Recent Developments in QCD I

Nigel Glover

IPPP, University of Durham

Workshop on Hard Processes, Dortmund, October 11-13, 2005

General aims of perturbative QCD

The running coupling in perturbative QCD

$$d\alpha_s/d\ln\mu^2 = -\beta_0 \alpha_s^2 - \beta_1 \alpha_s^3 - \beta_2 \alpha_s^4 - \beta_3 \alpha_s^5 - \dots$$

Four-loop coeff.:

Hard processes in perturbative QCD

Example: inclusive deep-inelastic scattering (DIS)

Kinematic variables $Q^2 = -q^2$ $x = Q^2/(2P \cdot q)$ Lowest order : $x = \xi$

Structure functions F_a [up to $\mathcal{O}(1/Q^2)$]

$$F_{a}^{p}(x,Q^{2}) = \sum_{i} \left[c_{a,i}(\alpha_{s}(\mu^{2}),\mu^{2}/Q^{2}) \otimes f_{i}^{p}(\mu^{2}) \right](x)$$

Coefficient functions $c_{a,i}$, renormalization/factorization scale μ

Hard processes in perturbative QCD

Parton distributions f_i : evolution equations

$$\frac{d}{d\ln\mu^2} f_i(\xi,\mu^2) = \sum_k \left[P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2) \right](\xi)$$

Initial conditions incalculable in pert. QCD.

Splitting functions P, Coefficient functions c_a

$$P = \alpha_s P^{(0)} + \alpha_s^2 P^{(1)} + \alpha_s^3 P^{(2)} + \dots$$
$$c_a = \alpha_s^{n_a} \left[c_a^{(0)} + \alpha_s c_a^{(1)} + \alpha_s^2 c_a^{(2)} + \dots \right]$$

NLO: standard approximation NNLO: new emerging standard

Moch, Vermaseren, Vogt

Parton evolution from HERA to LHC

Kinematics: parton momenta $\xi_{-} < \xi < 1$ probed

HERA \rightarrow **LHC**: Q^2 evolution across up to three orders of magnitude

Parton evolution at large x

 $A(N) = \int_0^1 dx \, x^{N-1} A(x) \,. \qquad \text{Non-singlet: } u + \bar{u} - (d + \bar{d}) \text{ etc}$

Moch, Vermaseren, Vogt

Parton evolution at large x

 $A(N) = \int_0^1 dx \ x^{N-1} A(x) \ . \qquad \text{Non-singlet:} \ u + \bar{u} - (d + \bar{d}) \ \text{etc}$

Moch, Vermaseren, Vogt Perturbative expansion very benign: expect < 1% beyond NNLO

Parton evolution at small \boldsymbol{x}

Scale derivatives of quark and gluon distributions at $Q^2 \approx 30$ GeV²

Moch, Vermaseren, Vogt

Parton evolution at small \boldsymbol{x}

Scale derivatives of quark and gluon distributions at $Q^2 \approx 30$ GeV²

Expansion very stable except for very small momenta $x \lesssim 10^{-4}$

Hard processes in perturbative QCD

Example: Hadron-hadron collisions

$$\sigma(Q^2) = \sum_{i,j} \left[\hat{\sigma}_{ij}(\alpha_s(\mu^2), \mu^2/Q^2) \otimes f_i^p(\mu^2) \otimes f_j^p(\mu^2) \right]$$

partonic cross sections σ_{ij} , parton distributions f_i , renormalization/factorization scale μ

Collider Physics

1. Predictions for multiparticle final states that occur at high rate and form background to New Physics

High multiplicity, but low order - typically LO or NLO

For example, $pp \rightarrow V + 3$ jets is background to $pp \rightarrow t\bar{t}$ and other new physics.

2. Precise predictions for hard pp processes involving "standard particles" like W, Z, jets, top, Higgs, ...

Low multiplicity, but high order - NNLO is emerging standard

For example, Drell Yan cross section.

