A.5: Quarkmodellbeschreibung der Hadroneigenschaften Static electromagnetic properties and strong decays in a relativistic quark model

Bernard Metsch, Herbert Petry Christian Haupt, Simon Kreuzer, Timna-Joshua Kühn, Sascha Migura, Tim van Cauteren, Jan Ryckebusch (U. Gent (B))

> Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Rheinische Friedrich-Wilhelms-Universität Bonn Nußallee 14-16, D-53115 Bonn, GERMANY

SFB/TR16

e-mail: metsch@itkp.uni-bonn.de

Contents

• Framework:

relativistically covariant constituent quark model on the basis of the Salpeter Equation;

- Static electromagnetic properties:
 - novel formulas for magnetic moments and charge radii on the basis of Salpeter Amplitudes;

Christian Haupt, Bernard Metsch, Herbert-R. Petry,

Static observables of relativistic three-fermion systems with instantaneous interactions,

- Eur. Phys. J. A 28 (2006) 213, [HEP-PH/0602151];
- Christian Haupt, *Electromagnetic properties of Baryons*, PhD-Thesis, Universität Bonn, 2006, HISKP-TH-06-18.

```
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2006/
```

haupt_christian/0754.pdf

• Strong two-body decay amplitudes. Sascha Migura, Weak and Strong Baryon Decays in a Constituent Quark Model, PhD-Thesis, Universität Bonn, 2006, HISKP-TH-06-17. http://www.itkp.uni-bonn.de/publications/postscript/

migura-thesis.ps.gz

Computation of static moments $\langle M \rangle$

• In nonrelativistic quantum mechanics $\langle M \rangle$ is given by the expectation value of a (local) operator, *e.g.* :

$$\hat{\mu} = \frac{q}{2m} (\hat{l}_3 + \hat{\sigma}_3) , \quad \langle \mu \rangle = \langle \phi | \, \hat{\mu} \, | \phi \rangle$$

$$\hat{r}_{\text{charge}}^2 = qr^2 , \quad q \, \langle r_{\text{charge}}^2 \rangle = \langle \phi | \, \hat{r}_{\text{charge}}^2 \, | \phi \rangle$$

• In the usual field theoretical approach $\langle M\rangle$ is the limit of some form factor, e.g. :

$$\langle \mu \rangle = \lim_{Q^2 \to 0} G_M(Q^2), \quad \langle r_{\text{charge}}^2 \rangle = -\lim_{Q^2 \to 0} \frac{6}{G_E(0)} \frac{\mathrm{d}G_E(Q^2)}{\mathrm{d}Q^2}$$

Question : How can static moments $(\langle M \rangle)$ be computed as expectation values with respect to appropriate local operators on a field theoretical basis?

Bethe-Salpeter-equation

Fieldtheoretical description of a three-fermion-sytem is governed by the Bethe-Salpeter-amplitude :

$$= \langle 0|T\psi(x_1)\,\psi(x_2)\,\psi(x_3)|\bar{P}\rangle,$$

which fulfills the Bethe-Salpter-equation :

Describes bound states of mass $M^2 = \bar{P}^2$ and total four-momentum $\bar{P} = p_1 + p_2 + p_3$ with ingredients :

• $---- = \langle 0|T\psi(x)\bar{\psi}(x')|0\rangle = S_F(x-x')$, full quark-propagator

Approximations

- Free propagators : $\longrightarrow \longrightarrow \longrightarrow : S_F^j(p_j) \equiv \frac{\mathrm{i}}{p_j m_j + \mathrm{i}\epsilon}$
- Interaction kernels do not depend on relative energies p_{ξ}^0 and p_{η}^0 in the restframe (instantaneous approximation) :

$$\begin{split} \left. \frac{K_P^{(3)}}{K_P^{(3)}}(p_{\xi}, p_{\eta}; p'_{\xi}, p'_{\eta}) \right|_{\bar{P}=(M,\vec{0})} &= \left. \frac{V^{(3)}}{V^{(3)}}(\vec{p}_{\xi}, \vec{p}_{\eta}; \vec{p}'_{\xi}, \vec{p}'_{\eta} \right. \\ \left. \frac{K_{P_{ij}}^{(2)}}{K_{P_{ij}}^{(2)}}(p_{\xi_k}, p_{\eta_k}) \right|_{\bar{P}=(M,\vec{0})} &= \left. \frac{V^{(2)}}{V^{(2)}}(\vec{p}_{\xi_k}, \vec{p}_{\eta_k}) \right. \end{split}$$

- ⇒ Eight-dimensional Bethe-Salpeter-equation reduces to six-dimensional Salpeter-equation by integrating out p_{ξ}^{0} und p_{η}^{0} -dependencies.
- \Rightarrow Static moments are expectation values of suitable operators.

