Restoration of chiral symmetry in the $U(2)_L \times U(2)_R$ linear sigma model at finite temperature (work still in progress...)

Stefan Michalski

Theoretische Physik IIIb Universität Dortmund

Dortmund, 11. Oktober 2005

Stefan Michalski $U(2)_L \times U(2)_R$ linear sigma model

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline

- 1 Chiral symmetry
 - QCD Lagrangian
 - Patterns of symmetry breaking
- 2 $U(N_f)_L \times U(N_f)_R$ linear sigma model
 - Lagrangian
 - Effective action
- 3 Numerical Results
 - What we do. . .
 - Order parameter
 - Masses
- 4 Conclusions and Outlook

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・

Chiral symmetry

 $U(N_f)_L \times U(N_f)_R$ linear sigma model Numerical Results Conclusions and Outlook

QCD Lagrangian Patterns of symmetry breaking

Chiral symmetry

Massless QCD

What we observe...

• Langrangian of massless QCD is chirally symmetric

 $U(N_f)_L \times U(N_f)_R = SU(N_f)_L \times SU(N_f)_R \times U(1)_A \times U(1)_V$

U(1)_V symmetry corresponds to baryon number conservation
 SU(N_f)_L × SU(N_f)_R × U(1)_A = SU(N_f)_V × U(N_f)_A

(日) (同) (E) (E) (E)

QCD Lagrangian Patterns of symmetry breaking

Patterns of symmetry breaking

spontaneous

• non-vanishing expectation value of quark condensate $\langle \bar{\psi}^{(L)}\psi^{(R)} \rangle \neq 0$ breaks axial symmetry spontaneously:

 $SU(N_f)_V \times SU(N_f)_A \times U(1)_A \to SU(N_f)_V$

• QCD instantons break the $U(1)_A$ symmetry (axial anomaly) • $N_f^2 - 1$ GOLDSTONE bosons

explicit

QCD Lagrangian Patterns of symmetry breaking

Patterns of symmetry breaking

spontaneous

explicit

• Mass terms mix right- and left-handed quarks, hence, break chiral symmetry explicitly

$$\mathscr{L}_{\text{mass}} = -\sum_{i=1}^{N_f} m_i \left[\overline{\psi}_i^{(L)} \psi_i^{(R)} + \overline{\psi}_i^{(R)} \psi_i^{(L)} \right]$$

- $N_f^2 1$ pseudo-GOLDSTONE bosons
- $\bullet~{\rm for}~M\leq N_f$ degenerate quark flavors an $SU(M)_V$ symmetry remains

・ロト ・回ト ・ヨト ・ヨト

 $\begin{array}{c} \textbf{Chiral symmetry}\\ U(N_f)_L \times U(N_f)_R \text{ linear sigma model}\\ \text{Numerical Results}\\ \text{Conclusions and Outlook} \end{array}$

QCD Lagrangian Patterns of symmetry breaking

How we investigate this symmetry breaking

Linear sigma models

- linear sigma models are low-energy effective theories of QCD
- same symmetry and patterns of symmetry breaking as QCD
- contain all scalar mesons of $SU(N_f)_V \times SU(N_f)_A$ multiplet, for example $N_f = 2$:

•
$$J^P = 0^+$$
: $f_0(600) \equiv \sigma$, $a_0(980)$

•
$$J^P = 0^-$$
: $\eta(548), \pi(140)$

- expect (only partial) restoration of chiral symmetry at high temperature (value from lattice QCD $\sim 175~{\rm MeV})$
- still mesonic degrees of freedom at high temperature as in QCD for only partial symmetry restoration

・ロット (日) (日) (日) (日)

 $\begin{array}{c} \mbox{Chiral symmetry}\\ U(N_f)_L \times U(N_f)_R \mbox{ linear sigma model}\\ \mbox{Numerical Results}\\ \mbox{Conclusions and Outlook} \end{array}$

Lagrangian Effective action

$U(N_f)_L \times U(N_f)_R$ linear sigma model

Lagrangian

$$\begin{split} \Phi \text{ is a complex } N_f \times N_f \text{ matrix } \Phi &= T_a \left(\phi_a^{(\mathrm{s})} + i \phi_a^{(\mathrm{p})} \right) \text{ in the} \\ \mathsf{Lagrangian} \\ \mathscr{L}[\Phi] &= \operatorname{Tr} \left(\partial_\mu \Phi^\dagger \partial^\mu \Phi - m^2 \Phi^\dagger \Phi \right) \\ &- \lambda_1 \left[\operatorname{Tr} \left(\Phi^\dagger \Phi \right) \right]^2 - \lambda_2 \operatorname{Tr} \left[(\Phi^\dagger \Phi)^2 \right] \\ &+ c \left[\det \Phi + \det \Phi^\dagger \right] + \operatorname{Tr} \left[H(\Phi + \Phi^\dagger) \right] \end{split}$$

