

Olaf Behrendt University of Dortmund HI Collaboration

Measurement of the Proton Structure Function $\rm F_2$ at Low Q^2 at HERA

- Deep Inelastic Scattering at HERA
- Experimental Techniques at Low Q²
- Details of the Analysis
- Systematic Errors

Workshop "Hard Processes" Universität Dortmund 13.10.05

Deep Inelastic Scattering

Accessible Phase Space

- Medium high Q²:
- asymptotic freedom
- perturbative QCD

Low Q^2 :

- transition to soft hadronic physics
- $\alpha_s(Q^2)$ becomes large
- phenomenological models

Accessible Phase Space

- Medium high Q²:
- asymptotic freedom
- perturbative QCD

Low Q^2 :

- transition to soft hadronic physics
- $\alpha_s(Q^2)$ becomes large
- phenomenological models

Experimental Techniques to Access Low Q²

Possibilities to access lower Q^2 :

- larger polar angles
- lower initial electron energy

Shifted Vertex Run

- 4-fold increase in statistics w.r.t. previous shifted vertex run (1995)
- preliminary analysis using the BST already exists

- detectors mounted close to the beam pipe (ZEUS BPT)
- radiative events

Aim of the Analysis

- cross-check of the preliminary results based on the BST
- BDC to reconstruct the polar angle of the electron
 - further cross-check
 - complementation of the accessible phase space

Preparation of Data and MC Samples

Control Distributions

-1

x_e

-2

15

 $Q_e^2 [GeV^2]$

Question:

• Can we benefit from the increased statistics w.r.t. the previous shifted vertex run in 1995?

Answer:

look at the systematic error of the measurement

Task:

- identify and quantify systematic uncertainties
- study their influence on the F_2 measurement

Energy Scale of the Scattered Electron

- check of the result of the SpaCal calibration at the kinematic peak
 - \Rightarrow systematic uncertainty on the relative energy scale: 0.2%

Energy Scale of the Scattered Electron

calibration based on large energies!

check of the SpaCal linearity at E \approx 2 GeV with π^0 mesons:

- additional correction of 3% necessary
- remaining uncertainty: 1%

$$\pi^0 \to \gamma \gamma$$

 $m_{\pi^0} = 135 \,\mathrm{MeV}$

Energy Scale of the Scattered Electron

Systematic Uncertainties

source	uncertainty	
trigger efficiency luminosity measurement	0.5% 1.8%	normalisation error
signal MC statistics background MC statistics radiative corrections	$\sqrt{N_{MC}} \sqrt{N_{MC,bg}}$ l %	uncorrelated error
scattered electron energy scale	0.2% at E = 27.5 GeV I% at E ≈ 2 GeV	
hadronic energy scale LAr hadronic energy scale SpaCal LAr noise normalisation of background MC	2% 500 MeV 10% 15%	correlated error

• contributions to the correlated error are determined by shifting the variables in MC by the uncertainties in both directions

Influence on the F₂ Measurement

Q² [GeV]	×	$\sigma_{_{tot}}$	$\sigma_{_{stat}}$	$\sigma_{_{uncor}}$	$\sigma_{_{cor}}$	
1.50 1.50 1.50 1.50 1.50	2.2 · 10 ⁻⁵ 3.2 · 10 ⁻⁵ 5.0 · 10 ⁻⁵ 8.0 · 10 ⁻⁵	5.86 3.46 3.45 3.72 3.97	2.09 1.61 1.53 1.65	2.34 2.22 2.20 2.22 2.22	4.95 2.11 2.18 2.49 2.67	σ _{cor} contains the uncorrelated and normalisation
1.50	2.0 · 10 ⁻⁴	4.55	2.26	2.20	3.21	errors!
2.00	2.9 · 10⁻⁵	4.97	1.83	2.26	4.03	
2.00	5.0 · 10 ⁻⁵	3.17	1.62	2.20	1.61	
2.00	8.0 · 10⁻⁵	3.35	I.58	2.19	1.98	
2.00	1.3 · 10 ⁻⁴	3.57	I.58	2.20	2.32	
2.00	2.0 · 10 ⁻⁴	3.60	I.76	2.21	2.22	

- benefit from the increased statistics
- systematic errror reduced by a factor of two
- measurement precision is limited by systematic error

Result for the BDC Analysis