Salpeter-equation

$$\mathcal{H}\Phi^{\Lambda}_M = M\Phi^{\Lambda}_M$$

- Eigenvalue equation for restmass *M* :
- Salpeter-amplitude : $\Phi_M(\vec{p}_{\xi}, \vec{p}_{\eta}) := \int \frac{\mathrm{d}p_{\xi}^0}{2\pi} \frac{\mathrm{d}p_{\eta}^0}{2\pi} \chi_M(p_{\xi}, p_{\eta})$ projection : $\Phi_M^{\Lambda} := [\Lambda_1^+ \otimes \Lambda_2^+ \otimes \Lambda_3^+ + \Lambda_1^- \otimes \Lambda_2^- \otimes \Lambda_3^-] \Phi_M$
- Φ^{Λ}_{M} given in the restframe, $\bar{P} = (M, \vec{0})$
- Salpeter-Hamiltonian : $\mathcal{H} = \mathcal{H}\left(V^{(3)}, V^{(2)}\right)$

Norm :
$$\langle \Phi_M^{\Lambda} | \Phi_M^{\Lambda} \rangle = \int \frac{\mathrm{d}p_{\xi}^3}{2\pi} \frac{\mathrm{d}p_{\eta}^3}{2\pi} \Phi_M^{\Lambda \dagger}(p_{\xi}, p_{\eta}) \Phi_M^{\Lambda}(p_{\xi}, p_{\eta}) = 2M$$

 \Rightarrow induces positive definite scalar product $\langle \Phi_1 | \Phi_2 \rangle$

A quark model for baryons

confinement potential:

$$V_{\text{conf}}^{(3)} = \frac{3}{4}a \cdot \Gamma_{\text{offset}}^{\mathcal{D}} + \frac{1}{2}b \sum_{i < j} |\vec{x}_i - \vec{x}_j| \cdot \Gamma_{\text{string}}^{\mathcal{D}}$$

inspired by phenomenology:

- Minimizes spin-orbit effects
- Correct description of Regge trajectory (M^2 vs. J)

't Hoofts instanton-induced interaction:

$$V_{\text{t Hooft}}^{(2)} = -4\,\delta^{(3)}(\boldsymbol{x_1} - \boldsymbol{x_2}) \left[\mathbb{I} \otimes \mathbb{I} + \gamma^5 \otimes \gamma^5 \right] \mathcal{P}_{S_{12}}^{\mathcal{D}} \otimes \left(g_{nn} \mathcal{P}_{\mathcal{A}}^{\mathcal{F}}(nn) + g_{ns} \mathcal{P}_{\mathcal{A}}^{\mathcal{F}}(ns) \right)$$

- $\mathcal{P}_{S_{12}}^{\mathcal{D}}$: projects on antisymmetric spin configurations
- $\mathcal{P}_{\mathcal{A}}^{\mathcal{F}}(f_1 f_2)$: projects on flavor-antisymmetric quark pairs
- Regularization: $\delta^{(3)}(\boldsymbol{x_1} \boldsymbol{x_2}) \rightarrow \frac{1}{\lambda^3 \pi^{3/2}} \exp\left(\frac{|\boldsymbol{x_1} \boldsymbol{x_2}|}{\lambda}\right)^2$
 - \Rightarrow effective range parameter λ

Model parameters

constituent	non-strange		330	MeV
quark masses	strange		670	MeV
confinement	offset		-744	MeV
force	slope		470	${\sf MeV}$ fm $^{-1}$
residual	non-strange/non-strange coupling	g_{nn}	136	${\sf MeV}~{\sf fm}^3$
instanton	non-strange/strange coupling	g_{ns}	94	${\sf MeV}~{\sf fm}^3$
interaction	effective range	λ	0.4	fm

Parameter adjustment in two steps:

- confinement parameters by the Δ spectrum (Regge trajectory)
- instanton force parameters by the baryon ground states splittings