State of the Art

Relative Order	$2 \rightarrow 1$	$2 \rightarrow 2$	$2 \rightarrow 3$	$2 \rightarrow 4$	$2 \rightarrow 5$	$2 \rightarrow 6$
1	LO					
$lpha_s$	NLO	LO				
α_s^2	NNLO	NLO	LO			
α_s^3		NNLO	NLO	LO		
$lpha_s^4$				NLO	LO	
α_s^5					NLO	LO

- LO \square matrix elements automatically generated up to $2 \rightarrow 6$ or even $2 \rightarrow 8$ or more
 - plus automatic integration over phase space HELAC/PHEGAS, MADGRAPH/MADEVENT, SHERPA/AMEGIC++, COMPHEP, GRACE, ...
 - able to interface with parton showers CKKW
 - very good for estimating importance of various processes in different models

Multiparticle production at LO

Example: Multi-jet production at the LHC using HELAC/PHEGAS Draggiotis, Kleiss, Papadopoloulos

# of jets	2	3	4	5	6	7	8
# of dist.processes	10	14	28	36	64	78	130
total # of processes	126	206	621	861	1862	2326	4342
$\sigma(nb)$	-	91.41	6.54	0.458	0.030	0.0022	0.00021
% Gluonic	-	45.7	39.2	35.7	35.1	33.8	26.6

Sizeable cross sections for multi-jet events

Large uncertainty since $\sigma(n \text{ jets}) \sim \alpha_s^n$

State of the Art

Relative Order	$2 \rightarrow 1$	$2 \rightarrow 2$	$2 \rightarrow 3$	$2 \rightarrow 4$	$2 \rightarrow 5$	$2 \rightarrow 6$
1	LO					
$lpha_s$	NLO	LO				
α_s^2	NNLO	NLO	LO			
α_s^3		NNLO	NLO	LO		
$lpha_s^4$				NLO	LO	
α_s^5					NLO	LO

- NLO parton level integrators available for most Standard Model and MSSM processes for some time
 - extensively used at LEP, TEVATRON and HERA EVENT, JETRAD, MCFM, DISENT, etc
 - starting to be matched with parton shower MC@NLO
 - reduced renormalisation scale uncertainty

Example from the TEVATRON

Single jet inclusive transverse energy distribution (CDF)

$$\frac{d\sigma}{dE_T} = A\alpha_s^2(E_T) + B\alpha_s^3(E_T)$$

and solve for α_s

 $\alpha_s(M_Z) = 0.1178 \pm 0.0001(stat)^{+7\%}_{-8\%}(syst)$

Example from LEP

Anatomy of a NLO calculation

Catani, Seymour

One-loop matrix elements - $2 \rightarrow 3$ difficult, $2 \rightarrow 4$ almost impossible see later for twistor inspired developments and recently completed calculation of the full one-loop electroweak corrections to $e^+e^- \rightarrow 4$ fermions

Denner and Dittmaier

Automated NLO calculations

Diagram generation easy QGRAF, FeynArts.

Almost all one-loop scalar integrals are known analytically. The problem is evaluating the tensor integrals - or reducing them to known scalar integrals.

Several attempts, combination of analytic and numerical methods.

Identify and subtract divergences before doing the loop integral, do rest numerically.

Nagy, Soper

Reduce all integrals to a basis set of known integrals Binoth, Guillet, Heinrich, Pilon, Schubert; Ellis, Giele, EWNG, Zanderighi; Denner, Dittmaier; ...

Many different combinations of analytic/numeric

Recent numeric calculation of $H \rightarrow 4$ partons

NLO Wish List - Salam

Experiments priorities

- 1. $pp \rightarrow WW$ + jet
- 2. $pp \rightarrow H + 2$ jets \rightarrow VBF Higgs background
- **3.** $pp \rightarrow t\bar{t}b\bar{b}$
- 4. $pp \rightarrow t\bar{t} + 2$ jets $\rightarrow t\bar{t}H$ backgrounds
- **5.** $pp \rightarrow WWb\overline{b}$
- 6. $pp \rightarrow VV + 2$ jets $\rightarrow WW$ scattering background
- 7. $pp \rightarrow V+3$ jets
- 8. $pp \rightarrow VVV+jet$ \rightarrow SUSY background

Already available NLOJET++, MCFM, PHOX, ...

http://www.cedar.ac.uk/hepcode
Still to come

- $pp \rightarrow WW$ +jet
- $pp \rightarrow VVV$
- $pp \rightarrow H$ +2 jet
- $pp \rightarrow 4$ jets
- $pp \rightarrow t\bar{t}$ +2 jets
- $pp \rightarrow t\bar{t}b\bar{b}$
- $pp \rightarrow VV$ +2 jets
- $pp \rightarrow VVV$ +jet
- $pp \rightarrow WWb\overline{b}$

Why go beyond NLO?

In many cases, the uncertainty from the pdf's and from the choice of renormalisation scale give uncertainties that are as big or bigger than the experimental errors. e.g. theoretical uncertainties in α_s extraction from $p\bar{p} \rightarrow$ jet are due to renormalisation scale and pdf's

 $\alpha_s(M_Z) = 0.1178 \ ^{+6\%}_{-4\%}(scale) \ ^{+5\%}_{-5\%}(pdf)$

Why do we vary renormalisation scale?

