

Thomas S. Bauer - NIKHEF

Some questions and critical remarks to the recently reported exotic states:

$$\Theta^+ = \{ u u d d s \}$$
 at 1.540 GeV

and

$$\Xi^{--} = \{ \overline{\mathbf{u}} \, d \, d \, s \, s \} \text{ at } 1.862 \, \text{GeV}.$$

discussion of some of the experiments;

consistency;

comparison with older data.

Present experimental status

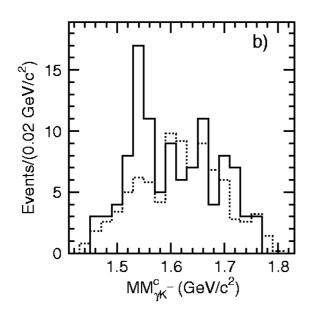
- several experiments reporting positive results;
- all reported signals are not very strong;
- revisiting an intensively studied domain;
- several critical remarks published;
- questions on consistency with existing data;
- possibly other origins of observed effects.

it is time for a

systematic discussion of the available data!

List of experiments:

γ	SPring-8 (Japan)	hep-ex/0301020 08 Jul. 2003
γ	CLAS (TJLab)	hep-ex/0307018 10 Dec. 2003
γ	SAPHIR (Bonn)	hep-ex/0307083 30 Sep. 2003
e-scatt.	Hermes (HERA)	hep-ex/0312044 22 Jan. 2004
	v-data (BEBC and Fermilab)	hep-ex/0309042 25 Sep. 2003
$(K^+ + Xe)$	Diana (ITEP)	hep-ex/0304040 18 Sep. 2003
(p + A)	SVD-2 (Protvino) 2004	hep-ex/0401024 22 Ja
(p+p)	NA49 (CERN)	hep-ex/0310014 8 Oct. 2003
	and others.	



SPring-8 (LEPS) (γ + ¹²C)

Some salient features:

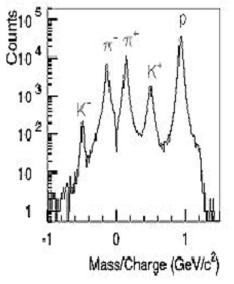
- \bullet new experiment, optimized for ϕ -physics;
- uses real photons from Synchr. Radiation Source;
- \bullet E_{γ} < 2.4 GeV;
- LH₂ target and ¹²C target only ¹²C used;
- PID through ToF and magnetic field;
- recoiling protons via Si-strip detector;
- correction for Fermi-motion.
- new data on D-target.

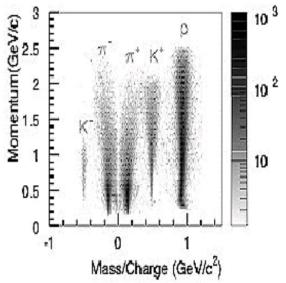
first evidence for Θ^+ -state;

produced in:

$$\gamma + \mathbf{n} \rightarrow \Theta^{+} + \mathbf{K}^{-};$$

$$\Theta^{+} \rightarrow \mathbf{K}^{+} + \mathbf{n};$$


used C-target;


19 events in peak.

Particle Identification:

magnetic field

Time of Flight

possible problem:

43 * 10⁶ triggers

8000 events with K⁺ K⁻,

final signal = 19 events

need purity of 10⁻⁶!! (including other cuts)

A closer look at Fermi motion:

- due to <u>nuclear</u> target;
- "correlated with Q-value";
- crucial for final result!

	$\Lambda \rightarrow n\pi^{-}$	Σ → nπ ⁻	Θ→ nπ ⁺
Q (MeV)	37	120	107
Γ(MeV)	<10	42	~20
p (cms)	104	193	244

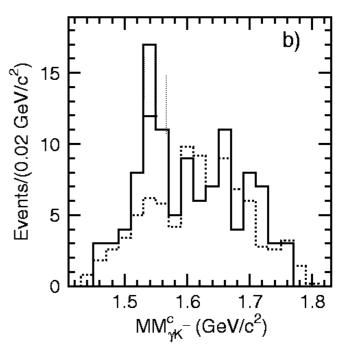
However

■ measured width of Θ^+ → n K⁺ much smaller than width of Σ !! (20 MeV vs. 42 MeV)

by the way: shouldn't the width rather be correlated to momentum in cms ...? which would make things worse.