Detailed overview: U. Löring et al., Eur. Phys. J. A 10 (2001) 309, 395, 407

Baryon ground states

Current matrix element

$$\langle P'|J_{\mu}(0)|P\rangle = -3\int \frac{\mathrm{d}^4 p_{\xi}}{(2\pi)^4}\int \frac{\mathrm{d}^4 p_{\eta}}{(2\pi)^4}\bar{\Gamma}_{P'}(p_{\eta}, p_{\xi})$$

$$\times S_{F}^{1}(p_{\xi} + \frac{1}{2}p_{\eta}) \otimes S_{F}^{2}(-p_{\xi} + \frac{1}{2}p_{\eta}) \otimes S_{F}^{3}(P' - p_{\eta}) \gamma_{\mu} S_{F}^{3}(P - p_{\eta}) \Gamma_{P}(p_{\eta}, p_{\xi})$$

Relation between vertex function and Salpeter amplitude:

$$\Phi_M^{\Lambda} = i \left[\frac{\Lambda_1^+ \otimes \Lambda_2^+ \otimes \Lambda_3^+}{M - \omega_1 - \omega_2 - \omega_3} + \frac{\Lambda_1^- \otimes \Lambda_2^- \otimes \Lambda_3^-}{M + \omega_1 + \omega_2 + \omega_3} \right] \gamma^0 \otimes \gamma^0 \otimes \gamma^0 \Gamma_M^{\Lambda}$$

 $\omega_i = \sqrt{m_i^2 + |p_i|^2}$: relativistic energy, $\Lambda_i^{\pm}(p_i)$: energy projector

Charge distributions and mean square radius

Mean square radius of a charge distribution $\rho(\boldsymbol{x})$: $\langle r^2 \rangle = \frac{1}{q} \int d^3 x |\boldsymbol{x}|^2 \rho(\boldsymbol{x})$

Net charge of the system:
$$q = \int \mathrm{d}^3\!x\,
ho(oldsymbol{x})$$

For quantum systems: $ho(m{x}) = rac{\langle \psi | j^0(m{x}) | \psi
angle}{\langle \psi | \psi
angle}$

Superposition of momentum eigenstates: $|\psi\rangle = \int \frac{\mathrm{d}^3 P}{\omega_P} \psi(P) |P\rangle$

$$\dots \Rightarrow \langle r^2 \rangle = -\frac{1}{8Mq} \Delta_{\mathbf{P}} \langle \mathcal{P}P | j^0(0) | P \rangle \Big|_{\mathbf{P}=0}$$

with spatial reflection: $\mathcal{P}(P^0, \mathbf{P}) = (P^0, -\mathbf{P})$.

Electric form factor and mean square radius

$$\langle P', \lambda' | j_{\mu}(0) | P, \lambda \rangle = \bar{u}_{\lambda'}(P') \left[\gamma_{\mu} \left(F_1(Q^2) + F_2(Q^2) \right) - \frac{P'_{\mu} + P_{\mu}}{2M} F_2(Q^2) \right] u_{\lambda}(P)$$

Sachs form factors: $G_E(Q^2) := F_1(Q^2) - \frac{Q^2}{4M^2}F_2(Q^2)$

$$G_M(Q^2) := F_1(Q^2) + F_2(Q^2)$$

Definition of charge radius:

$$\langle r^2 \rangle := -\frac{6}{G_E(0)} \frac{\mathrm{d}G_E(Q^2)}{\mathrm{d}Q^2} \Big|_{Q^2=0}$$

$$\Rightarrow \langle r^2 \rangle = -\frac{3}{Mq} \frac{\mathrm{d}}{\mathrm{d}Q^2} \langle \mathcal{P}P, \lambda | j^0(0) | P, \lambda \rangle \bigg|_{Q^2=0} = -\frac{1}{8Mq} \Delta_{\mathbf{P}} \langle \mathcal{P}P | j^0(0) | P \rangle \bigg|_{\mathbf{P}=0}$$

Charge radius as an expectation value

$$\langle r^2 \rangle = \frac{\langle \Phi_M^{\Lambda} | \hat{r}^2 | \Phi_M^{\Lambda} \rangle}{2M}$$

$$\hat{\boldsymbol{r}}^{2} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \left[\frac{\Omega}{M} \left(i \boldsymbol{\nabla}_{\boldsymbol{p}_{\alpha}} - \hat{\boldsymbol{R}} \right) + h. c. \right] \right\}^{2} \hat{q}_{\alpha}$$

$$\hat{\boldsymbol{R}} = \frac{1}{\Omega} \sum_{\alpha=1} \omega_{\alpha} i \boldsymbol{\nabla}_{\boldsymbol{p}_{\alpha}} \qquad \Omega := \omega_1 + \omega_2 + \omega_3$$

Features:

- Charge radius as expectation value with Salpeter amplitudes
- $\langle \Phi^{\Lambda}_{M} | \Phi^{\Lambda}_{M} \rangle = 2M \implies$ factor 1/2M accounts for correct normalization
- \hat{r}^2 is hermitean

Interpretation

In position space: i

$$abla_{p_{oldsymbollpha}} o x_{oldsymbollpha}.$$

Relativistic center of mass!