- The theoretical prediction should be independent of μ_R
- The change due to varying the scale is formally higher order. If an observable Obs is known to order α_s^N then,

$$\frac{\partial}{\partial \ln(\mu_R^2)} \sum_{0}^{N} A_n(\mu_R) \alpha_s^n(\mu_R) = \mathcal{O}\left(\alpha_s^{N+1}\right).$$

• So the uncertainty due to varying the renormalisation scale is way of guessing the uncalculated higher order contribution.

Why do we vary renormalisation scale?

• ... but the variation only produces copies of the lower order terms

$$\mathcal{O}bs = A_0 \alpha_s(\mu_R) + \left(A_1 + b_0 A_0 \ln\left(\frac{\mu_R^2}{\mu_0^2}\right)\right) \alpha_s(\mu_R)^2$$

 A_1 will contain logarithms and constants that are not present in A_0 and therefore cannot be predicted by varying μ_R .

For example, A_0 may contain infrared logarithms L up to L^2 , while A_1 would contain these logarithms up to L^4 .

- μ_R variation is only an estimate of higher order terms
- A large variation probably means that predictable higher order terms are large but doesn't say anything about A_1 .

Renormalisation scale dependence

For example, $p\bar{p} \rightarrow$ jet, scale dependence

$$\frac{d\sigma}{dE_T} = \alpha_s^2(\mu_R)A$$

+ $\alpha_s^3(\mu_R) \left(B + 2b_0 LA\right)$
+ $\alpha_s^4(\mu_R) \left(C + 3b_0 LB + (3b_0^2 L^2 + 2b_1 L)A\right)$

with $L = \log(\mu_R/E_T)$. The NNLO coefficient **C** is unknown.

The curves show guesses C = 0 (solid) and $C = \pm B^2/A$ (dashed). Scale dependence is significantly reduced.

 μ_R / E_T

Jet algorithms

Also there is a mismatch between the number of hadrons and the number of partons in the event. At NLO at most two partons make a jet - while at NNLO three partons can combine to form the jet

Perturbation theory starts to reconstruct the shower

 \Rightarrow better matching of jet algorithm between theory and experiment

 \Rightarrow need for better jet algorithms

Description of the initial state

LO At lowest order final state has no transverse momentum

NLO Single hard radiation gives final state transverse momentum, even if no additional jet observed

Description of the initial state

NNLO Double radiation on one side or single radiation off each incoming particle gives more complicated transverse momentum to final state

Higher orders and power corrections

NLO Phenomenological power corrections match data with coefficient of 1/Q extracted from data.

$$\langle 1-T \rangle \sim 0.33 \alpha_s + 1.0 \alpha_s^2 + \frac{\lambda}{Q}$$

At NLO, $\lambda \sim 1~{\rm GeV}$ gives a good description of the data.

 $\langle 1 - T \rangle$ with NLO and no power correction and NLO with power correction $\lambda = 1$ GeV.

The power correction parameterises the unknown higher orders as well as the genuine nonperturbative correction

Higher orders and power corrections

NNLO Higher orders partially remove need for power correction

$$\langle 1 - T \rangle \sim 0.33 \alpha_s + 1.0 \alpha_s^2 + A \alpha_s^3 + \frac{\lambda \text{ GeV}}{Q}$$

If we guess A = 3, then $\lambda = 0.5$ GeV is good fit.

Why go beyond NLO - Summary

- Reduced renormalisation scale dependence
- Event has more partons in the final state hence closer to real world
- Better description of transverse momentum of final state due to double radiation off initial state
- Solution Reduced power correction as higher perturbative powers of $1/\ln(Q/\Lambda)$ mimic genuine power corrections like 1/Q
- Full NNLO global fit of PDF's should also reduce the factorisation scale uncertainty
- NNLO is the first serious estimate of the error
- Obvious application: reduction of uncertainty in α_s in e^+e^- annihilation

Currently: $\alpha_s = 0.121 \pm 0.001 (expt) \pm 0.006 (theory)$ resummed NLO

State of the Art

Relative Order	$2 \rightarrow 1$	$2 \rightarrow 2$	$2 \rightarrow 3$	$2 \rightarrow 4$	$2 \rightarrow 5$	$2 \rightarrow 6$
1	LO					
α_s	NLO	LO				
α_s^2	NNLO	NLO	LO			
α_s^3		NNLO	NLO	LO		
α_s^4				NLO	LO	
α_s^5					NLO	LO

