Outline	Motivation	The E ₆ model	Breaking of B-L	Lepton asymmetry	Sphalerons	Majoron	Summary	Future goals
		0000	00	00	000	00		

Leptogenesis in superstring inspired E_6 theory

Ph.D student A Kartavtsev Supervisor E Paschos

Dortmund, October 11, 2005

Ph.D student A Kartavtsev Supervisor E Paschos

Leptogenesis in superstring inspired *E*₆ theory

Image: A match the second s

< E

Outline	Motivation	The E ₆ model	Breaking of B-L	Lepton asymmetry	Sphalerons	Majoron	Summary	Future goals
		0000	00	00	000	00		

- **2** The E_6 model
- Breaking of B-L
- 4 Lepton asymmetry
- 5 Sphalerons

6 Majoron

(4) 臣

 \diamond Baryon asymmetry of the Universe $Y_B = (0.6 - 1) \cdot 10^{-10}$

Sakharov conditions

- Baryon (lepton) number non-conservation
- C and CP violation
- Deviation from thermal equilibrium

The condition is fulfilled in ...

- the standard model at quantum level (sphalerons)
- extensions of the SM with Majorana neutrinos

・ロト ・回ト ・ヨト ・ヨト

 \diamond Baryon asymmetry of the Universe $Y_B = (0.6-1) \cdot 10^{-10}$

The condition is fulfilled in ...

- the standard model at quantum level (sphalerons)
- extensions of the SM with Majorana neutrinos

 \diamond Baryon asymmetry of the Universe $Y_B = (0.6-1) \cdot 10^{-10}$

Sakharov conditions

- Baryon (lepton) number non-conservation
- C and CP violation

Deviation from thermal equilibrium

The condition is fulfilled in ...

- the standard model (the CP violation is insufficient)
- extensions of the standard model

・ロト ・回ト ・ヨト ・ヨト

Motivation

 \diamond Baryon asymmetry of the Universe $Y_B = (0.6-1) \cdot 10^{-10}$

Sakharov conditions

- Baryon (lepton) number non-conservation
- C and CP violation
- Oeviation from thermal equilibrium

The condition is fulfilled in ...

- the standard model (the phase transition is too weak)
- extensions of the standard model

 Outline
 Motivation
 The E₆ model
 Breaking of B-L
 Lepton asymmetry
 Sphalerons
 Majorn
 Summary
 Future goals

Features of the model

 \diamond The E_6 model is a prominent candidate for a unified theory

Characteristic features				
	Naturally follows from breaking of superstring $E_8^{'} igodot E_8$			
	Contains other GUT candidates as subgroups.			
	Allows chiral representations			
	Gauge anomalies are automatically canceled.			

Further details ...

- chiral fields are in $N_f \mathbf{27} + \delta(\mathbf{27} + \overline{\mathbf{27}})$ representation
- gauge fields are in 78 representation

Features of the model

 \diamond The \textit{E}_{6} model is a prominent candidate for a unified theory

Further details ...

- chiral fields are in $N_f 27 + \delta(27 + \overline{27})$ representation
- gauge fields are in 78 representation

Features of the model

 \diamond The E_6 model is a prominent candidate for a unified theory

Characteristic features Naturally follows from breaking of superstring *E*[']₈ ⊗ *E*₈ Contains other GUT candidates as subgroups. Allows chiral representations

Further details ...

- SO(10) and SU(5) in one breaking chain
- and $SU_R(2)$ in another breaking chain

Features of the model

 \diamond The E_6 model is a prominent candidate for a unified theory

Characteristic features

- Naturally follows from breaking of superstring $E_8' \otimes E_8$
- Contains other GUT candidates as subgroups.
- Allows chiral representations
 - Gauge anomalies are automatically canceled.

Apart from the known fermions 27 of E_6 fits ...

- right-handed neutrino (ν^c)
- two Higgs doublets (H^u and H^d)

Features of the model

 \diamond The E_6 model is a prominent candidate for a unified theory

Characteristic features

- Naturally follows from breaking of superstring $E_8' \otimes E_8$
- Contains other GUT candidates as subgroups.
- Allows chiral representations
 - Gauge anomalies are automatically canceled.

Apart from the known fermions 27 of E_6 fits ...

- new heavy down quarks (D and D^c)
- the SM singlet (S)

Features of the model

 \diamond The E_6 model is a prominent candidate for a unified theory

Characteristic features

- Naturally follows from breaking of superstring $E'_8 \otimes E_8$
- Contains other GUT candidates as subgroups.
- Allows chiral representations
- Gauge anomalies are automatically canceled.

