

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Nucleon spin structure & Δ -physics (Project C.3)

Akaki Rusetsky, University of Bonn

Team leaders: Ulf-G. Meißner / Akaki Rusetsky

Students: P. Bruns (part-time), D. Canham (part-time), M. Frink (part-time),

U. Raha (part-time), I Scheller (until 2004)

Collaborators: V. Bernard (Strasbourg), T.R. Hemmert (Munich),

K. Kumar (Mangalore)

Supported by DFG, SFB/TR-16 "Subnuclear Structure of Matter" and by EU, I3HP-N5 "Structure and Dynamics of Hadrons"

Research directions

- Effective field theories with spin-³/₂ and spin-1 fields Covariant small scale expansion, Compton scattering, Gerasimov-Drell-Hearn and Burkhardt-Cottingham sum rules, ...
- Chiral extrapolations and lattice QCD
 Nucleon and △ properties, N* mass, detailed analysis of the theoretical uncertainty,...
- Resonances on the lattice
 - Chiral perturbation theory in a finite volume, parameters of the Δ -resonance,...

Examples:

• Example 1:

Quark mass expansion of the axial coupling constant g_A

• Example 2:

Quark mass expansion of the Roper mass

• Example 3:

Extraction of the $\Delta\mbox{-resonance}$ parameters from calculations in a finite volume

Lattice extrapolations

- Lattice calculations are always made at a finite lattice spacing, at a finite volume and (at present) not at physical values of the quark masses ⇒ extrapolations necessary
- Effective field theory framework can be used in all three cases to perform the extrapolations:
 - Finite lattice spacing $a \rightarrow 0$
 - Quark masses $m_q \rightarrow m_q^{phys}$: Using ChPT to predict the quark mass dependence of the axial-vector coupling g_A and the Roper mass
 - Finite volume V = L⁴ → ∞ Extracting the parameters of the resonance states from the spectrum of the Hamiltonian, calculated in a finite volume

ChPT in the one-nucleon sector: the Lagrangian

$$\mathcal{L}_{\pi N} = \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)} + \cdots$$

$$\begin{split} \mathcal{L}_{\pi N}^{(1)} &= \bar{\Psi} \bigg(i \ \mathcal{D} - \overset{0}{m} + \frac{1}{2} \overset{0}{g}_{A} \not{u} \gamma_{5} \bigg) \Psi \\ \mathcal{L}_{\pi N}^{(2)} &= \bar{\Psi} \bigg(c_{1} \langle \chi_{+} \rangle + c_{2} (-\frac{1}{8\overset{0}{m}^{2}} \langle u_{\mu} u_{\nu} \rangle D^{\mu} D^{\nu} + \text{h.c.}) + c_{3} \frac{1}{2} \langle u \cdot u \rangle \\ &+ c_{4} \frac{i}{4} \sigma^{\mu \nu} [u_{\mu}, u_{\nu}] + c_{5} \tilde{\chi}_{+} + c_{6} \frac{1}{8\overset{0}{m}} \sigma^{\mu \nu} F_{\mu \nu}^{+} + c_{7} \frac{1}{8\overset{0}{m}} \sigma^{\mu \nu} \langle F_{\mu \nu}^{+} \rangle \bigg) \Psi \\ \mathcal{L}_{\pi N}^{(3)} &= \sum_{i=1}^{23} d_{i} \bar{\Psi} O_{i}^{(3)} \Psi \,, \qquad \mathcal{L}_{\pi N}^{(4)} = \sum_{i=1}^{118} e_{i} \bar{\Psi} O_{i}^{(4)} \Psi \,, \end{split}$$

- c_i , d_i , e_i : The LECs at $O(p^2)$, $O(p^3)$ and $O(p^4)$, respectively
- For details, see N. Fettes et al, Ann. Phys. 283 (2000) 273

Chiral extrapolations: a general strategy

masses, magnetic moments, electromagnetic radii, axial-vector coupling,...