Scalars for
$$N_f = 2$$

$$\sum_{a=0}^{N_f - 1} T_a \, \phi_a^{(s)} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} \left(\sigma + a_0^0\right) & a_0^+ \\ a_0^- & \frac{1}{\sqrt{2}} \left(\sigma - a_0^0\right) \end{pmatrix}$$

Stefan Michalski

 $U(2)_L \times U(2)_R$ linear sigma model

 $\begin{array}{l} \mbox{Chiral symmetry}\\ U(N_f)_L \times U(N_f)_R \mbox{ linear sigma model}\\ \mbox{Numerical Results}\\ \mbox{Conclusions and Outlook} \end{array}$

Lagrangian Effective action

$U(N_f)_L \times U(N_f)_R$ linear sigma model

Lagrangian

$$\begin{split} \Phi \text{ is a complex } N_f \times N_f \text{ matrix } \Phi &= T_a \left(\phi_a^{(\mathrm{s})} + i \phi_a^{(\mathrm{p})} \right) \text{ in the} \\ \mathsf{Lagrangian} \\ \mathscr{L}[\Phi] &= \operatorname{Tr} \left(\partial_\mu \Phi^\dagger \partial^\mu \Phi - m^2 \Phi^\dagger \Phi \right) \\ &- \lambda_1 \left[\operatorname{Tr} \left(\Phi^\dagger \Phi \right) \right]^2 - \lambda_2 \operatorname{Tr} \left[(\Phi^\dagger \Phi)^2 \right] \\ &+ c \left[\det \Phi + \det \Phi^\dagger \right] + \operatorname{Tr} \left[H(\Phi + \Phi^\dagger) \right] \end{split}$$

Pseudoscalars for $N_f = 2$

$$i \sum_{a=0}^{N_f - 1} T_a \phi_a^{(p)} = \frac{i}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} (\eta + \pi^0) & \pi^+ \\ \pi^- & \frac{1}{\sqrt{2}} (\eta - \pi^0) \end{pmatrix}$$

Stefan Michalski

 $U(2)_L \times U(2)_R$ linear sigma model

 $\begin{array}{l} \mbox{Chiral symmetry}\\ U(N_f)_L \times U(N_f)_R \mbox{ linear sigma model}\\ \mbox{Numerical Results}\\ \mbox{Conclusions and Outlook} \end{array}$

Lagrangian Effective action

$U(N_f)_L \times U(N_f)_R$ linear sigma model

Lagrangian

$$\begin{split} \Phi \text{ is a complex } N_f \times N_f \text{ matrix } \Phi &= T_a \left(\phi_a^{(\mathrm{s})} + i \phi_a^{(\mathrm{p})} \right) \text{ in the} \\ \mathsf{Lagrangian} \\ \mathscr{L}[\Phi] &= \operatorname{Tr} \left(\partial_\mu \Phi^\dagger \partial^\mu \Phi - m^2 \Phi^\dagger \Phi \right) \\ &- \lambda_1 \left[\operatorname{Tr} \left(\Phi^\dagger \Phi \right) \right]^2 - \lambda_2 \operatorname{Tr} \left[(\Phi^\dagger \Phi)^2 \right] \\ &+ c \left[\det \Phi + \det \Phi^\dagger \right] + \operatorname{Tr} \left[H(\Phi + \Phi^\dagger) \right] \end{aligned}$$

Symmetry breaking...

- always respect the quantum numbers of the vacuum
- spontaneous symmetry breaking by $m^2 < 0 \Rightarrow \ \langle \Phi
 angle
 eq 0$
- $c \neq 0$ corresponds to $U(1)_A$ anomaly
- limit $c \to \infty$ removes a_0 and η from theory $\Rightarrow O(4)$ model
- matrix H to break symmetry explicitly

 $\begin{array}{l} \mbox{Chiral symmetry}\\ U(N_f)_L \times U(N_f)_R \mbox{ linear sigma model}\\ \mbox{Numerical Results}\\ \mbox{Conclusions and Outbook} \end{array}$