NNLO Drell-Yan and Higgs total cross sections

Harlander, Kilgore; Anastasiou, Melnikov; ven Neerven, Ravindram, Smith

Drell-Yan rapidity distribution, can do for W, Higgs etc

Anastasiou, Melnikov, Petriello

NNLO splitting functions

Moch, Vermaseren, Vogt

- **NNLO •** want to calculate $2 \rightarrow 2$ to few percent accuracy and use as standard candle to determine pdfs and α_s more accurately
 - with global pdf fit, gives impact on all observables

Drell Yan production

Most accurate prediction yet

- NNLO splitting functions
- ✓ NNLO PDF fits
- NNLO Drell-Yan cross section
- → High precision Total error of 4% - -5.5%

Martin et al

Aim to able to use as Standard Candle for luminosity measurements.

Gauge boson production at E866

Anastasiou, Dixon, Melnikov, Petriello

Gauge boson production at E866

Anastasiou, Dixon, Melnikov, Petriello

Anastasiou, Dixon, Melnikov, Petriello

Anastasiou, Melnikov, Petriello

Significantly reduced scale uncertainty.

Gold-plated process

Anastasiou, Dixon, Melnikov, Petriello

At LHC NNLO perturbative accuracy better than 1% ⇒ use to determine parton-parton luminosities at the LHC

Higgs boson production at the LHC

Higgs boson production at the LHC

Total cross section

Harlander, Kilgore; Anastasiou, Melnikov, Petriello; ...

Fully differential

Anastasiou, Melnikov, Petriello

NNLO needed for reliable predictions

Anatomy of a NNLO calculation

plus method for combining the infrared divergent parts

Structure of two-loop contribution

• The many (thousands) of tensor integrals appearing in two-loop graphs can be written in terms of a few Master Integrals MI_j

where the a_j are polynomials in kinematical variables and the space-time dimension D.

• The MI_j can be expanded in $\epsilon = (4 - D)/2$ so that

Reduction of Tensor Integrals

• Integration by Parts

$$\int d^D k_1 \int d^D k_2 \frac{\partial}{\partial k_i^{\mu}} \left[\frac{\boldsymbol{v}^{\mu}}{A_1^{\nu_1} \cdots A_n^{\nu_n}} \right] \equiv 0$$

where v is any momentum in the problem, k_i , p_i .

Chetrykin, Kataev, Tkachov

 Lorentz Invariance Invariance of integral under infinitessimal rotation yields extra identities

Gehrmann, Remiddi

Master integrals - on-shell

Tausk; Anastasiou, Gehrmann, Oleari, Remiddi and Tausk

Recent Developments in QCD I – p.4

Master integrals - off-shell

- Each extra mass scale introduces many more master integrals
- One off-shell leg gives 10 (+5 tensor) master four-point intregrals
- New functions (2-dimensional harmonic polylogarithm) functions needed to describe the MI

Gehrmann and Remiddi

Methods for calculating master integrals

• Mellin-Barnes contour integrals

Davydychev; Smirnov; Tausk

• Differential equations in external scales and match to boundary conditions with fewer scales

Remiddi, Gehrmann

 Nested sums from Schwinger parameterisation together with Hopf algebra techniques to relate to standard sums

Moch, Uwer, Weinzierl

 Numerical method based on iterated sector decomposition - used to check many of above results

Binoth, Heinrich

Differential equations

Multiscale master integrals satisfy inhomogeneous differential equations in terms of invariants.

The boundary equations are in terms of simpler integrals.

$$p_{123} \qquad p_{12} \qquad p_{12} \qquad p_{12} \qquad (s_{123} = 0) = \frac{3d - 8}{d - 4} \frac{1}{s_{12}} \qquad p_{12} \qquad p_{13} \qquad p_{12} \qquad p_{13} \qquad p_{12} \qquad p_{12} \qquad p_{13} \qquad p_{13} \qquad p_{14} \qquad p_{12} \qquad p_{12} \qquad p_{13} \qquad p_{14} \qquad p_{14} \qquad p_{14} \qquad p_{14} \qquad p_{14} \qquad p_{15} \qquad p_{16} \qquad p_{16}$$

Recent progress on two-loop master integrals

Vertex integrals with one internal mass scale

• equal external masses: $\gamma^* \rightarrow Q\bar{Q}$ QCD and QED form factors

Bonciani, Mastrolia, Remiddi

• QCD heavy quark form factor

Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia and Remiddi

• $\gamma^* \rightarrow Q\bar{Q}$ electroweak form factors

Aglietti,Bonciani

• $H \rightarrow gg, \gamma\gamma$

Aglietti, Bonciani, Degrassi, Vicini

Four point integrals with one internal mass scale

massive Bhabha scattering and heavy quark production
 Smirnov; Heinrich, Smirnov; Bonciani, Ferroglia, Mastrolia, Remiddi, van der Bij;
 Czakon, Gluza, ...