- Identification of Θ^+ state relies heavily on absence of (fast) proton:
- the Si-strip detector is used as VETO ---
- this relies crucially on (very) high efficiency. (no info on this found in the different SPRING-8 publications). (Questions: strip efficiency, coincidence between layers, etc.)
- The Veto condition is checked at ± 45 mm around the presumed impact of the proton.
- this requires knowledge of the complete kinematics which is not available!

- Information on production rates:
- though difficult to gauge acceptance and efficiency, SPring-8 finds:


```
• total: 43 * 10<sup>6</sup> events,
```

 \bullet Θ^+ : 19

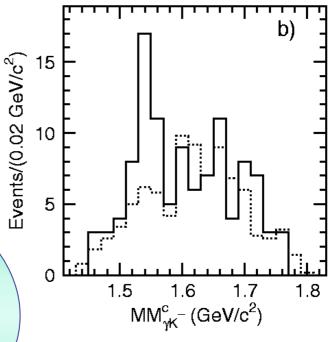
Question:

"removing" 5 events destroys peak.

(from Nakano et al.)

Note: SPring-8/LEPS can (most likely) trigger on pions of K⁰_s decay.

Question:


"removing" 5 events destroys peak.

Thus: how can we gain trust in result?

Answer:

Use data on LH₂:

- \bullet must be able to see $\Theta^+ \rightarrow p + K_s^0$;
- no problem with proton-veto;
- ono problem with Fermi-motion.

(from Nakano et al.)

Note: SPring-8/LEPS can (most likely) trigger on pions of K_{s}^{0} decay.

Th. S. Bauer - NIKHEF

$$(\gamma + {}^{2}D, \gamma + {}^{1}H)$$

Some salient features:

- Large acceptance experiment, several years of operation;
- domain: Baryon resonances;
- \bullet E_{γ} < 2.9 GeV and < 5 GeV, (respectively)
- H₂ target and ²D target;
- PID through ToF and magnetic field;
- Correction for Fermi-motion (when needed).

CLAS

attempt:

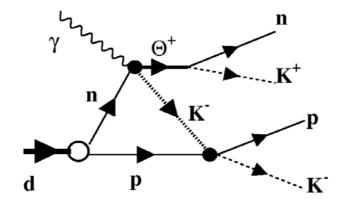
analyze D-target data, assuming $\gamma + n \rightarrow \Theta^+ + K^-$, Fermi correction treated as by SPring-8 collaboration:

Problem:

"No statistical significant result obtained!" and

"CLAS ... unfavorable... for direct Θ^+ photoproduction detection"

(Luminita Todor, Seminar@JLAB, Aug. 15, 2003)


--- how to proceed ???

Goal: $n + \gamma \rightarrow \Theta^+ + K^-$;

Problem: no free neutron target;

- apply trick:
 - use n in D-target;
 - require double scattering process to eject proton;

measurement kinematically complete

CLAS

Prize for re-scattering:

yield goes down.

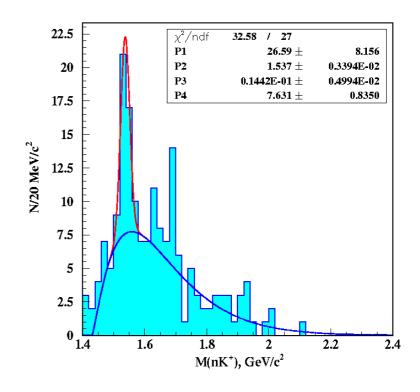
(claim CLAS: "~50 %")

reported yields:

φ: 124

 Λ_{1520} : 228

 Θ^+ : 42


Attention: difficult to compare:

- acceptances not known, presumably not equal.
- yield $\Theta/$ yield $\Lambda \approx 0.4$ perhaps even larger
- Need Monte Carlo in order to detemine acceptance and cross section.

