Search for High Energy Neutrinos from Generic AGN classes

. DE MYOND

Andreas Groß (Universität Dortmund)

http://amanda.uci.edu

Cosmic Accelerators

How is it possible to accelerate particles to TeV-EeV? Where is it possible? Do we get v?

- Fermi-acceleration at shock waves
- Pion-production by pγ (or pp) reactions
- High energy needed
 Grav. potential of black holes

Or top-down scenario: decay of new heavy particles

The AMANDA II ν -telescope

- Geographic South Pole (Amundsen Scott Station)
- 677 PMT on 19 strings
- Detection of Čerenkov light (muon tracks + cascades) in ice

Upgoing events: Earth shields all particles except v

Point Source Analysis: No evidence for point sources

- All (northern) sky search for clustering (3329 vents)
- Highest significance: 3.35 σ before correction for trial factor
- Random skymaps show: Chance probability 92 % -

22h

24h

20h

18h

16h

14h

No evidence for a point source 3 0

12h

10h

8h

6h

2h

0h

-1

-2

-3

How to increase sensitivity?

- Increase observation time?
 - 4 years of data already included, so double sensitivity requires 16 years of data (too long for PhD thesis)
- Build larger telescope?
 - Will be done, but also takes a lot of time
- Add signal from several sources of the same type?
 - Requires definition of generic source classes:
 Presented here

Source stacking

- Standard method in optical astronomy and in Gamma astronomy
- Add signal and background for various sources of the same type
- Aim: Detection of generic sources, if individual sources slightly below sensitivity
- Systematic source selection required

AGN basics

- Center: super-massive black hole
- High accretion rate: 0.1-100 solar masses/year
- Candidate sources for UHE cosmic rays
- Photon spectra cover 20 orders of magnitude in energy
- Axisymmetric sources: different appearance as a function of inclination angle (+ intrinsic differences)

Selection of sources Ordering principle

- Energy of photons may be redistributed in synchrotron-pair cascades to low energy photons
- Optical depth for γ unknown, for v negligible
- Thus: correlate γ flux to ν flux, but vary the photon energy (also lower than AMANDA threshold for ν)
- Sort sources according to γ flux in various samples, each with a certain selection energy

The final samples

- Optimize number of sources to be stacked by the assumption of linear correlation between γ and ν
- Signal normalization: Consider only values, for which the strongest source alone is no significant point source
- Result: Optimum source number ~10 for most samples, optimum search bin size ~2.5° (56% signal efficiency)

Exceptions: FR-I and FR-II radio galaxies

- FR-I/-II radio galaxies: No optimum stacking sample found:
 - FR-I: dominated by local source M87
 - FR-II: There are many sources with similar fluxes, optimization: include all!

Strategy: analyze best possible stacking samples additionally:

- FR-I galaxies with M87 excluded
- FR-II galaxies with a cut-off at 17 sources (saddle point)

Results from source stacking

Sensitivities are given for the integral flux above 10 GeV in units of 10⁻⁸ cm⁻² s⁻¹

AGN category	N_{src}	N_{ν}^{obs}	$N_{ u}^{bg}$	f_{sens}	f_{sens}/N_{src}
GeV blazars	8	12	20.5	1.5	0.19
unid. GeV sources	22	62	60.1	2.6	0.12
IR blazars	11	30	34.1	2.0	0.18
keV blazars (HEAO-A)	3	7	11.0	1.4	0.47
keV blazars (ROSAT)	8	19	25.8	1.8	0.23
TeV blazars	5	14	18.3	1.5	0.3
GPS and CSS	8	16	22.7	1.7	0.21
FR-I galaxies	1	2	2.5	0.7	0.7
FR-I without M87	17	28	45.0	2.4	0.14
FR-II galaxies	17	58	53.8	2.6	0.15
radio-weak quasars	11	29	32.5	2.1	0.19

Compare: Sensitivity of standard point source analysis: 0.6 in that units

Limits will be set when investigations of systematics are finished

Signal/background for the samples

Summary

- Sensitivity to generic point sources was improved by stacking
- No significant excess has been found for any source class
- Limits on the cumulative flux will be set when systematic investigations finished
- No detection of a v Point Source with AMANDA yet, sensitivity improvement by longer on-time limited, but ...

The (near) future: IceCube

- 2-3 orders of magnitude improvement in sensitivity
- 80 strings, 4800 optical modules (OMs)
- Surface array IceTop for Air Showers

First string deployed, all modules work, first muons observed