Recent progress on two-loop amplitudes

On-shell Process	Tree × Two-loop	Helicity amplitudes
$e^+e^- \to \mu^+\mu^-(e^+e^-)$	√ (00)	
$q\bar{q} \rightarrow q\bar{q}(\bar{q}'q')$	√ (00)	√ (04)
$q \overline{q} ightarrow g g$	√ (01)	√ (03), √ (03)
gg ightarrow gg	√ (01)	√ (00), √ (02)
$gg ightarrow \gamma\gamma$		√ (01)
$\gamma\gamma o \gamma\gamma$		√ (01), √ (02)
$q \overline{q} ightarrow g \gamma(\gamma \gamma)$	√ (02)	√ (03)
Off-shell Process		
$e^+e^- \rightarrow q\bar{q}g$	√⁄ (01)	√⁄ (02), √ (02)

Bern, De Freitas, Dixon, Ghinculov, Kosower, Wong
 Anastasiou, Binoth, EWNG, Marquard, Oleari, Tejeda-Yeomans, van der Bij

Garland, Gehrmann, EWNG, Koukoutsakis, Remiddi

/ Moch, Uwer, Weinzierl

Recent Developments in QCD I - p.44

Jet physics at NNLO

Two-loop matrix elements

One-loop matrix elements

explicit poles from loop integration

explicit poles from loop integration implicit poles from single unresolved radiation

implicit poles from double unresolved radiation

How can we make infrared poles cancel in the sum?

Different approaches to infrared cancellation

 Subtraction Provides completely exclusive description of final state Non trivial extension of dipole subtraction at NLO Weinzierl; Kosower; Gehrmann, Gehrmann-De Ridder, EWNG; Del Duca, Trocsanyi; Grazzini, De Florian
 Antenna subtraction scheme of Gehrmann et al complete and in numerical implementation stage
 Unitarity based approach Good for suitably inclusive quantities such as *σ_H*

Anastasiou, Melnikov

Sector decomposition
Also good for more exclusive quantities - e.g. $e^+e^- \rightarrow 2$ jets

Binoth, Heinrich; Anastasiou, Melnikov, Petriello

Infrared subtraction terms

n+2 parton final state forming n jets:

Campbell, EWNG; Grazzini, Catani

- \checkmark approximate full n + 2 matrix element in all singular limits
- $\sqrt{}$ are sufficiently simple to be integrated analytically

Unitarity approach

For suitably inclusive quantities, can relate real and virtual contributions using unitarity

$$\delta(p^2 - M^2) \rightarrow \frac{1}{p^2 - M^2 - i\delta} - c.c.$$

Sector decomposition

Key result:

$$x^{-1-\epsilon} = -\delta(x)/\epsilon + [1/x]_{+} - \epsilon[\ln(x)/x]_{+} + \dots$$

At NLO:

$$I_1 = \int_0^1 dx dy \ x^{-1-\epsilon} y^{-1-\epsilon} \ J(x,y).$$
At NNLO:

$$I_2 = \int_0^1 dx dy \ x^{-1-\epsilon} y^{-1-\epsilon} (x+y)^{-\epsilon} \ J(x,y).$$

Overlapping divergences so cannot directly apply prescription Split integral into two parts x < y and y < x

$$I_{2a} = \int_0^1 dx \int_0^x dy \ x^{-1-\epsilon} y^{-1-\epsilon} (x+y)^{-\epsilon} J(x,y)$$
$$= \int_0^1 dx \int_0^1 dy \ x^{-1-3\epsilon} y^{-1-\epsilon} (1+y)^{\epsilon} J(x,xy)$$

Now apply key result

Recent Developments in QCD I - p.5-

Summary - Precise predictions

- Last few years has seen substantial progress in pQCD
- Many NLO predictions still needed Significant steps forward in automation for NLO pQCD
- NNLO pQCD for basic observables is becoming new standard
 - Inclusive DIS coefficient functions completed
 - Unpolarised three-loop splitting functions completed
 - Differential distributions for Higgs and gauge bosons completed
 - NNLO Jet cross sections on horizon for e^+e^- and then pp/ep
 - NNLO heavy quarks still a long way away