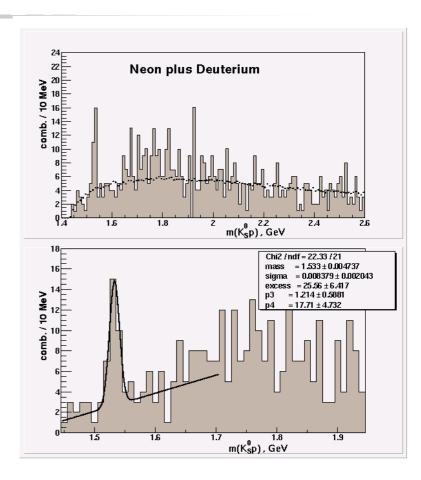
Production on H:

- find a total of 27 events...
- several cuts applied

SAPHIR (Elsa-Bonn) (γ + ¹H)

- 133 M events (taken ~5 years ago)
- trigger = 2 charged tracks
- signal: ~ 50 events
- \bullet corresponds to production cross section of $\sigma \sim 200$ nb.
- ightharpoonup this is ightharpoonup of Λ , Σ and Λ_{1520} cross sections
- rising with energy.
- but decreasing with time . . .

Neutrino's


(reanalysis)

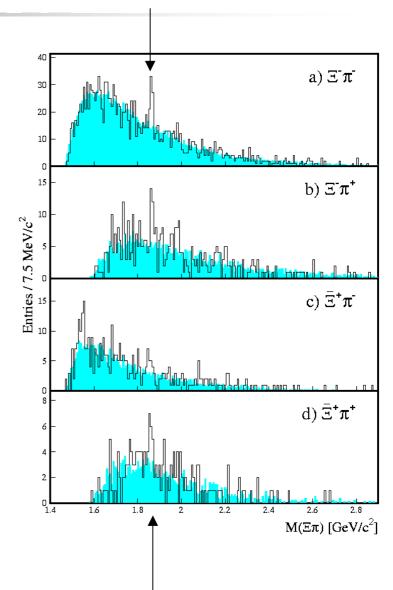
reanalysis of BEBC and Fermilab database

(Asratyan, Dolgolenko and Kubantsev)

- 120 000 v_{μ} induced events used
- measured in BEBC and Fermilab 15' chamber
- signal: ~ 27 events over small background.
- largest significance claimed:

 $\sigma \approx 6.7$ (27 ± 8 events)

= another member of the anti-decuplet...


$$\Theta^+$$
 = { u u d d s } at 1.540 GeV

$$\Xi^{--} = \{ \mathbf{u} \, d \, d \, s \, s \}.$$

NA49 (p-p,
$$\sqrt{s} = 17 \text{ GeV}$$
)

- p-p scattering at $\sqrt{s} = 17 \text{ GeV}$
- signals for Ξ^{--} :
 - \bullet combining Ξ^{-} and π^{-}
 - cross check with other charge combinations.
- \bullet can use Ξ^{0*}_{1530} as benchmark.

NA49

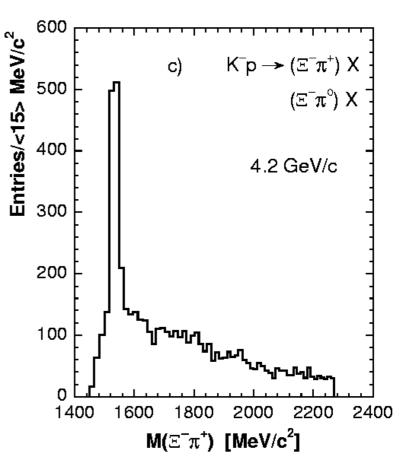
Remarks:

- Vertex resolution : $\sigma \sim 56 \, \mu \text{m} \, (\text{transv}).*)$
 - Vertex cut: ± 0.5 (x) and ± 1.5 (y) cm !!
- \bullet opening angle $\Theta_{\rm lab}$ > 4.5 °
 - note: Θ_{lab} is not a physical parameter
- \bullet Ξ^{*0}_{1530} visible, but weaker than Ξ^{--} (1860)
 - (might be due to some cuts...)

