Photoproduction of
$$\Theta^+$$
 in $\gamma+D\to\Lambda+\Theta^+$ and $\gamma+D\to\Sigma+\Theta^+$ reactions

Vadim Guzey (Ruhr-Universität Bochum)

hep-ph/0402060

- 1. Motivation
- 2. Calculation and results
- 3. Interference with BG
- 4. Θ^+ of isospin-1
- 5. Conclusions and discussion

Motivation

ullet Suggest novel Θ^+ production reaction that can be estimated with little model dependence

In SPring-8 and CLAS experiments, nuclear effects are contamination; here rescattering on the spectator nucleon is necessary to produce Θ^+ .

 \bullet Cross section proportional to $\Gamma_\Theta^{\rm tot} \to {\rm means}$ to determine the total width of Θ^+

Calculations

• There are two Feynman diagrams

Assume that imaginary part dominates. This is equivalent to all particles being on or near mass shell.

Cross section factorizes into 3 factors

$$\frac{d\sigma^{\gamma+D\to\Lambda(\Sigma)+\Theta^+}}{dt} = \Gamma_{\Theta}^{\rm tot} f({\rm Masses}) \times \frac{d\sigma^{p+n}}{dt} \times S(t)$$

Results

t-dependence is mostly determined by nuclear suppression factor S(t). Most favorable region: $-0.2 < t < 0 \ {\rm GeV^2}$.

- Energy dependence is steep and is determined by $d\sigma^{p,n}/dt$ and their interference.
- Cross section integrated over t assuming $\Gamma_{\Theta}^{\mathrm{tot}} = 5$ MeV.

E_{γ} , GeV	$\sigma^{\gamma+D o\Lambda+\Theta^+}$, nbarn	$\sigma^{\gamma+D o\Sigma+\Theta^+}$, nbarn
1.2	2.51	4.44
1.6	0.57	1.42

Background and its interference with signal

• There is very large BG reaction

The experiment measures Signal+Interference+BG

 Can be separated by measuring spectator nucleon in coincidence

 $ext{Signal} \propto n K ext{ phase space}$ $ext{Interference} \propto \psi_D(p_s)$ $ext{BG} \propto \left|\psi_D(p_s)\right|^2$

 \bullet BG can be suppressed by choosing sufficiently large p_s : $p_s>300~{\rm MeV/c}$ and by requiring that $|M_\Theta-M_{nK^+}|<\epsilon=10~{\rm MeV}.$

Signal, Interference and Background

Θ^+ with isospin-1

$$\mathcal{L}_{\Theta^{+}NK}^{I=0} \propto \Theta^{+} \bar{N} K$$

 $\mathcal{L}_{\Theta^{+}NK}^{I=1} \propto \Theta^{+} \bar{N} \tau^{3} K$

 This introduces a minus sign between the two Feynman diagrams and changes results dramatically

• Production of $\Lambda\Theta^+$ becomes larger than $\Sigma\Theta^+$.

Conclusions and discussion

- Photoproduction of Θ^+ in $\gamma + D \to \Lambda + \Theta^+$ and $\gamma + D \to \Sigma + \Theta^+$ reactions can be estimated with little model dependence
- Cross section is proportional to $\Gamma_{\Theta}^{\rm tot} \to {\rm reliable}$ method to determine the width of Θ^+ .
- Cross section of order several nbarn at $\Gamma_{\Theta}^{\rm tot}=5$ MeV.
- Comparison of $\Lambda\Theta^+$ and $\Sigma\Theta^+$ gives unambiguous method to establish isospin of Θ^+ .
- The result is the same for positive and negative parity of Θ^+ . In general, the proposed reactions do not seem good candidates to determine parity of Θ^+ .