- Needed: global fit to many observables + phenomenological input (constraining the LECs)
- Needed: sufficiently small (dynamical) quark masses already in the chiral regime
- Regularization independence should be provided (higher-order terms small)

Example 1: Nucleon axial-vector coupling

▲ LPC/MILC

R.G. Edwards *et al* [LHPC Coll.], PRL 96 (2006) 052001

QCDSF/UKQCD

A. Khan *et al*, hep-lat/0409161, hep-lat/0603028

QCDSF (preliminary)

RBC

S. Sasaki *et al* [RBC Coll.], hep-lat/0110053

• LHPC/SESAM

D. Dolgov *et al* [LHPC Coll.], PRD 66 (2002) 034506

Dependence of g_A on the pion mass is rather flat. Can one understand such a dependence in the framework of ChPT? How far can one go in the pion mass?

Axial-vector coupling: one loop

J. Kambor and M. Možiš, JHEP 9904 (1999) 031

$$g_{A} = g_{A} \left\{ 1 + \frac{4M_{\pi}^{2}}{g_{A}^{0}} \left(d_{16}(\lambda) - \frac{\frac{1}{2} g_{A}^{0} + g_{A}^{0}}{16\pi^{2}F^{2}} \ln \frac{M_{\pi}}{\lambda} \right) - \frac{g_{A}^{0} M_{\pi}^{2}}{16\pi^{2}F^{2}} + \frac{M_{\pi}^{3}}{24\pi F^{2} m} \left(3 + 3 g_{A}^{0} - 4 m c_{3}^{0} + 8 m c_{4}^{0} \right) \right\} + O(M_{\pi}^{4})$$

- Natural correction at $O(M_{\pi}^2)$: $\Delta g_A \simeq 0.16$
- Unnaturally large correction at $O(M_{\pi}^3)$: $\Delta g_A \simeq 0.3$. The reason understood: large values of c_3 and c_4 . The curve is not flat!
- Explicit Δ ? [T.R. Hemmert, M. Procura and W. Weise, PRD 68 (2003) 075009]

Need to understand quark mass dependence at two loops!

Axial-vector coupling at two loops

V. Bernard and U.-G. Meißner, PLB 639 (2006) 278 [hep-lat/0605010]

$$g_{A} = \overset{0}{g}_{A} \left\{ 1 + \left(\frac{\alpha_{2}}{(4\pi F)^{2}} \ln \frac{M_{\pi}}{\lambda} + \beta_{2} \right) M_{\pi}^{2} + \alpha_{3} M_{\pi}^{3} \right. \\ \left. + \left(\frac{\alpha_{4}}{(4\pi F)^{4}} \ln^{2} \frac{M_{\pi}}{\lambda} + \frac{\gamma_{4}}{(4\pi F)^{2}} \ln \frac{M_{\pi}}{\lambda} + \beta_{4} \right) M_{\pi}^{4} + \alpha_{5} M_{\pi}^{5} \right\} + \cdots \\ \left. = \overset{0}{g}_{A} \left\{ 1 + \Delta^{(2)} + \Delta^{(3)} \underbrace{+ \Delta^{(4)} + \Delta^{(5)}}_{\text{two loops}} \right\} + O(M_{\pi}^{6}) \right\}$$

- Calculate α_4 exactly, using RGE technique
- Calculate dominant contributions to $\beta_4, \gamma_4, \alpha_5$ + naturalness

 $\Delta^{(2)} = -15.3\%, \ \Delta^{(3)} = 25.6\%, \ \Delta^{(4)} = -5.6\%, \ \Delta^{(5)} = -0.1\%$

Convergence!

Axial-vector coupling: numerical results

- Strong pion mass dependence at one loop
- Theoretical uncertainty reasonable only for $M_{\pi} \leq 300 \text{ MeV}$

Example 2: The Roper resonance

The Roper N* (1440) is an "irregular" nucleon excitation: Unexpected: lies below S₁₁ (1535) Strongly decays into two pions + nucleon
Status of the Roper in lattice QCD under debate:

Level crossing with the S_{11} (1535) at small quark masses?