In addition: $(\boldsymbol{x}_{\alpha} - \hat{\boldsymbol{R}}_{x})$ is weighted with Ω/M in the nonrel. limit: $\Omega/M \to 1$

Baryon octet squared charge radii

baryon	this calculation	exp.	nonrel. limit	$rac{\langle r^2 angle_{ m nonrel}}{\langle r^2 angle_{ m rel}}$
	[fm ²]	[fm ²]	[fm ²]	[%]
$p(\sqrt{\langle r^2 \rangle})$	$(0.86\mathrm{fm})$	$(0.87 \pm 0.008 { m fm})$	$0.3(0.55{ m fm})$	42
n	-0.206	-0.1161 ± 0.0022	-0.08	43
Λ	0.0086		0.002	23
Σ^+	0.64		0.3	47
Σ^0	0.11		0.043	36
Σ^{-}	0.42	0.61 ± 0.21 , 0.91 ± 0.72	0.22	52
Ξ^0	0.075		0.044	59
Ξ-	0.40		0.26	65

- proton o.k., neutron far off
- nonrel. radii are about half the size \Rightarrow relativistic treatment important

Instanton effective range dependence

- Both mean square radii decrease about $0.2\,{
 m fm}^2$ in magnitude
- The relative effect is larger for the neutron radius
- At $\lambda = 0.6 \,\mathrm{fm}$ and $g_{\mathrm{nn}} = 263 \,\mathrm{MeV} \,\mathrm{fm}^3$ both radii have an error of 14% relative to experiment: $\sqrt{\langle r^2 \rangle_p} = 0.81 \,\mathrm{fm}$ and $\langle r^2 \rangle_n = -0.132 \,\mathrm{fm}^2$

Proton electric form factor

- Only minor dependence on effective range parameter λ
- As for $\langle r^2
 angle_p$

Neutron electric form factor

- Strong dependence on effective range parameter λ
- As for $\langle r^2
 angle_n$
- Improved description of exp. data

Magnetic moments

$$\langle \mathcal{P}P, \lambda' | j_+(0) | P, \lambda \rangle = \left[F_1(Q^2) + F_2(Q^2) \right] \bar{u}_{\lambda'}(\mathcal{P}P) \gamma_+ u_\lambda(P)$$

Magnetic Sachs form factor:

$$G_M(Q^2) := F_1(Q^2) + F_2(Q^2)$$

Definition of magnetic moment:

$$\mu := G_M(Q^2 = 0)$$

$$\Rightarrow \quad \langle \mu \rangle = \frac{\langle \mathcal{P}P, \lambda' | j_+(0) | P, \lambda \rangle}{2\sqrt{Q^2}} \Big|_{Q^2 = 0}$$

Arbeitstreffen SFB/TR 16 27-28.11.2006, Bommerholz - p.19

Magnetic moment as an expectation value

$$\mu = \frac{\langle \Phi_M^{\Lambda} | \hat{\boldsymbol{\mu}} | \Phi_M^{\Lambda} \rangle}{2M}$$

$$\hat{\boldsymbol{\mu}} = \frac{1}{2} \left[\frac{\Omega}{M} \sum_{\alpha=1}^{3} \frac{\hat{q}_{\alpha}}{2\omega_{\alpha}} \left(\hat{\boldsymbol{L}}_{R\alpha}^{3} + 2\boldsymbol{S}_{\alpha}^{3} \right) + \text{h. c.} \right]$$

 $\hat{L}_{R\alpha}^{i} := \epsilon_{ijk} p_{\alpha}^{k} \left(i \frac{\partial}{\partial p_{\alpha}^{j}} - \hat{R}^{j} \right)$ "CMS-corrected" angular momentum operator

Decomposition into spin and angular momentum contributions: $\langle \mu \rangle = \langle \mu_L \rangle + 2 \langle \mu_S \rangle$

