Solution of the Leading Order Evolution Equation for Generalized Parton Distributions

M. Kirch1 \quad A. N. Manashov2 \quad A. Schäfer2

1Insitute for Theoretical Physics II
Ruhr-University Bochum

2Institute for Theoretical Physics II
University of Regensburg

Workshop on Hard Processes of the GRK 841
Outline of the talk

1. Introduction
 - References and Credits
 - Generalized Parton Distributions
 - Scale dependence of GPDs

2. Evolution equation
 - Strategy
 - Collinear Conformal Symmetry
 - Solution
 - Properties

3. Summary
Literature

GPDs introduced in

Review articles

This work

In a nutshell

Probing microscopic structure of hadrons: Hard exclusive processes (DVCS)

Factorization
In a nutshell I

Probing microscopic structure of hadrons:
Hard exclusive processes (DVCS)

Factorization
In a nutshell

Probing microscopic structure of hadrons:
Hard exclusive processes (DVCS)

Factorization

Divide Amplitude in

Hard exclusive processes (DVCS)
In a nutshell I

Probing microscopic structure of hadrons: Hard exclusive processes (DVCS)

Factorization

Divide Amplitude in

- Process dependend part: pQCD
In a nutshell I

Probing microscopic structure of hadrons:
Hard exclusive processes (DVCS)

Factorization

Divide Amplitude in
- Process dependend part: pQCD
- Universal nonperturbative part: GPD
GPD: Information about quark-gluon content of hadrons
In a Nutshell II

- GPD: Information about quark-gluon content of hadrons
- Not calculable from first principles of QCD!
GPD: Information about quark- gluon content of hadrons
Not calculable from first principles of QCD!

Extract GPDs from
GPD: Information about quark-gluon content of hadrons
Not calculable from first principles of QCD!

Extract GPDs from
Experiments
 technically very involved
 measure GPDs only convoluted with hard scattering kernel
GPD: Information about quark-gluon content of hadrons
Not calculable from first principles of QCD!

Extract GPDs from
- Experiments
 - technically very involved
 - measure GPDs only convoluted with hard scattering kernel
- Lattice
 - measures only moments of GPDs (also integrated)
 - not to speak about physical quark masses
GPD: Information about quark-gluon content of hadrons
Not calculable from first principles of QCD!

Extract GPDs from

- Experiments
 - technically very involved
 - measure GPDs only convoluted with hard scattering kernel
- Lattice
 - measures only moments of GPDs (also integrated)
 - not to speak about physical quark masses

and compare with model calculations
GPD: Information about quark-gluon content of hadrons
Not calculable from first principles of QCD!

Extract GPDs from
- Experiments
 - technically very involved
 - measure GPDs only convoluted with hard scattering kernel
- Lattice
 - measures only moments of GPDs (also integrated)
 - not to speak about physical quark masses

and compare with model calculations

Predictive power depends heavily on quality of Q^2-evolution!
Matrix elements of composite operators

- GPD: nondiagonal hadronic matrix element

\[\varphi(z_1, z_2) = \langle h(p')|O(z_1, z_2)|h(p)\rangle \]

of bilocal quark-gluon operator \(O(z_1, z_2) \).
Matrix elements of composite operators

GPD: nondiagonal hadronic matrix element

\[\varphi(z_1, z_2) = \langle h(p') | \mathcal{O}(z_1, z_2) | h(p) \rangle \]

of bilocal quark-gluon operator \(\mathcal{O}(z_1, z_2) \).

Fourier transformed to momentum space

\[\varphi_\xi(z_1, z_2) \sim e^{-i \xi (z_1 + z_2)} \int dx \ e^{ix(z_1 - z_2)} \varphi(x, \xi) \]
Matrix elements of composite operators

- **GPD:** nondiagonal hadronic matrix element

\[\varphi(z_1, z_2) = \langle h(p')|\mathcal{O}(z_1, z_2)|h(p)\rangle \]

of bilocal quark-gluon operator \(\mathcal{O}(z_1, z_2) \).

