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Chiral symmetry

Massless QCD
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What we observe. . .

@ Langrangian of massless QCD is chirally symmetric

U(Nf)LXU(Nf)RZSU(Nf)LXSU(Nf)RXU<1)AXU(l)V

@ U(1)y symmetry corresponds to baryon number conservation
(] SU(Nf)L X SU(Nf)R X U(l)A = SU(Nf)V X U(Nf)A
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Patterns of symmetry breaking

spontaneous

@ non-vanishing expectation value of quark condensate
(pE)ep(R)Y =£ O breaks axial symmetry spontaneously:

SU(Ng)v x SU(Ns)a x U(1)a — SU(Ny)v

o QCD instantons break the U(1)4 symmetry (axial anomaly)
® N7 —1 GOLDSTONE bosons

_
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Patterns of symmetry breaking

spontaneous

@ Mass terms mix right- and left-handed quarks, hence, break
chiral symmetry explicitly

° N]% — 1 pseudo-GOLDSTONE bosons
o for M < Ny degenerate quark flavors an SU(M )y symmetry
remains
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How we investigate this symmetry breaking

Linear sigma models

@ linear sigma models are low-energy effective theories of QCD
@ same symmetry and patterns of symmetry breaking as QCD
@ contain all scalar mesons of SU(Ny)y x SU(Ny)a multiplet,
for example Ny = 2:
o JP =0%: f3(600) = o, an(980)
o JP =07: n(548), m(140)
@ expect (only partial) restoration of chiral symmetry at high
temperature (value from lattice QCD ~ 175 MeV)
@ still mesonic degrees of freedom at high temperature as in
QCD for only partial symmetry restoration

W/
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U(Nf)p X U(Ny)R linear sigma model Lagrangian
’ ’ Effective action

U(Ny)r x U(Ny)g linear sigma model

Lagrangion
® is a complex Ny x Ny matrix ® =T, ( ((IS) = i(ﬁgp)) in the
Lagrangian

Z[0] = Tr ((%@T@”(I)—m?qﬂ@)
Y [Tr (qﬂcp)r ATy [(qﬂ@)?]

+c[det ® + det dT] + Tr [H(@ + qﬁ)}

Scalars for Ny = 2

Nj—1
Snep=l(HOrD A
e V2 iy 2 (0 —ag) o
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U(Ny)r x U(Ny)g linear sigma model

® is a complex Ny x Ny matrix ® =T, ( ((IS) = i(ﬁgp)) in the
Lagrangian ,
Z[0] = Tr (aﬂwaﬂ@ - m?qﬂcb)
2
Y [Tr (<1>Tc1>)} ATy [(qﬂ@)?]

+e[det  + det BT + Tr [H(@ + qﬁ)}

Pseudoscalars for Ny = 2
Ny—1 ; 1 0 o
—= + 7 m
; Zngp):L \/5(77_ ) .
a=0 \/i
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U(Ny)r x U(Ny)g linear sigma model

® is a complex Ny x Ny matrix ® =T, (qsff) 4 iqﬁflp)) in the

Lagrangian
L3 = Tr (aucp*aﬂcp - m2<1>T<1>)

A\ [Tr (cpfcp)}2 — ATy [(@ch)?}

+c[det ® + det &) + Tr {H(@ + qﬁ)}

Symmetry breaking. ..

@ always respect the quantum numbers of the vacuum
spontaneous symmetry breaking by 17 < 0 = (®) #0

¢ # 0 corresponds to U(1) 4 anomaly

limit ¢ — co removes ag and 7 from theory = O(4) model
matrix H to break symmetry explicitly
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Effective action

two-loop approximation

Effective action

T [¢, M%T] =T1[¢p, M* T] + T [¢, M* T]

o From a stationarity condition éI"' = 0 it follows that
° 34) = 0 yields expectation value ¢ = (®)r

a?&? = ( defines self-consistency equations for the mass matrix

o ¢(T) = (®) = f=(T) by PCAC
o M*(T) = Mieo(®) + A(T; @, M?)

lo=o(r)

4

Graphical representation

Lines are propagators with iG~! = k% — w/
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Sunsets graphs in the U(2) x U(2)z, model

There's more than just one sunset. . .

. 3.\’
Psunset - Zh¢%) (Al + 2)\2> (3 SO'O’O’ +3 Saaoao)

A2\ 2
+ )\1 + ? (So—nq’] + 3SO’7I'7T)

A
+ <)\1 + 22> 22(2 Soyn + 3 Sonr + 6 Sagin + 9 Sagyr)
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Numerical Results

@ let Ny =2 and m, = my
o fix parameters at T'=0
e masses of the mesons o, ag,n and 7
e pion decay constant ¢g = fr = 92.4 MeV
@ solve equations for 6I' = 0 numerically for different
temperatures (4 masses + 1 decay constant)

What makes this work preliminary . ..

@ equations for the masses are only solved up to one-loop
(HARTREE-FOCK approximation)
@ two-loop potential is calculated with HF masses
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order parameter

the U(2)r x U(2)r model
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masses

masses of o and pion in r model
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masses
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Conclusions and Outlook

@ two-loop approximation with only HF masses yields a higher
critical temperature than HF approximation (unwanted)

@ sunset graph broadens crossover region

@ need lower masses in this region — need fully self-consistent
calculation to two-loop order
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Conclusions and Outlook

@ two-loop approximation with only HF masses yields a higher
critical temperature than HF approximation (unwanted)

@ sunset graph broadens crossover region

@ need lower masses in this region — need fully self-consistent
calculation to two-loop order

@ solution of mass gap equation — expect slightly lower T, than
in HF [works fine in O(4)]

@ thermodynamic quantities like pressure or entropy

o fermions (baryons or quarks)?
@ strange mesons (N = 3)? «/
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