Baryon octet magnetic moments

baryon	experiment	this calculation	form factors ([1,2])
	$[\mu_N]$	$[\mu_N]$	$[\mu_N]$
proton	2.793	2.77	2.74
neutron	-1.913	-1.71	-1.70
Λ	-0.613 ± 0.004	-0.61	-0.61
Σ^+	2.458 ± 0.01	2.51	2.47
Σ^0	_	0.75	_
Σ^{-}	-1.16 ± 0.025	-1.02	-0.99
Ξ^0	-1.25 ± 0.014	-1.33	-1.33
Ξ^-	-0.6507 ± 0.0025	-0.56	-0.57

[1]: D. Merten *et al.*, Eur. Phys. J. A **14** (2002) 477 [arXiv:hep-ph/0204024]

[2]: T. van Cauteren et al., Eur. Phys. J. A 20 (2004) 283 [arXiv:nucl-th/0310058]

Decomposition $\langle \mu \rangle = \langle \mu_L \rangle + 2 \langle \mu_S \rangle$

baryon	$2\langle\mu_S angle$	$rac{2\langle \mu_S angle}{\langle \mu angle}$	$\langle \mu_L angle$	$rac{\langle \mu_L angle}{\langle \mu angle}$
	$[\mu_N]$	[%]	$[\mu_N]$	[%]
proton	2.53	91	0.24	9
neutron	-1.59	93	-0.12	7
Λ	-0.6	98	-0.01	2
Σ^+	2.33	93	0.23	7
Σ^0	0.7	94	0.05	6
Σ^{-}	-0.91	89	-0.11	11
Ξ^0	-1.27	94	-0.06	6
Ξ^-	-0.55	98	-0.013	2

 \Rightarrow For the baryon octett roughly 90% of $\langle \mu \rangle$ is due to spin.

Magnetic moments of nucleon resonances

nucleon resonance	T_3	magnetic moment	$\langle \mu \rangle_S$	$\langle \mu angle_L$
		$[\mu_N]$	$[\mu_N]$	$[\mu_N]$
$P^{11}(1440)$	1/2	1.55	1.39	0.16
	-1/2	-0.98	-0.9	-0.08
$S^{11}(1535)$	1/2	0.37	-0.14	0.51
	-1/2	-0.1	0.034	-0.134
$S^{11}(1650)$	1/2	1.85	1.70	0.15
	-1/2	-0.69	-0.44	-0.25
$D^{13}(1520)$	1/2	1.44	0.51	0.93
	-1/2	-0.166	0.019	-0.185
$D^{15}(1675)$	1/2	1.74	1.52	0.22
	-1/2	0.32	-0.22	0.54

Baryon decuplet magnetic moments

baryon	$\langle \mu \rangle$	$\langle \mu angle_{ m exp}$
	$[\mu_N]$	$[\mu_N]$
Δ^{++}	7.62	3.7 - 7.5
Δ^+	3.81	$2.7^{1.0}_{-1.3}\pm1.5\pm3$ ([1])
Δ^0	0	
Δ^{-}	-3.81	
Σ^{*+}	4.73	
Σ^{*0}	0.68	
Σ^{*}	-3.26	
Ξ^{*0}	1.68	
[I] *	-2.91	
Ω^{-}	-2.28	2.02 ± 0.05 ([2],[3])

[1]: M. Kotulla et al., Phys. Rev. Lett. 89 (2002) 272001 [arXiv:nucl-ex/0210040]

[2]: N. B. Wallace et al., Phys. Rev. Lett. 74 (1995) 3732

[3]: H. T. Diehl *et al.*, Phys. Rev. Lett. **67** (1991) 804

Extension to higher moments

$$\langle m \rangle = \sum_{i_1, i_2, \dots, i_n = 1}^{3} O_{i_1 i_2 \dots i_n} \int d^3 x \, x^{i_1} x^{i_2} \cdots x^{i_n} \rho(x)$$

In case of the charge radius: $O_{i_1i_2} = \frac{1}{q} \delta_{i_1i_2}$

$$\langle m \rangle = \frac{1}{\langle \Phi_M^{\Lambda} | \Phi_M^{\Lambda} \rangle} \sum_{i_1, i_2, \dots, i_n = 1}^3 O_{i_1 i_2 \dots i_n} \langle \Phi_M^{\Lambda} | \sum_{\alpha = 1}^3 \hat{K}'_{i_1 \alpha} \hat{K}'_{i_2 \alpha} \dots \hat{K}'_{i_n \alpha} \hat{q}_{\alpha} | \Phi_M^{\Lambda} \rangle$$

