

-> we can provide upper limits on particle yield ratios and compare them to theoretical predictions.

p-K⁰: Monte Carlo

Kinematic distributions: flat x_f (n=0) and B=2.1

$$\frac{d^2\sigma}{dp_t^2 dx_F} = C(1 - |x_F|)^n \cdot exp(-Bp_t^2)$$

The remaining momentum is assigned to a virtual pion which is fed into FRITIOF 7.02 to simulate further interactions inside the nucleus

width at generation ~ 50 keV

exp. mass resolution = 3.2 ± 0.2 MeV/c

No evidence of resonances in the mass region around 1.530 GeV.

Pentaquark search at HERA-B, ECT,

15

0.75

0.5

Likelihood

0.25

0

Trento

Alternative strategies

Since no evidence of structures in the invariant mass spectrum of $p-K^0$ is seen, we tried several different alternative cuts:

track multiplicity in the event

p-K⁰: multiplicity cut

Counts/10 MeV

The track multiplicity in the event depends on the target on which the proton hits.

Invariant mass spectra are shown for the 2 targets (C, Ti).

Multeplicity < 10.

No statistically significant signal is observed.

Strangeness tagging

The high track capability of the HERA-B detector allows to look for other particles created simultaneously with the Θ^+ candidate.

If Θ^+ contains an \overline{s} quark -> the s quark should hadronize with high probability into K⁻(us) or $\Lambda(uds)$

Results: Θ^+

• At mid-rapidity the sensitivity in BR * $d\sigma/dx_f$ is better than 5 μ b/nucleon. An upper limit for the cross section will be provided.

• At mid-rapidity the acceptance for Θ^+ (1530) is very similar to Λ (1520), a preliminary upper limit for the particle yield ratio is:

```
⊕+ (1530)/A (1520) < 0.002 at 95% C.L.
```

• This value differs significantly from the existing theoretical prediction based on statistical hadronization (Letessier et al., hep-ph/0310188)

Ξ - π : invariant mass

Ξ - π : cut on pion likelihood

The shape of the background is well reproduced with event mixing. A small excess of events (119 \pm 59) at 1.85 GeV, visible in $\Xi^{-}\pi^{-}$, doesn't occur in $\Xi^{+}\pi^{+} \rightarrow$ spurious effect.

Results: Ξ^{--}

- At mid-rapidty the sensitivity in BR*d_/dx_f is in the order of 10 μ b/nucleon. An upper limit for the cross section will be provided.
- Preliminary values for the particle yield ratio are:

 $\Xi^{--}(1862)/\Xi^{0}(1530) < 0.04$ at 95% C.L.

 $\Xi^{++}(1862)/\Xi^{0}(1530) < 0.055$ at 95% C.L.

• This sensitivity is good enough to test existing theoretical predictions (Letessier et al., hep-ph/0310188).

Conclusion 1

A large sample of strange baryons and mesons has been collected with the HERA-B detector in pA interactions at 41.6 GeV CMS energy on different target wires (^{12}C , ^{184}W , ^{48}Ti):

K ^o	: 3.400.000	σ ~ 4.9 MeV
Λ	: 940.000/450.000	σ ~ 1.8 MeV
φ	: 50.000	σ ~ 2.6 MeV
Λ(1520): 2.000/1.000		σ ~ 8.0 MeV
≘-(1321): 11.300/7.700		σ ~ 2.6 MeV

Conclusion 2

- $\Xi^{0}(1530) \rightarrow \Xi^{-} \pi^{+}$: strong signal
- $\Lambda(1520) \rightarrow pK^{-}$: strong signal
- $\Theta^+ \rightarrow pK^0$: no signal visible
- $\Xi^{--}(1862) \rightarrow \Xi^{--} \pi^{--}$: no signal exceeding 2σ (and only Ξ^{--} , not Ξ^{++})
- Preliminary upper limits on the relative yield at mid-rapidity:
 - Θ^+ (1530)/ Λ (1520) < 0.002 at 95% C.L.
 - $\Xi^{-}(1862)/\Xi^{0}(1530) < 0.04$ at 95% C.L.
- upper limits on cross sections will be provided