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introduction

The decay of the false vacuum

- various models in quantum field theory (e.g. GUTs) have local and global
minima, which represent “false” and “true” vacua

- in cosmology the universe may be trapped in a false vacuum and subse-
quently decay to the true vacuum, either thermally or by tunneling

- for infinite space these transitions are local, formation of bubbles of true
vacuum >> bubble nucleation, “bounces”, with gravity: Coleman-deLuccia
bounce

- for finite space extension, like a closed spherical universe, the transition may
also occur globally, e.g. Hawking-Moss instanton
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introduction

- purpose of our present research: to study such transitions, including the
fluctuations of the quantum fields living in these spaces

The most simple renormalizable toy “Higgs potential”

φ

U(φ)

true

false
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Tunnelling in quantum mechanics

- seems (but is not always) well understood

- is usually considered in the WKB approximation

- continuation to imaginary time

- prefactors “of order 1” computed in the eikonal expansion

- however: study of evolution of a wave packet in a real time formalism by F.
Cooper, S.-Y. Pi and P. N. Stancioff, Phys. Rev. D34, 3831 (1986), shows
that “false vacuum decay is not so simple”, computation of the “barrier
transition probability” is by far not sufficient or even irrelevant.

>>>>>



UNIVERSITÄT   DORTMUND

introduction

Tunneling in quantum field theory

- in addition to a “classical field” that describes the local or global tunneling
we have quantum fluctuations, their interactions and their back-reaction

- recent work done in Dortmund on such quantum corrections

* 4D case in the 1-loop approximation
J. Baacke and G. Lavrelashvili, Phys.Rev. D69:025009, 2004 [hep-th/0307202]

* 2D bounce treated in Hartree approximation

J. Baacke and N. K, Phys.Rev. D71:025008, 2005 [hep-th/0411162]

- most recently: quantum corrections to global tunneling in real time

∗ ∗ ∗ ∗ ∗
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Quantum field theory

on compact space (1+1 dimensions)



UNIVERSITÄT   DORTMUND

quantum field theory

1+1 dimensional QFTh on a compact space R× S1

x
t
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quantum field theory

Action:

S =

Z 2πa

0

dx

Z
dt
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quantum field theory

Expansion into normal modes

Φ(x, t) = ϕ0(t) +

∞X

n = −∞
n 6= 0

ϕn(t)eiknx

with kn = n/a.
The homogeneous part ϕ0(t) describes the tunneling, the ϕn are the quantum
fluctuations. The action

S = 2πa
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quantum field theory

Hamiltonian takes the form (interaction terms include the zero mode)

H =
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where
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n2
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Hartree-Fock

Time dependent Hartree-Fock

approximation
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Hartree-Fock

- Time dependent Hartree-Fock variational principle

δ

Z
dχ0

Y

n>0,j

dχnjΨ
†(χ0, χnj , t) (i∂t −H) Ψ(χ0, χnj , t) = 0

- variational Ansatz for the wave function: product

Ψ(χ0, χn, t) = ψ0(χ0, t)
Y

n>0

ψn(χnj , t)

- for the modes with n 6= 0 a Gaussian wave function
- but zero mode, ψ0 remains a general Schrödinger wave function, i.e. its
Schrödinger equation will be integrated exactly
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Hartree-Fock

- For the modes with n 6= 0 we find

i∂tψn(χn, t) =

»
−1

2

∂2

∂χ2
nj

+
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n +W (t))χ2
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- The Gaussian wave packet then takes the form

ψn(χn, t) = e−iαn(t)
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where fn(t) satisfy the equation
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n(t)fn(t) = 0

- The fluctuation sum becomes
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Hartree-Fock

- The system of equations we have presented here is consistent with an con-
served energy which serves as a numerical cross check

- The fluctuation sum describes the backreaction

- The regularization can be done using the Plana formula, which replaces the
sum by integrals, dimensional or PV regularization may be applied to the
resulting integrals over traces of Minkowski-space Green functions

- Renormalization for Hartree - 2PPI formalism of Verschelde

∗ ∗ ∗ ∗ ∗
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Numerical results
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Initial evolution of the wave function. m = η = λ = 1,a = 6

(solid line: t = 0; dashed line: t = 5; dash-dotted line: t = 6; dotted line: t = 7.)
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A typical wave function in the ordinary tunneling regime.

m = η = λ = 1, a = 0.5.
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Evolution of the potential with time for large a.
m = η = λ = 1; a = 6.

(dotted line: t = 0;dashed line: t = 6.9; dash-dotted line: 7.54.)
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Evolution of the wave function. m = η = λ = 1; a = 6.

(long-dashed line: t = 7; dash-dotted line: t = 7.4; short-dashed line: t = 7.8; dotted
line: t = 8.2; solid line: t = 8.6.)
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Evolution of the wave function. m = η = λ = 1; a = 20.

(solid line: t = 0; dotted line: t = 12.6; short-dashed line: t = 13.2; dash-dotted line:
t = 13.6; long-dashed line: t = 14.)
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Evolution of the mean value of the zero mode. m = η = λ = 1.

(straigth line: a = 0.3; dashed line: a = 1; dash-double-dotted line: a = 1.5; dash-doted
line: a = 6; horizontal line: minimum of the tree level potential U(φ0).)
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Evolution of the mean value of the zero mode. m = 1, η = 3, λ = 6.

(straigth line: a = 1; dashed line: a = 10; dash-double-dotted line: a = 18; dash-dotted
line: a = 19; dotted line: a = 20; horizontal line: minimum of the potential U(φ0).)
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conclusions

Tunneling occurs in two different regimes:

at small values of a

- normal tunneling and suppression, as for the quantum mechanical case;

- the wave function gradually spreads into the region of the barrier and then
into the deeper well.

at large values of a

- the initial Gaussian wave function becomes skew;

- the shift of < χ0 > changes the fluctuations and the backreaction of the
quantum fluctuations tilts the potential in such a way that the barrier
disappears;

- an essential Gaussian wave packet ”surfs” on the changed potential;

- the transition becomes a ”sliding” transition.
∗ ∗ ∗ ∗ ∗
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conclusions

- we have applied a new (not standard) approach to our simple model;

- we have found a new regime of tunneling.

- issues to be explored:

* mechanism and reason of growth of fluctuations;

* the same processes in 3D and with gravity.
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