Further details ...

in the SM cancellation of gauge anomalies is 'accidental'

◊ Embedding of the chiral fields into subgroups of E₆ is not unique

$SU_C(3) \otimes SU_L(2) \otimes SU_R(2) \otimes U^2(1)$ intermediate symmetry

- $SU_L(2)$ doublets are Q, L, H^u and H^d
- SU_R(2) doublets are (u^c, d^c), (H^u, H^d) and (e^c, ν^c)

A (1) > (1) > (2) >

◊ Embedding of the chiral fields into subgroups of E₆ is not unique

$SU_C(3) \otimes SU_L(2) \otimes SU_R(2) \otimes U^2(1)$ intermediate symmetry

- $SU_L(2)$ doublets are Q, L, H^u and H^d
- SU_R(2) doublets are (u^c, d^c), (H^u, H^d) and (e^c, ν^c)

A (1) > (1)

 \diamond Embedding of the chiral fields into subgroups of E_6 is not unique

$SU_C(3) \otimes SU_L(2) \otimes SU_R(2) \otimes U^2(1)$ intermediate symmetry

- $SU_L(2)$ doublets are Q, L, H^u and H^d
- $SU_R(2)$ doublets are (d^c, D^c) , (H^d, L) and (ν^c, S)

A (1) > (1) > (2) >

◊ Embedding of the chiral fields into subgroups of E₆ is not unique

$SU_C(3) \otimes SU_L(2) \otimes SU_R(2) \otimes U^2(1)$ intermediate symmetry

- $SU_L(2)$ doublets are Q, L, H^u and H^d
- $SU_R(2)$ doublets are (d^c, D^c) , (H^d, L) and (ν^c, S)

A (1) > (1) > (2) >

 \diamond Embedding of the chiral fields into subgroups of E_6 is not unique

$SU_C(3) \otimes SU_L(2) \otimes SU_R(2) \otimes U^2(1)$ intermediate symmetry

- $SU_L(2)$ doublets are Q, L, H^u and H^d
- $SU_R(2)$ doublets are (D^c, u^c) , (L, H^u) and (S, e^c)

Superpotential of the model is given by

$$W = \lambda_1 u^c (QH^u) + \lambda_2 d^c (QH^d) + \lambda_3 e^c (LH^d) + \lambda_4 S(H^u H^d) + \lambda_5 SDD^c + [\lambda_6 e^c u^c D + \lambda_7 D^c (QL) + \lambda_8 d^c \nu^c D] + [\lambda_9 D(QQ) + \lambda_{10} D^c u^c d^c] + \lambda_{11} \nu^c (LH^u)$$

Responsible for ...

masses of the known fermions

Superpotential of the model is given by

$$W = \lambda_1 u^c (QH^u) + \lambda_2 d^c (QH^d) + \lambda_3 e^c (LH^d) + \lambda_4 S (H^u H^d) + \lambda_5 S D D^c + [\lambda_6 e^c u^c D + \lambda_7 D^c (QL) + \lambda_8 d^c \nu^c D] + [\lambda_9 D (QQ) + \lambda_{10} D^c u^c d^c] + \lambda_{11} \nu^c (LH^u)$$

Responsible for ...

masses of Higgs bosons

Ph.D student A Kartavtsev Supervisor E Paschos

Leptogenesis in superstring inspired *E*₆ theory

Superpotential of the model is given by

$$W = \lambda_1 u^c (QH^u) + \lambda_2 d^c (QH^d) + \lambda_3 e^c (LH^d) + \lambda_4 S(H^u H^d) + \lambda_5 SDD^c + [\lambda_6 e^c u^c D + \lambda_7 D^c (QL) + \lambda_8 d^c \nu^c D] + [\lambda_9 D(QQ) + \lambda_{10} D^c u^c d^c] + \lambda_{11} \nu^c (LH^u)$$

Responsible for ...

masses of new heavy quarks

Ph.D student A Kartavtsev Supervisor E Paschos

Leptogenesis in superstring inspired E₆ theory

Superpotential of the model is given by

$$W = \lambda_1 u^c (QH^u) + \lambda_2 d^c (QH^d) + \lambda_3 e^c (LH^d) + \lambda_4 S (H^u H^d) + \lambda_5 S D D^c + [\lambda_6 e^c u^c D + \lambda_7 D^c (QL) + \lambda_8 d^c \nu^c D] + [\lambda_9 D (QQ) + \lambda_{10} D^c u^c d^c] + \lambda_{11} \nu^c (LH^u)$$