+ off-diagonal matrix elements for n>2

$$\hat{K}'_{i\,\alpha} = \frac{1}{2} \left[\frac{\Omega}{M} \left(i \frac{\partial}{\partial p^i_{\alpha}} - \hat{R} \right) + h. c. \right]$$

 \Rightarrow extension to higher moments possible

Decay Widths of Strong Two-Body Baryon Decays

Averaging over spins, the decay width is given by

$$\Gamma^{\text{theo}} = \frac{|\mathbf{Q}|}{8\pi M_1^2} \cdot \frac{1}{2J_1 + 1} \sum_{m_{J_1}, m_{J_2}} |\langle \bar{P}_2(m_{J_2})\bar{Q}|\mathbf{S}|\bar{P}_1(m_{J_1})\rangle|^2$$

- Again: no additional free parameters
- recoil effects correctly described

Final state interactions are neglected!

N-resonance spectrum: Couplings to $N\pi$

N-resonance spectrum: Couplings to $N\pi$

N-resonance spectrum: Couplings to $N\pi$

Examples for Strong Decay Widths: $N^* \rightarrow N\pi$

Summary and outlook

- Static properties:
 - $\langle r^2 \rangle$ and $\langle \mu \rangle$ of baryons have been formulated as expectation values with respect to Salpeter amplitudes.
 - Resulting operators allow for a sensible physical interpretation and generalize the well known nonrelativistic expressions.
 - The method is applicable under the assumption of free quark propagators and instantaneous interaction kernels.
 - Satisfactory description of the empirical radii and magnetic moments.
 - (\Rightarrow Magnetic radii, polarizabilities)
- Strong decays:
 - BSM offers a solution to the problem of the missing resonances: They do not couple to $N\pi$ or $N\bar{K}$.
 - There are many allowed quasi-two-body decay cascades.
 - Decay widths are quantitatively not correctly reproduced (calculations do not guarantee unitarity).

A.5 – status

• Funding of personnel ($\frac{1}{2}$ BAT IIa):

period		period	
01.10.04 - 30.06.06	(Ch.H.)	01.10.05 - 30.06.06	(S.M.)
01.07.06 - 30.09.06	(S.M.)		
	24 months		9 months (B.3)

• Goals, achievements, perspectives:

	task	done	publ.	rel.
1.	EM properties:			
	helicity amplitudes (Q^2)	\checkmark	() <	B.1
	static moments	\checkmark	\checkmark	A.3
2.	Strong decays:			
	"missing" resonances	\checkmark	<	A.1, A.2
	instanton-ind. $B^* \rightarrow B\eta^{(')}$	0	_	
	pilot study (SM): not feasible			
3.	Hadron interactions	_	_	
	(coupl. ch.) -not started yet-			
4.	Field theoretical foundations		—	
	-not started-			
	charmed baryons	\checkmark		
	(semileptonic decays)	\checkmark		

Publications

- 1. M. Koll, R. Ricken, D. Merten, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 9 (2000) 73
- R. Ricken, M. Koll, D. Merten, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 9 (2000)
 221
- U. Löring, K. Kretzschmar, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10 (2001) 309–346
- 4. U. Löring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10 (2001) 395–446
- 5. U. Löring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10 (2001) 447-486
- D. Merten, R. Ricken, M. Koll, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 13 (2002) 477–491
- D. Merten, U. Löring, K. Kretzschmar, B.C. Metsch, H.R. Petry, Eur. Phys. J. A14 (2002) 477–489
- 8. B.C. Metsch, U. Löring, D. Merten, H.R. Petry, Eur. Phys. J. A 18 (2003) 189–192
- 9. D. Merten, U. Löring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 18 (2003) 193–195
- 10. R. Ricken, M. Koll, D. Merten, Eur. Phys. J. A 18 (2003) 667–689
- T. van Cauteren, D. Merten, T. Corthals, S. Janssen, B.C. Metsch, H.R. Petry, J. Ryckebusch, Eur. Phys. J. A20 (2004) 283
- 12. T. van Cauteren, J. Ryckebusch, B. Metsch, H.-R.Petry, Eur. Phys. J. A **26** (2005) 339-359
- 13. S. Migura, D. Merten, B. Metsch, H.-R. Petry Eur. Phys. J. A 28 (2006) 41
- 14. S. Migura, D. Merten, B. Metsch, H.-R. Petry Eur. Phys. J. A 28 (2006) 55
- 15. Ch. Haupt, B. Metsch, H.-R. Petry, Eur. Phys. J. A 28 (2006) 213-225