- Fourier transformed to **momentum space**

\[\varphi_\xi(z_1, z_2) \sim e^{-i\xi(z_1+z_2)} \int dx \ e^{ix(z_1-z_2)} \varphi(x, \xi) \]

- Renormalization prescription for composite operator

\[\rightarrow \text{Scale dependence of GPD (Evolution)} \]

\[\varphi_\xi(z_1, z_2) \equiv \varphi_\xi(z_1, z_2; \mu) \]
Scale dependence governed by evolution equation (here: in coordinate space)

\[\mu \frac{d}{d\mu} \varphi_\xi (z_1, z_2; \mu) = [\mathcal{H} \varphi_\xi] (z_1, z_2; \mu) \]

\(\mathcal{H} \) (Hamiltonian): Integral operator acting on \(z_1, z_2 \)
- contains counterterms to remove divergencies
- Here: 1-loop \(\rightarrow \) counterterms are tree level
- pQCD

Evolution equation and strategy for the solution

- Scale dependence governed by evolution equation (here: in coordinate space)

\[\mu \frac{d}{d\mu} \varphi_\xi(z_1, z_2; \mu) = [\mathcal{H} \varphi_\xi](z_1, z_2; \mu) \]

\(\mathcal{H} \) (Hamiltonian): Integral operator acting on \(z_1, z_2 \)
- contains counterterms to remove divergencies
- Here: 1-loop \(\rightarrow \) counterterms are tree level
- pQCD

- Solution of integro-differential equation:
 Expand \(\varphi_\xi(z_1, z_2) \) in eigenfunctions of \(\mathcal{H} \)
The evolution equation

\[\mu \frac{d}{d\mu} \varphi(z_1, z_2; \mu) = [\mathcal{H} \varphi](z_1, z_2; \mu) \]
The evolution equation

\[\mu \frac{d}{d\mu} \varphi(z_1, z_2; \mu) = [\mathcal{H} \varphi](z_1, z_2; \mu) \]

If \(\varphi(z_1, z_2) \) are eigenfunctions of \(\mathcal{H} \)
Evolution equation and strategy for the solution

- The evolution equation

\[\mu \frac{d}{d\mu} \varphi(z_1, z_2; \mu) = [\mathcal{H} \varphi](z_1, z_2; \mu) \]

- If \(\varphi(z_1, z_2) \) are eigenfunctions of \(\mathcal{H} \)

\[\mu \frac{d}{d\mu} \varphi(z_1, z_2; \mu) = \alpha_s(\mu) \gamma \varphi(z_1, z_2; \mu) \]

\(\gamma \) anomalous dimension
Evolution equation and strategy for the solution

- The evolution equation

\[\mu \frac{d}{d\mu} \varphi(z_1, z_2; \mu) = [\mathcal{H} \varphi](z_1, z_2; \mu) \]

- If \(\varphi(z_1, z_2) \) are eigenfunctions of \(\mathcal{H} \)

\[\mu \frac{d}{d\mu} \varphi(z_1, z_2; \mu) = \alpha_s(\mu) \gamma \varphi(z_1, z_2; \mu) \]

\(\gamma \) anomalous dimension

- Can be easily integrated

\[\varphi(z_1, z_2; \mu_2) = \left(\frac{\alpha_s(\mu_1)}{\alpha_s(\mu_2)} \right)^{-\gamma} \varphi(z_1, z_2; \mu_1) \]
Symmetry and traditional approaches

- Tool to find correct set of eigenfunctions: $SL(2, \mathbb{R})$ symmetry of \mathcal{H}
- Remnant of conformal symmetry of classical QCD survives in LO counterterms
Symmetry and traditional approaches

- Tool to find correct set of eigenfunctions: $SL(2, \mathbb{R})$ symmetry of H
- Remnant of conformal symmetry of classical QCD
 \[\rightarrow \text{survives in LO counterterms} \]

- Traditional approach: Use simple scale dependence of Gegenbauer moments of GPD
- But: properties of Gegenbauer polynomials \[\Rightarrow \text{reconstruction of GPDs from Gegenbauer moments nontrivial} \]
- Many procedures suggested

 [Belitsky, Müller '98; Shuvaev '99; Kivel, Mankiewicz '99;...]

 But have some problems
 - Treat one of the kinematical regions ($|x| < |\xi|$, $|x| > |\xi|$) with help of symmetry and the other by means of analytical continuation
 - numerically unstable or cumbersome
Start with GPD $\varphi_\xi(z_1, z_2)$ in coordinate space
Start with GPD $\varphi_\xi(z_1, z_2)$ in coordinate space

Exploit rigorously collinear conformal symmetry
- Find "suitable" representation of $SL(2, \mathbb{R})$ under which GPD transforms.
- Determine Casimir operator J^2.
- Find $[H, J^2] = 0$
Roadmap to solution of LO-evolution equation I