Responsible for ...

rapid proton decay mediated by new heavy down-type quark

Superpotential of the model is given by

$$W = \lambda_1 u^c (QH^u) + \lambda_2 d^c (QH^d) + \lambda_3 e^c (LH^d) + \lambda_4 S(H^u H^d) + \lambda_5 SDD^c + [\lambda_6 e^c u^c D + \lambda_7 D^c (QL) + \lambda_8 d^c \nu^c D] + [\lambda_9 D(QQ) + \lambda_{10} D^c u^c d^c] + \lambda_{11} \nu^c (LH^u)$$

Responsible for ...

the neutrino mass and is required for leptogenesis

Superpotential of the model is given by

$$W = \lambda_1 u^c (QH^u) + \lambda_2 d^c (QH^d) + \lambda_3 e^c (LH^d) + \lambda_4 S (H^u H^d) + \lambda_5 S D D^c + [\lambda_6 e^c u^c D + \lambda_7 D^c (QL) + \lambda_8 d^c \nu^c D] + [\lambda_9 D (QQ) + \lambda_{10} D^c u^c d^c] + \lambda_{11} \nu^c (LH^u)$$

Note that ...

the same embedding into subgroups of E_6 is to be used for all generations to assure charge conservation in each vertex

Superpotential of the model is given by

$$W = \lambda_1 u^c (QH^u) + \lambda_2 d^c (QH^d) + \lambda_3 e^c (LH^d) + \lambda_4 S (H^u H^d) + \lambda_5 S D D^c + [\lambda_6 e^c u^c D + \lambda_7 D^c (QL) + \lambda_8 d^c \nu^c D] + [\lambda_9 D (QQ) + \lambda_{10} D^c u^c d^c] + \lambda_{11} \nu^c (LH^u)$$

Note that ...

the same embedding into subgroups of E_6 is to be used for all generations to assure charge conservation in each vertex

Superpotential of the model is given by

$$W = \lambda_{1}u^{c}(QH^{u}) + \lambda_{2}d^{c}(QH^{d}) + \lambda_{3}e^{c}(LH^{d}) + \lambda_{4}S(H^{u}H^{d}) + \lambda_{5}SDD^{c} + [\lambda_{6}e^{c}u^{c}D + \lambda_{7}D^{c}(QL) + \lambda_{8}d^{c}\nu^{c}D] + [\lambda_{9}D(QQ) + \lambda_{10}D^{c}u^{c}d^{c}] + \lambda_{11}\nu^{c}(LH^{u}) \Rightarrow S(LH^{u})$$

Note that ...

the same embedding into subgroups of E_6 is to be used for all generations to assure charge conservation in each vertex

Superpotential of the model is given by

$$W = \lambda_{1}u^{c}(QH^{u}) + \lambda_{2}d^{c}(QH^{d}) + \lambda_{3}e^{c}(LH^{d}) + \lambda_{4}S(H^{u}H^{d}) + \lambda_{5}SDD^{c} + [\lambda_{6}e^{c}u^{c}D + \lambda_{7}D^{c}(QL) + \lambda_{8}d^{c}\nu^{c}D] + [\lambda_{9}D(QQ) + \lambda_{10}D^{c}u^{c}d^{c}] + \lambda_{11}\nu^{c}(LH^{u}) \Rightarrow S(LH^{u})$$

Note that ...

the same embedding into subgroups of E_6 is to be used for all generations to assure charge conservation in each vertex

Superpotential of the model is given by

$$W = \lambda_1 u^c (QH^u) + \lambda_2 d^c (QH^d) + \lambda_3 e^c (LH^d)$$

+ $\lambda_4 S(H^u H^d) + \lambda_5 SDD^c$
+ $[\lambda_6 e^c u^c D + \lambda_7 D^c (QL) + \lambda_8 d^c \nu^c D]$
+ $[\lambda_9 D(QQ) + \lambda_{10} D^c u^c d^c]$
+ $\lambda_{11} \nu^c (LH^u) \Rightarrow e^c (LH^u)$

Note that ...

the same embedding into subgroups of E_6 is to be used for all generations to assure charge conservation in each vertex

Gauge fields which mediate proton decay

B-L	Y	<i>I</i> 3	Q _{em}	Ρ	
-2/3	1/3	1/2	2/3	Иg	\Leftarrow
-2/3	1/3	-1/2	-1/3	d_g	
2/3	5/3	1/2	4/3	Ň	
2/3	5/3	-1/2	1/3	Y	

 new bosons which lead to rapid proton decay
 X and Y bosons

・ロン ・回 と ・ 回 と

Masses of the gauge fields

 u_g and d_g masses \propto to vev of the right-handed sneutrino

Therefore these fields .