Lagrangian Effective action

Effective action two-loop approximation

Effective action

$$\Gamma\left[\phi, \mathcal{M}^2; T\right] = \Gamma_1[\phi, \mathcal{M}^2; T] + \Gamma_q\left[\phi, \mathcal{M}^2; T\right]$$

- From a stationarity condition $\delta \Gamma = 0$ it follows that
 - $\frac{\partial \Gamma}{\partial \phi} = 0$ yields expectation value $\phi = \langle \Phi \rangle_T$
 - $\frac{\partial\Gamma}{\partial\mathcal{M}^2} = 0$ defines self-consistency equations for the mass matrix

•
$$\phi(T) = \langle \Phi \rangle = f_{\pi}(T)$$
 by PCAC

•
$$\mathcal{M}^2(T) = M^2_{\text{tree}}(\Phi) + \Delta(T; \Phi, \mathcal{M}^2) \Big|_{\Phi = \phi(T)}$$

Graphical representation

 \prod_{a}^{2P}

Lines are propagators with $iG^{-1} = k^2 - \mathcal{M}^2$

 $\begin{array}{l} \mbox{Chiral symmetry}\\ U(N_f)_L \times U(N_f)_R \mbox{ linear sigma model}\\ \mbox{Numerical Results}\\ \mbox{Conclusions and Outlook} \end{array}$

Lagrangian Effective action

Sunsets graphs in the $U(2)_R \times U(2)_L$ model

There's more than just one sunset...

$$\Gamma_{\text{sunset}} = i\hbar\phi_0^2 \left[\left(\lambda_1 + \frac{3}{2}\lambda_2\right)^2 \left(3S_{\sigma\sigma\sigma} + 3S_{\sigma a_0 a_0}\right) + \left(\lambda_1 + \frac{\lambda_2}{2}\right)^2 \left(S_{\sigma\eta\eta} + 3S_{\sigma\pi\pi}\right) + \left(\lambda_1 + \frac{\lambda_2}{2}\right) \lambda_2 \left(2S_{\sigma\eta\eta} + 3S_{\sigma\eta\pi} + 6S_{a_0\eta\eta} + 9S_{a_0\eta\pi}\right) + \frac{\lambda_2^2}{2} \left(2S_{\sigma\eta\eta} + S_{a_0\eta\pi}\right) \right]$$

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・

3

What we do... Order parameter Masses

Numerical Results

What we do...

- let $N_f = 2$ and $m_u = m_d$
- fix parameters at T = 0
 - masses of the mesons σ, a_0, η and π
 - pion decay constant $\phi_0 = f_\pi = 92.4~{\rm MeV}$
- solve equations for $\delta\Gamma = 0$ numerically for different temperatures (4 masses + 1 decay constant)

What makes this work preliminary ...

- equations for the masses are only solved up to one-loop (HARTREE-FOCK approximation)
- two-loop potential is calculated with HF masses

・ロト ・回ト ・ヨト ・ヨト

What we do... Order parameter Masses

Numerical Results

order parameter

$f_{\pi}(T)$ in the $U(2)_L \times U(2)_R$ model

Stefan Michalski $U(2)_L \times U(2)_R$ linear sigma model

What we do... Order parameter Masses

Numerical Results

masses

Stefan Michalski $U(2)_L \times U(2)_R$ linear sigma model

What we do... Order parameter Masses

Numerical Results

masses

masses of a_0 and η in the $U(2)_L \times U(2)_R$ model

Stefan Michalski $U(2)_L \times U(2)_R$ linear sigma model

Conclusions and Outlook

Conclusions

- two-loop approximation with only HF masses yields a higher critical temperature than HF approximation (unwanted)
- sunset graph broadens crossover region
- $\bullet\,$ need lower masses in this region $\rightarrow\,$ need fully self-consistent calculation to two-loop order

Outlook

- solution of mass gap equation \rightarrow expect slightly lower T_c than in HF [works fine in O(4)]
- thermodynamic quantities like pressure or entropy
- fermions (baryons or quarks)?
- strange mesons $(N_f = 3)$?

Conclusions and Outlook

Conclusions

- two-loop approximation with only HF masses yields a higher critical temperature than HF approximation (unwanted)
- sunset graph broadens crossover region
- $\bullet\,$ need lower masses in this region $\rightarrow\,$ need fully self-consistent calculation to two-loop order

Outlook

- solution of mass gap equation \rightarrow expect slightly lower T_c than in HF [works fine in O(4)]
- thermodynamic quantities like pressure or entropy
- fermions (baryons or quarks)?
- strange mesons $(N_f = 3)$?