*) taken from NA49 detector publication.

NA49

Criticism:

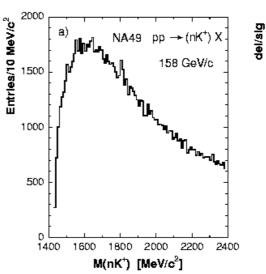

(Thanks to H.G. Fischer and S. Wenig, CERN, hep-ex/0401014 – 12 Jan 2004)

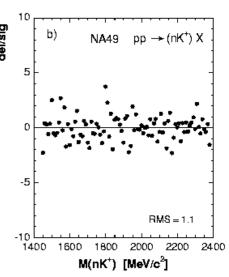
- NA49 used $1640 \,\Xi^{-}$ and $551 \,\Xi^{+}$ events
- NA49 sees a total of

$$\sim 150 \; \Xi^{*0}_{1530}$$

S.N. Gangule et al. (NP. B128-408, (1977)report

$$\sim 800 \; \Xi^{*0}_{1530}$$

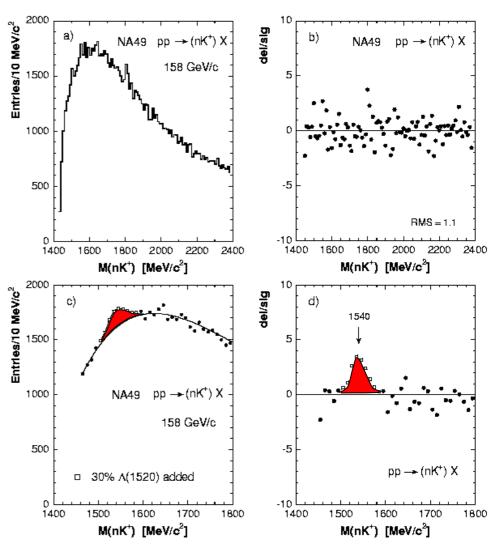



from S.N. Gangule et al.

Nucl. Phys. B128, 408, (1977)

Th. S. Bauer - NIKHEF

- a) nK⁺ inv. mass spectrum;
- b) deviation from polynomial;

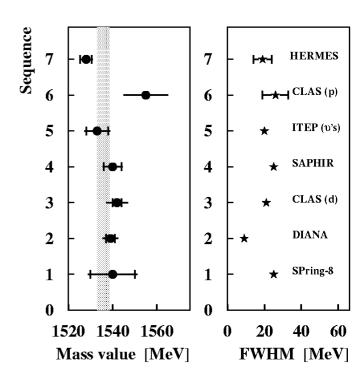


NA49 $\Theta^+ \rightarrow nK^+$

- a) nK⁺ inv. mass spectrum;
- b) deviation from polynomial;
- c) 30 % of Λ_{1520} added as a hypothetical Θ^+ ;
- d) statistical significance of added signal.

Th. S. Bauer - NIKHEF

other work


- R. A. Arndt, I.I. Strakovsky and R.L. Workman: (nucl-th/0311030, 10 Nov. 2003)
 - reexamine existing K⁺p and K⁺d database;
 - "how could such a state have been missed"?
 - "The lack of structure in database implies:
- " a width of an MeV or less, assuming a state exists near 1540 MeV."

Masses

The reported masses do not agree perfectly, but differences are at present not yet a real point of worry.

A comparison with other masses , especially Λ_{1520} , would be very helpful, but is not available from the publications.