have to become massive at the first stage of symmetry breaking

Gauge fields which mediate proton decay

B-L	Y	<i>I</i> 3	Q _{em}	Ρ	
-2/3	1/3	1/2	2/3	и _g	4
-2/3	1/3	-1/2	-1/3	d_g	
2/3	5/3	1/2	4/3	Ň	¢
2/3	5/3	-1/2	1/3	Y	

 new bosons which lead to rapid proton decay

Masses of the gauge fields

Y boson mass is of order of EW symmetry breaking scale

Therefore these fields ..

have to become massive at the first stage of symmetry breaking

・ロン ・回 と ・ ヨン ・ ヨン

Gauge fields which mediate proton decay

B-L	Y	<i>I</i> 3	Q _{em}	Ρ	
-2/3	1/3	1/2	2/3	и _g	4
-2/3	1/3	-1/2	-1/3	d_g	
2/3	5/3	1/2	4/3	Ň	¢
2/3	5/3	-1/2	1/3	Y	

 new bosons which lead to rapid proton decay

Masses of the gauge fields

X boson is massless even if all neutral fields develop vev

Therefore these fields ..

have to become massive at the first stage of symmetry breaking

・ロン ・回 と ・ ヨン ・ ヨン

Gauge fields which mediate proton decay

B-L	Y	<i>I</i> 3	Q _{em}	Ρ	
-2/3	1/3	1/2	2/3	и _g	4
-2/3	1/3	-1/2	-1/3	d_g	
2/3	5/3	1/2	4/3	Ň	\$
2/3	5/3	-1/2	1/3	Y	

 new bosons which lead to rapid proton decay

Masses of the gauge fields

X boson is massless even if all neutral fields develop vev

Therefore these fields ...

have to become massive at the first stage of symmetry breaking

Symmetry breaking

◊ The first stage of symmetry breaking is at 10¹⁸ GeV

Further details ...

- two neutral singlets ω^0 and ϕ^0
- Y_{SM} is a linear combination of Y_V , Y_Z and $Y_{Z'}$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Symmetry breaking

 \diamond The first stage of symmetry breaking is at 10¹⁸ GeV

Further details ...

- two neutral singlets ω^0 and ϕ^0
- Y_{SM} is a linear combination of Y_V , Y_Z and $Y_{Z'}$

・ロン ・回 と ・ ヨン ・ ヨン

Symmetry breaking

 \diamond The first stage of symmetry breaking is at $10^{18}~GeV$

Intermediate symmetry group

- $I SU_C(3) \otimes SU_L(2) \otimes U_V(1) \otimes U_Z(1) \otimes U_{Z'}(1)$

Further details ...

- one $SU_R(2)$ singlet ω^0 and one $SU_R(2)$ triplet $(\phi^c, \phi^0, \bar{\phi}^c)$
- Y_{SM} is a linear combination of Y_L , Y_R and I_{3R}

◊ The second stage of symmetry breaking is at 10¹⁴ GeV

* J. Phys. G: Nucl. Part. Phys. 31 (2005) 1191-1206.

・ロン ・回 と ・ ヨン ・ ヨン

 \diamond The second stage of symmetry breaking is at 10^{14} GeV

Further details ...

- symmetry is broken by $\langle \chi_{\nu^c} \rangle$ and $\langle \overline{\chi}_{\nu^c} \rangle$
- $\bullet\,$ mass of the associated gauge field is $\sim 10^{14}~GeV$
- $\bullet\,$ mass of the right–handed neutrino is $\sim 10^{11}~GeV$

* J. Phys. G: Nucl. Part. Phys. 31 (2005) 1191-1206.

◊ The second stage of symmetry breaking is at 10¹⁴ GeV

Intermediate symmetry group

- $I SU_C(3) \otimes SU_L(2) \otimes U^2(1)$

Further details ...

- symmetry is broken by $\langle \chi_{
 u^c} \rangle$ and $\langle \overline{\chi}_{
 u^c} \rangle$
- $\bullet\,$ mass of the associated gauge field is $\sim 10^{14}~GeV$
- $\bullet\,$ mass of the right–handed neutrino is $\sim 10^{11}~GeV$

* J. Phys. G: Nucl. Part. Phys. 31 (2005) 1191-1206.

Cancellation of large corrections

 \diamond Large scale of B - L breaking may bring unwanted effects

large Dirac mass of the conventional neutrino

Iarge corrections to masses of Higgs scalars

Further details ...