- Start with GPD $\varphi_\xi(z_1, z_2)$ in coordinate space

- Exploit **rigorously** collinear conformal symmetry
 - Find "suitable" representation of $SL(2, \mathbb{R})$ under which GPD transforms.
 - Determine Casimir operator J^2.
 - Find $[\mathcal{H}, J^2] = 0$

- Diagonalize J^2 Eigenvalue problem

\[J^2 \psi(z_1, z_2) = j(j - 1)\psi(z_1, z_2) \]

has solutions with **discrete** spectrum, $e^{-i\xi(z_1+z_2)}\psi_j(z_1 - z_2)$

and continuous, spectrum, $e^{-i\xi(z_1+z_2)}\psi_j^\pm(z_1 - z_2)$
\(\psi_j \) and \(\psi_j^{\pm} \) form basis in target space of \(\mathbf{J}^2 \)

- can expand any function from that space over this basis

\[
\varphi_\xi(z) \sim \sum_j a(j) \psi_j(z) + \int \, \text{d}j \, a^{\pm}(j) \psi_j^{\pm}(z)
\]
\(\psi_j\) and \(\psi_j^{\pm}\) form basis in target space of \(J^2\)

- can expand any function from that space over this basis

\[
\varphi_\xi(z) \sim \sum_j a(j) \psi_j(z) + \int dj \, a^{\pm}(j) \psi_j^{\pm}(z)
\]

- \(\psi_j\) eigenfunction of \(\mathcal{H}\) – BUT \(\psi_j^{\pm}\) NOT! (\(\mathcal{H}\) non-hermitean)
\(\psi_j \) and \(\psi_j^\pm \) form basis in target space of \(J^2 \)

can expand any function from that space over this basis

\[
\varphi_\xi(z) \sim \sum_j a(j) \psi_j(z) + \int \, dj \ a^\pm(j) \psi_j^\pm(z)
\]

\(\psi_j \) eigenfunction of \(\mathcal{H} \) – BUT \(\psi_j^\pm \) NOT! (\(\mathcal{H} \) non-hermitean)

We are lucky: Can rewrite expansion only in terms of \(\psi_j(z) \)

\[
\varphi_\xi(z) \sim \sum_j a(j) \psi_j(z) + \int \, dj \ a^\pm(j) \psi_j(z \pm i\epsilon)
\]
ψ_j and ψ_j± form basis in target space of J^2

- can expand any function from that space over this basis

\[\varphi_\xi(z) \sim \sum_j a(j)\psi_j(z) + \int dj a^\pm(j)\psi^\pm_j(z) \]

- ψ_j eigenfunction of \(\mathcal{H} \) – BUT \(ψ_j^\pm \) NOT! (\(\mathcal{H} \) non-hermitean)

- We are lucky: Can rewrite expansion only in terms of \(ψ_j(z) \)

\[\varphi_\xi(z) \sim \sum_j a(j)\psi_j(z) + \int dj a^\pm(j)\psi_j(z \pm i\epsilon) \]

- Insert expansion into evolution equation
ψj and ψj± form basis in target space of J^2

can expand any function from that space over this basis

\[\varphi_\xi(z) \sim \sum_j a(j) \psi_j(z) + \int dj \ a^{\pm}(j) \psi^{\pm}_j(z) \]

ψj eigenfunction of \(H \) – BUT ψj± NOT! (\(H \) non-hermitean)

We are lucky: Can rewrite evolution only in terms of \(\psi_j^{\mu_2}(z) \)

\[\varphi_\xi(z, \mu_2) \sim \sum_j a^{\mu_1}(j) L^{-\gamma} \psi_j(z) + \int dj \ a^{\pm}_{\mu_1}(j) L^{-\gamma} \psi_j(z \pm i\epsilon) \]

Insert expansion into evolution equation
ψ_± and ψ_± form basis in target space of J^2

- can expand any function from that space over this basis

\[\varphi_\xi(z) \sim \sum_j a(j) \psi_j(z) + \int dj \ a^\pm(j) \psi^\pm_j(z) \]

- ψ_j eigenfunction of \(\mathcal{H} \) – BUT ψ_± NOT! (\(\mathcal{H} \) non-hermitean)

We are lucky: Can rewrite evolution only in terms of \(\psi_\mu^\pm(z) \)

\[\varphi_\xi(z, \mu_2) \sim \sum_j a_{\mu_1}(j) L^{-\gamma} \psi_j(z) + \int dj \ a^\pm_{\mu_1}(j) L^{-\gamma} \psi_j(z \pm i\epsilon) \]