The Roper resonance in baryon ChPT

B. Borasoy, P. Bruns, U.-G. Meißner, R. Lewis, PLB 641 (2006) 294:

- Infrared regularization extended to include Roper resonance
- Provides chiral extrapolation at one loop

Example 3: the Δ **-resonance in a finite volume**

stable particle:
$$c(t) = \int d^3 \mathbf{x} \langle \phi(t, \mathbf{x}) \phi(0) \rangle \propto \exp(-mt)$$

... does not apply to the case of unstable particles

- Can be used when the resonance becomes stable that happens for $M_{\pi} > M_{\pi}^{\text{phys}}$
- The mass $m_{\text{res}}(M_{\pi})$ at $M_{\pi} = M_{\pi}^{\text{phys}}$ is then obtained through a chiral extrapolation in the infinite volume
- Is it possible (in principle) to perform the calculation of $m_{res}(M_{\pi})$ all way down to $M_{\pi} \to M_{\pi}^{phys}$?
- How does one extract the width $\Gamma_{\rm res}(M_{\pi}^{\rm phys})$?
 - \Rightarrow Explore the case of the Δ -resonance!

... maybe, feasible at some time in the future

Unstable particles

M. Lüscher, lectures given at Les Houches (1988); NPB 364 (1991) 237
U. Wiese, NPB (Proc. Suppl.) 9 (1989) 609
C. Michael, NPB 327 (1989) 515
T. DeGrand, PRD 43 (1991) 2296

Investigating scattering in the framework of the non-relativistic EFT:

S.R. Beane, P.F. Bedaque, A. Parreño and M.J. Savage, PLB 585 (2004) 106; NPA 747 (2005) 55 *see also:* C.h. Kim, C.T. Sachrajda and S.R. Sharpe, NPB 727 (2005) 218

N.H. Christ, C.h. Kim and T. Yamazaki, PRD 72 (2005) 114506

- Lattice calculations are always done in a finite volume. The energy spectrum is real
- Studying the behavior of the energy levels (in Euclidian space) for a different box size *L*, one may determine the scattering phase in Minkowski space, infinite volume

Energy levels in a finite box (NR EFT)

Find poles of the resolvent:
$$\langle \mathbf{q}' | \frac{1}{z - H_0 - H_I} | \mathbf{q} \rangle$$

 \Rightarrow Scattering phase shift is determined from:

$$-p \cot \delta(p) - \frac{4\pi}{L^3} \sum_{\mathbf{k}} \frac{1}{\mathbf{k}^2 - p^2} = 0$$
$$z = \frac{p^2}{M}, \qquad \mathbf{k} = \frac{2\pi}{L} \mathbf{n}, \quad \mathbf{n} \in \mathbb{Z}^3$$

- Reproduces Lüscher's perturbative formulae in case of weak coupling
- In the presence of resonances, an "avoided level crossing" occurs

Avoided level crossing

Example: Breit-Wigner resonance parameterization for $\delta(p)$

Finite-volume effects in ChPT

V. Bernard, U.-G. Meißner and A. Rusetsky, in preparation

Obtaining avoided level crossing order by order in ChPT:

- Invoke chiral perturbation theory in a finite volume, study the pole structure of the Δ -propagator in the Euclidian space
- If propagator has (real) poles at $p^2 = -E_n^2$,

$$c_{\Delta}(t) = \int d^3 \mathbf{x} \langle \phi_{\Delta}(t, \mathbf{x}) \phi_{\Delta}(0) \rangle \rightarrow \sum_n Z_n \exp(-E_n t)$$
 (large t)

- Study the dependence $E_n(L)$ on the size of the box L. Fit the parameters of the chiral Lagrangian
- Calculate m_{Δ} and Γ_{Δ} using these parameters
 - Advantageous: studying the dependence of the energy levels on L and M_{π} simultaneously
 - Results may depend on the convergence of chiral expansion

Poles of the Δ -propagator in a finite volume

Lagrangian with an explicit Δ : Small Scale Expansion

(T.R. Hemmert, B.R. Holstein and J. Kambor, J. Phys. G 24 (1998) 1831) + infrared regularization in a finite volume

$$= \frac{\pi}{\Delta} + \frac{\pi}{\Delta} + \frac{\pi}{N} + \frac{a_1}{X} : O(p^3)$$

$$S_{\Delta}^{L}(p) = -\frac{1}{m_{\Delta}^{0} - \not p - \Sigma_{\Delta}^{L}(p)} P^{3/2} \xi^{3/2} + \text{terms with the spin-}\frac{1}{2}$$

- Chiral symmetry and power counting are ensured
- Poles: $\overset{0}{m}_{\Delta} \not p \Sigma^{L}_{\Delta}(p) = 0 \implies \text{Energy levels}$
- No off-shell effects, if $M_{\pi}L \gg 1$

Energy levels up to and including $O(p^3)$

can one see the avoided level crossing?