• due to $\nu^{c}(LH^{u})$ term of the superpotential

It is essential that ...

there is a symmetry acting on right-handed neutrinos

• χ_{ν^c} , $\overline{\chi}_{\nu^c}$ and ν^c have different transformation properties

Cancellation of large corrections

 \diamond Large scale of B - L breaking may bring unwanted effects

Effects associated with the scale of B - L breaking

Iarge Dirac mass of the conventional neutrino

large corrections to masses of Higgs scalars

Further details ...

• due to $\nu^{c}(LH^{u})$ term of the superpotential

It is essential that ...

there is a symmetry acting on right-handed neutrinos

• χ_{ν^c} , $\overline{\chi}_{\nu^c}$ and ν^c have different transformation properties

Cancellation of large corrections

 \diamond Large scale of B - L breaking may bring unwanted effects

Effects associated with the scale of B - L breaking

Iarge Dirac mass of the conventional neutrino

large corrections to masses of Higgs scalars

Further details ...

• due to $\nu^{c}(LH^{u})$ term of the superpotential

The symmetry ensures that ...

- B L is broken at a sufficiently high scale
- χ_{ν^c} and $\overline{\chi}_{\nu^c}$ are decoupled from conventional fermions

Cancellation of large corrections

 \diamond Large scale of B - L breaking may bring unwanted effects

Effects associated with the scale of B - L breaking

- Iarge Dirac mass of the conventional neutrino
- Iarge corrections to masses of Higgs scalars

It is essential that ...

loop corrections cancel out due to supersymmetry

Decay of heavy Majorana neutrino

◇ Tree–level and one–loop diagrams

CP asymmetry is given by ...

$$\varepsilon_{s} = -\frac{C_{s}}{16\pi} \sum_{l,m,n} \frac{\sum_{a,b;j,k} C_{a,b} \Im \left[\lambda_{a}^{*\,ijk} \lambda_{b}^{*\,ijm} \lambda_{b}^{lm} \lambda_{a}^{ljk} \right]}{\sum_{a;j,k} C_{a} |\lambda_{a}^{ijk}|} \times \frac{\sqrt{x_{l}}}{x_{l} - 1}$$

Ph.D student A Kartavtsev Supervisor E Paschos Leptogenesis

Leptogenesis in superstring inspired E₆ theory

・ロン ・回 と ・ ヨン・

Decay of heavy Majorana neutrino

◇ Tree–level and one–loop diagrams

CP asymmetry is given by ...

$$arepsilon_{V} = -rac{1}{8\pi} \sum_{l,m,n} rac{\sum_{a;j,k} C_{a}\Im\left[\lambda_{a}^{*\,ijk}\lambda_{a}^{*\,imn}\lambda_{a}^{lmk}\lambda_{a}^{ljn}
ight]}{\sum_{a;j,k} C_{a}|\lambda_{a}^{ijk}|} imes \sqrt{x_{l}} \ln(1+1/x_{l})$$

・ロン ・回 と ・ ヨン・

Ph.D student A Kartavtsev Supervisor E Paschos Leptogenesis in superstring inspired *E*₆ theory

Decay of heavy Majorana neutrino

◊ Tree–level and one–loop diagrams

Structure of the flavor indices is not the same ...

$$\varepsilon_{S} \propto \Im \left[\lambda_{a}^{*\,ijk} \lambda_{b}^{*\,imn} \lambda_{b}^{lmn} \lambda_{a}^{ljk} \right]$$
 while $\varepsilon_{V} \propto \Im \left[\lambda_{a}^{*\,ijk} \lambda_{a}^{*\,imn} \lambda_{a}^{lmk} \lambda_{a}^{ljn} \right]$

・ロン ・回 と ・ 回 と ・ 回 と

Ph.D student A Kartavtsev Supervisor E Paschos Leptogenesis in superstring inspired E₆ theory

Two–body scattering

◇ Tree–level and one–loop diagrams

Further details ...

- if right-handed neutrino is on-shell then $\varepsilon_{ss} = 2\varepsilon_s$
- in thermal equilibrium generated asymmetry ε_{ss} is zero

In thermal equilibrium ...

$$\varepsilon_{ss} + \varepsilon_{sv} + \varepsilon_{us} + \varepsilon_{uv} = 0$$

OutlineMotivationThe E6 model
0000Breaking of B-L
00Lepton asymmetry
0Sphalerons
000Majoron
00Summary
Future goals
000

Two–body scattering

Tree-level and one-loop diagrams

Further details ...