Note: new result from Zeus!

from Hermes publication

Yields and σ

(taken from publications)

	Θ+	σ	ф	Λ(1520)
SPring-8	19 ± 2.8	4.6	≈ 1500	≈ 35
CLAS-d	43 ± ?	5.8	≈ 126	≈ 212
CLAS-p	27 ± 8	4.8		
SAPHIR	63 ± 13	4.8		530 ± 90
Neutrino	27 ± 8	6.7		
Diana	27 ± ?	4.4		
Hermes	≈ 70 ± 18	≈ 4	?	? (≈ 400)
SVD-2	~ 50 ± ?	≈ 5.6		
			Ξ	σ
NA49	no signal!		36 ± 6 ?	5.6

Th. S. Bauer - NIKHEF

Summary -- start to conclude, at least

- by now, >8 experiments claim positive signals;
- all signals are weak:
 - << 100 events;
 - σ between ~ 3 and 6 or 7 (could be discussed)

BUT

- **yield close to** Λ_{1520} (except for SAPHIR)
 - -- this is contradiction to above many expts. in Lit. with good Λ_{1520} yields!
- claims not confirmed by earlier experiments
 - strange, since strangeness long and intensively studied ...
 - and some of them have much higher statistics ...
 - and partially in straight discrepancy.

Some contradictions:

- \bullet Ξ^{--} in Na49 not confirmed;
- NA49 does not confirm Θ^+ ;
- Width:
 - Zeus vs Diana; 25 MeV vs < 9 MeV;</p>
 - Arndt et al: <~ 1 MeV;</p>
- \bullet $\sigma (\Lambda_{1520}) \sim 10 \ \sigma (\Theta^+);$
 - But many expts with LARGE Λ_{1520} yield!
 - → talk of Antonello Sbrizzi tomorrow
- Cosy vs SAPHIR: 0.4 μb vs 0.2 μb;

On the other side:

- new data from Spring-8 on D look promising;
- new data expected soon from CLAS;
- many experiments (seem to) see small signals;
- ... more which we don't know yet?

a way out ??

- Needed: (dead or alive!) predictions of
 - spin, width,
 - production cross sections:

as function of:

- probe (real or virtual photon, hadrons, v, ...)
- energy (2 GeV at SPring-8 ... 40 (320) GeV
- **...**
- good experimental info about production ratios wrt. known states
 - such as:
 - Λ_{1520} , Ξ_{1530} , ...

- What about the width???
- How can a state at this energy be so narrow??

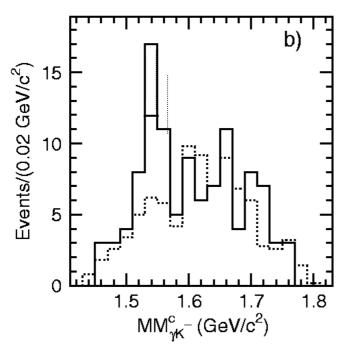
- What about the width???
- How can a state at this energy be so narrow??

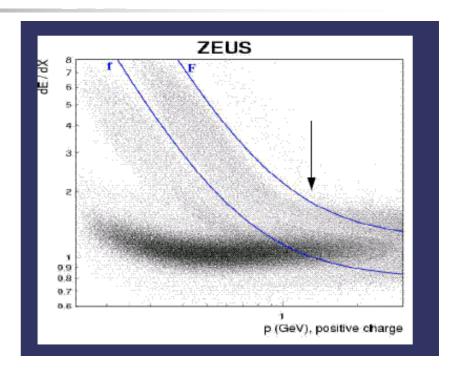
An experimentalist's prediction:

- What about the width???
- How can a state at this energy be so narrow??

An experimentalist's prediction:

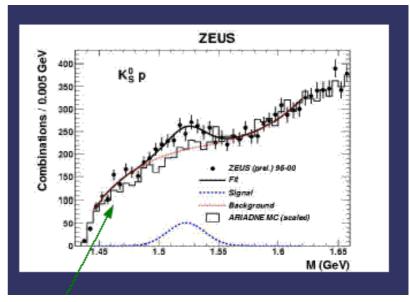
$$\Gamma \geq 10^{-22} \text{ eV}$$





ZEUS (HERA)

Highest energy of all experiments in list (320 GeV) (but useful energy ≈ 10 GeV)


analysis p-K⁰ channel

p-identification through dE/dx
implying
p-momentum < 1.3 GeV (!)</pre>

ZEUS (HERA)

- anti-p channel << p-channel;</p>
- Sum of 2 channels < p-channel ...</p>