 \Rightarrow The width of the Δ too large, washed out!

Varying quark mass and determining m_Δ

- No irregular behavior of the energy levels near the point, where the Δ becomes stable
- The tangent of the lowest level trajectory: a monotonic function of the mass gap between the Δ and the $N + \pi$ for a fixed $g_{\pi N\Delta}$. The trajectory flattens at $m_{\Delta} = m_N + M_{\pi}$

Determination of $g_{\pi N\Delta}$ from $E_2(L) - E_1(L)$

Avoided level crossing is clearly visible for a small $g_{\pi N\Delta}$

A. Rusetsky, Status report project C.3, TR meeting Bommerholz, 28 November 2006 - p.21

Determining the parameters of Δ on the lattice

- ChPT in finite volume is applied to systematically calculate the energy levels of the πN system in the $I = J = \frac{3}{2}$ state, in a finite box, up to and including $O(p^3)$
- Calculations at $O(p^4)$ are underway
- It is demonstrated that fitting of the mass and width of ∆ to the energy levels in the box is indeed feasible, despite the fact that the avoided level crossing is washed out due to the large width
 - Fit m_{Δ} to $E_1(L)$
 - Fit $g_{\pi N\Delta}$ to $E_2(L) E_1(L)$
 - Fit $\pi\Delta \sigma$ -term from $m_{\Delta}(M_{\pi}^2)$ for different values of M_{π}^2
- One may use the known dependence of the resonance parameters on M_{π} , in order to improve the sensitivity of the fit

Future research

. . .

- Doubly virtual Compton scattering at low Q^2 (project with V. Bernard and K. Kumar, to be finished)
- New research program: low-energy meson-baryon scattering from lattice QCD (all projects with V. Bernard)
 - Δ -resonance in a finite volume at $O(p^4)$ in ChPT (with Dipl. Stud. D. Hoja)
 - Matching ChPT to the non-relativistic EFT in a finite volume (with PhD Stud. M. Lage)
 - Pion-nucleon scattering, estimation of LECs (with M. Lage)
 - Many-particle final states and the status of the Roper
 - Kaon-nucleon scattering, coupled channels and the nature of $\Lambda~(1405)$

New project: interdisciplinary links

• Coordinating efforts with lattice practitioners:

1st workshop on "Lattice QCD, Chiral Perturbation Theory and Hadron Phenomenology," 2-6 October (2006), Trento Organizers: U.-G. Meißner and G. Schierholz

• Study of the kaon-nucleon dynamics on the lattice:

 \Rightarrow SIDDHARTA, AMADEUS (DA Φ NE) \Rightarrow B.3

ECT* Workshop "Exotic Hadronic Atoms, Deeply Bound Kaonic Nuclear States and Antihydrogen," 19-24 June (2006), Trento Organizers: C. Curceanu, A. Rusetsky and E. Widmann

• Decay into multiparticle final states:

⇒ Many-body physics in a finite volume (with H.-W. Hammer)

Publications (only refereed journals)

P. C. Bruns and Ulf-G. Meißner, "Infrared regularization for spin-1 fields," *Eur. Phys. J.* **C** 40 (2005) 97-119 [arXiv:hep-ph/0411223].

M. Frink, Ulf-G. Meißner and I. Scheller, "Baryon masses, chiral extrapolations, and all that," *Eur. Phys. J.* A 24 (2005) 395-409 [arXiv:hep-lat/0501024].

V. Bernard, T. R. Hemmert and Ulf-G. Meißner, "Chiral extrapolations and the covariant small scale expansion," *Phys. Lett.* **B 622** (2005) 141-150 [arXiv:hep-lat/0503022].

V. Bernard and Ulf-G. Meißner, "The nucleon axial-vector coupling beyond one loop," *Phys. Lett.* **B 639** (2006) 278-282 [arXiv:hep-lat/0605010].

B. Borasoy, P. C. Bruns, Ulf-G. Meißner and R. Lewis, "Chiral corrections to the Roper mass," *Phys. Lett.* **B 641** (2006) 294-300 [arXiv:hep-lat/0608001].