• if right-handed neutrino is on-shell then $\varepsilon_{sv} = 2\varepsilon_v$

In thermal equilibrium ...

$$\varepsilon_{ss} + \varepsilon_{sv} + \varepsilon_{us} + \varepsilon_{uv} = 0$$

・ロト ・回 ト ・ヨト ・ヨト

Ph.D student A Kartavtsev Supervisor E Paschos Leptogenesis in superstring inspired E₆ theory

Two–body scattering

◊ Tree–level and one–loop diagrams

$$\begin{array}{c|c} \tilde{H}_m^u, \tilde{d}_m^c & & \\ \tilde{H}_m^u, \tilde{d}_m^c & & \\ \nu_l^c & & \\ L_i, D_i & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{d}_m^c \\ \tilde{H}_{n,i}^u, \tilde{d}_{n-}^c \end{array}} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{d}_m^c \\ \tilde{H}_m^u, \tilde{d}_{n-}^c \end{array} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{d}_m^c \\ \tilde{H}_{n,i}^u, \tilde{d}_{n-}^c \end{array} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{d}_{n-}^c \end{array} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{d}_{n-}^c \\ \tilde{H}_m^u, \tilde{d}_{n-}^c \end{array} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{H}_m^u, \tilde{H}_m^u, \tilde{H}_m^u, \end{array} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{H}_m^u, \end{array} \end{array}} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{H}_m^u, \end{array} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{H}_m^u, \end{array} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{H}_m^u, \end{array} \end{array}} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{H}_m^u, \end{array} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{H}_m^u, \end{array} \end{array}} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{H}_m^u, \end{array} \end{array}} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{H}_m^u, \end{array} \end{array} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{H}_m^u, \end{array} \end{array}} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{H}_m^u, \end{array} \end{array}} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \end{array} \end{array}} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{H}_m^u, \end{array} \end{array}} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \end{array} \end{array}} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \end{array} \end{array}} \xrightarrow{ \begin{array}{c} \tilde{H}_m^u, \tilde{H}_m^u, \end{array} \end{array}} \xrightarrow{ \begin{array}{c} \tilde$$

Further details ...

• in thermal equilibrium generated asymmetry $\varepsilon_{us} = -\varepsilon_{sv}$

In thermal equilibrium ...

$$\varepsilon_{ss} + \varepsilon_{sv} + \varepsilon_{us} + \varepsilon_{uv} = 0$$

Ph.D student A Kartavtsev Supervisor E Paschos Leptogenesis in superstring inspired E₆ theory

Two–body scattering

◇ Tree–level and one–loop diagrams

$$\begin{array}{c|c} & & & & \\ \tilde{H}_m^u, \tilde{d}_m^c & & & \\ & & & \\ & & & \\ L_i, D_i & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Further details ...

• in thermal equilibrium generated asymmetry ε_{uv} is zero

In thermal equilibrium ...

$$\varepsilon_{ss} + \varepsilon_{sv} + \varepsilon_{us} + \varepsilon_{uv} = 0$$

Ph.D student A Kartavtsev Supervisor E Paschos L

Leptogenesis in superstring inspired *E*₆ theory

Sphalerons convert lepton asymmetry into baryon asymmetry

Further details ...

- B L is conserved while B + L is violated
- in thermal equilibrium $3N\mu_{uL} + 2N\mu_W + \mu = 0$

Leptogenesis in superstring inspired E₆ theory

・ロト ・回 ト ・ヨト ・ヨト

Sphalerons convert lepton asymmetry into baryon asymmetry

Further details ...

- B L is conserved while B + L is violated
 - in thermal equilibrium $3N\mu_{uL} + 2N\mu_W + \mu = 0$

Ph.D student A Kartavtsev Supervisor E Paschos Le

Leptogenesis in superstring inspired E₆ theory

・ロト ・回 ト ・ヨト ・ヨト

Sphalerons convert lepton asymmetry into baryon asymmetry

Further details ...

- *B L* is conserved while *B* + *L* is violated
- in thermal equilibrium $3N\mu_{uL} + 2N\mu_W + \mu = 0$

Majorana neutrino does not have a chemical potential

Lepton number is violated

in the helicity flipping processes mediated by neutral Higgs

in the scattering processes mediated by the neutrino

Rate of the processes ...

$$\gamma_s/sH \approx \gamma_t/sH \sim 10^{-13} \ (m_W/T)$$

* in preparation ...