- Insert expansion into evolution equation
- Fourier transform to momentum space
Solution of the evolution equation

\[\varphi_{\xi}^{\mu}(x) = \sum_{j=2}^{\infty} c_{\xi}^{\mu}(j) L^{-\gamma(j)} p_j \left(\frac{x}{\xi} \right) \pm \int_{C} \frac{dj}{i\pi} c_{\xi}^{\mu,\pm}(j) L^{-\gamma(j)} q_j \left(\pm \frac{x}{\xi} \right) \]

Completely fixed by group (representation) theory!
Solution of the evolution equation

\[\varphi_{\xi}^{\mu_2}(x) = \sum_{j=2}^{\infty} c_{\xi}^{\mu_1}(j) L^{-\gamma(j)} p_j \left(\frac{x}{\xi} \right) \pm \int \frac{dj}{i\pi} c_{\xi}^{\mu_1,\pm}(j) L^{-\gamma(j)} q_j \left(\pm \frac{x}{\xi} \right) \]

Completely fixed by group (representation) theory!

- \(L = \alpha_s(\mu_1)/\alpha_s(\mu_2) \)
- \(\gamma(j) \) - anomalous dimension
- \(c(j) \) - Expansion coefficients (Input GPD)
- \(p_j(x), q_j(x) \) - in terms of Legendre functions
Solution of the evolution equation

\[\varphi_{\xi}^{\mu}(x) = \sum_{j=2}^{\infty} c_{\xi}^{\mu}(j)p_{j}\left(\frac{x}{\xi}\right) \pm \int_{\mathcal{C}} \frac{dj}{i\pi} c_{\xi}^{\mu,\pm}(j)q_{j}\left(\pm\frac{x}{\xi}\right) \]

Completely fixed by group (representation) theory!

- \(L = 1 \)
- \(\gamma(j) \) - anomalous dimension
- \(c(j) \) - Expansion coefficients (Input GPD)
- \(p_{j}(x), q_{j}(x) \) - in terms of Legendre functions
Solution of the evolution equation

\[\varphi^\mu_\xi(x) = \sum_{j=2}^{\infty} c^\mu_\xi(j) L^{-\gamma(j)} p_j \left(\frac{x}{\xi} \right) \pm \int_C \frac{dj}{i\pi} c^\mu_\xi(\pm j) L^{-\gamma(j)} q_j \left(\pm \frac{x}{\xi} \right) \]

Completely fixed by group (representation) theory!

- \(L > 1 \)
- \(\gamma(j) \) - anomalous dimension
- \(c(j) \) - Expansion coefficients (Input GPD)
- \(p_j(x), q_j(x) \) - in terms of Legendre functions
Properties of the solution

The solution can be used both for analytical and numerical studies of the evolution!
Properties of the solution

The solution can be used both for **analytical** and **numerical** studies of the evolution!

Solution has been presented for twist-2 non-singlet quark and singlet quark-gluon GPDs (including mixing).
Properties of the solution

The solution can be used both for **analytical** and **numerical** studies of the evolution!

Solution has been presented for twist-2 non-singlet quark and singlet quark- gluon GPDs (including mixing).

Different properties, limits/asymptotics can be studied.

- Behaviour at $x = \pm \xi$
- large L
- small ξ, x fixed \rightarrow standart DGLAP
- small ξ, x/ξ fixed \rightarrow double scaling
Properties of the solution II

Provides a **fast and stable** algorithm for numerical evolution!
Provides a **fast and stable** algorithm for numerical evolution!

![Graphs showing input at different values of L for ξ = 0.2 and ξ = 0.3](image-url)
Provides a **fast and stable** algorithm for numerical evolution!

- Algorithm tested on various examples. Shows expected features: Migration of partons, asymptotic behaviour...
- Works also good for small $x \sim 10^{-2} \ldots 10^{-5}$
A novel approach to the solution of the LO-evolution equation for twist-2 GPDs has been presented

- Explicit solutions given for non-singlet quark and singlet quark-gluon operators
- The form of the solution is completely determined by the collinear conformal symmetry
- Allows analytical and stable numerical studies
- Further: include polarized GPDs, higher twists, develop efficient code, etc.
A novel approach to the solution of the LO-evolution equation for twist-2 GPDs has been presented

Explicit solutions given for non-singlet quark and singlet quark-gluon operators

The form of the solution is completely determined by the collinear conformal symmetry

Allows analytical and stable numerical studies

Further: include polarized GPDs, higher twists, develop efficient code, etc.

THANK YOU FOR PAYING ATTENTION!