•//

Majorana neutrino does not have a chemical potential

Lepton number is violated

in the helicity flipping processes mediated by neutral Higgs

in the scattering processes mediated by the neutrino

Rate of the processes ...

$$\gamma_s/sH pprox \gamma_t/sH \sim 10^{-13} \; (m_W/T)$$

* in preparation ...

Majorana neutrino does not have a chemical potential

Lepton number is violated

in the helicity flipping processes mediated by neutral Higgs

in the scattering processes mediated by the neutrino

Rate of the processes ...

$$\gamma_{s}/sH \sim 10^{-15} \left(T/m_{W}
ight), \quad \gamma_{t+u}/sH \sim 10^{-12} \left(T/m_{W}
ight)^{5}$$

* in preparation ...

Majorana neutrino does not have a chemical potential

Lepton number violation

is very small below the phase transition

Therefore ... neutrino can be assigned an effective chemical potential

۳

* in preparation ...

< 🗇 🕨

Baryon and lepton numbers

Analysis of chemical potentials yields

Electric charges ...

• $Q_u = \frac{4\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.07 (B-L)$ • $Q_d = -\frac{8N+2\bar{m}}{24N+13\bar{m}}(B-L) \approx -0.28 (B-L)$ • $Q_l = \frac{8N+6\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.36 (B-L)$

3

Ph.D student A Kartavtsev Supervisor E Paschos

Leptogenesis in superstring inspired *E*₆ theory

・ロン ・回 と ・ ヨン・

Baryon and lepton numbers

Analysis of chemical potentials yields

Baryon and lepton numbers • $B = \frac{8N+4\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.32(B-L)$ • $L = -\frac{16N+9\bar{m}}{24N+13\bar{m}}(B-L) \approx -0.68(B-L)$

Electric charges ...

• $Q_u = \frac{4\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.07 (B-L)$ • $Q_d = -\frac{8N+2\bar{m}}{24N+13\bar{m}}(B-L) \approx -0.28 (B-L)$ • $Q_l = \frac{8N+6\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.36 (B-L)$

Ph.D student A Kartavtsev Supervisor E Paschos

Leptogenesis in superstring inspired *E*₆ theory

Baryon and lepton numbers

Analysis of chemical potentials yields

Baryon and lepton numbers

•
$$B = \frac{8N+4\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.32(B-L)$$

•
$$L = -\frac{16N + 9\bar{m}}{24N + 13\bar{m}}(B - L) \approx -0.68(B - L)$$

Electric charges ...

•
$$Q_u = \frac{4\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.07 (B-L)$$

• $Q_d = -\frac{8N+2\bar{m}}{24N+13\bar{m}}(B-L) \approx -0.28 (B-L)$
• $Q_l = \frac{8N+6\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.36 (B-L)$

Ph.D student A Kartavtsev Supervisor E Paschos

Leptogenesis in superstring inspired *E*₆ theory

Baryon and lepton numbers

Analysis of chemical potentials yields

Baryon and lepton numbers

•
$$B = \frac{8N+4\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.32(B-L)$$

•
$$L = -\frac{16N+9\bar{m}}{24N+13\bar{m}}(B-L) \approx -0.68(B-L)$$

Electric charges ...

•
$$Q_u = \frac{4\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.07 (B-L)$$

• $Q_d = -\frac{8N+2\bar{m}}{24N+13\bar{m}}(B-L) \approx -0.28 (B-L)$
• $Q_l = -\frac{8N+6\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.36 (B-L)$

Ph.D student A Kartavtsev Supervisor E Paschos

Leptogenesis in superstring inspired *E*₆ theory

Baryon and lepton numbers

Analysis of chemical potentials yields

Baryon and lepton numbers

•
$$B = \frac{8N+4\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.32(B-L)$$

•
$$L = -\frac{16N+9\bar{m}}{24N+13\bar{m}}(B-L) \approx -0.68(B-L)$$

Electric charges ...

•
$$Q_u = \frac{4\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.07(B-L)$$

•
$$Q_d = -\frac{8N+2\bar{m}}{24N+13\bar{m}}(B-L) \approx -0.28(B-L)$$

•
$$Q_l = \frac{8N+6\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.36(B-L)$$

Baryon and lepton numbers

Analysis of chemical potentials yields

Baryon and lepton numbers

•
$$B = \frac{8N+4\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.32(B-L)$$

•
$$L = -\frac{16N+9\bar{m}}{24N+13\bar{m}}(B-L) \approx -0.68(B-L)$$

Electric charges ...

•
$$Q_u = \frac{4\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.07(B-L)$$

•
$$Q_d = -\frac{8N+2\bar{m}}{24N+13\bar{m}}(B-L) \approx -0.28(B-L)$$

•
$$Q_l = \frac{8N+6\bar{m}}{24N+13\bar{m}}(B-L) \approx 0.36(B-L)$$

The model introduces new scalars

$$\mathcal{L} = \frac{1}{2}M_1\bar{N}_1N_1^c e^{2i\frac{\phi_1}{f_1}} + \frac{1}{2}M_2\bar{N}_2N_2^c e^{2i\frac{\phi_2}{f_2}} + \frac{1}{2}M_3\bar{N}_3N_3^c e^{2i\frac{\phi_3}{f_3}}$$

* in preparation ...

Ph.D student A Kartavtsev Supervisor E Paschos Leptogenesis in superstring inspired E₆ theory

The model introduces new scalars

$$\mathcal{L} = \frac{1}{2}M_1\bar{N}_1N_1^c e^{2i\frac{\phi_1}{f_1}} + \frac{1}{2}M_2\bar{N}_2N_2^c e^{2i\frac{\phi_2}{f_2}} + \frac{1}{2}M_3\bar{N}_3N_3^c e^{2i\frac{\phi_3}{f_3}}$$

* in preparation ...

The model introduces new scalars

$$\mathcal{L} = \frac{1}{2}M_1\bar{N}_1N_1^c e^{2i\frac{\phi_1}{f_1}} + \frac{1}{2}M_2\bar{N}_2N_2^c e^{2i\frac{\phi_2}{f_2}} + \frac{1}{2}M_3\bar{N}_3N_3^c e^{2i\frac{\phi_3}{f_3}}$$

Properties

- new scalars are massless at tree-level
- there is a new force due to scalar exchange

scalar masses are functions of the neutrino mass matrix

Further details ...

• the force is comparable to gravity at Kpc distances

* in preparation ...

The model introduces new scalars

$$\mathcal{L} = \frac{1}{2}M_1\bar{N}_1N_1^c e^{2i\frac{\phi_1}{f_1}} + \frac{1}{2}M_2\bar{N}_2N_2^c e^{2i\frac{\phi_2}{f_2}} + \frac{1}{2}M_3\bar{N}_3N_3^c e^{2i\frac{\phi_3}{f_3}}$$

Properties

- new scalars are massless at tree–level
- there is a new force due to scalar exchange
- scalar masses are functions of the neutrino mass matrix

Further details ...

properties of the neutrino and the scalars are related

* in preparation ...

We require that one of the scalars is much lighter than the others

Assumptions and predictions						
3	neutrino mixing matrix is predicted					

Further details ...

• the symmetry relates entries of the neutrino mass matrix

We require that one of the scalars is much lighter than the others

Assumptions and predictions				
O p	ermutation symmetry in the generation space			
	eutrino mixing matrix is predicted			

Further details ...

the symmetry relates entries of the neutrino mass matrix

We require that one of the scalars is much lighter than the others

Assumptions and predictions permutation symmetry in the generation space normal neutrino mass hierarchy is predicted neutrino mixing matrix is predicted

Further details ...

•
$$m_{
u_{1,2}} \propto \lambda^2 + \epsilon^2$$
, $m_{
u_3} \propto \lambda^2 + 4\epsilon^2$ if symmetry is unbroken

We require that one of the scalars is much lighter than the others

Assumptions and predictions

- permutation symmetry in the generation space
- normal neutrino mass hierarchy is predicted
- neutrino mixing matrix is predicted

Further details ...

1	0.7	0.7	0 \	
	0.4	0.4	0.8	- close to the experimental matrix
1	0.57	0.57	0.57 /	

Summary

- The E₆ model
 - particle content of 27 and 78 of E₆
 - charge assignments
 - breaking of B L symmetry
- 2 Lepton asymmetry
 - decay of heavy Majorana neutrino
 - two-body scattering processes
- Lepton-to-baryon number conversion
 - lepton number violation below the phase transition
 - relation among lepton and baryon numbers
- Majoron model
 - properties of the new scalars
 - neutrino phenomenology

solve the Boltzmann equations

- reaction densities of the relevant processes
- numerically solve the resulting set of equations
- 2 investigate cosmological implications of the Majoron model
 - coupling of the scalars to light and heavy neutrino
 - effects of the long-range force

Outline	Motivation	The E ₆ model	Breaking of B-L	Lepton asymmetry	Sphalerons	Majoron	Summary	Future goals
		0000	00	00	000	00		

Thank you for your attention

Ph.D student A Kartavtsev Supervisor E Paschos

Leptogenesis in superstring inspired *E*₆ theory

< 🗇 🕨