

Meson Photoproduction from Nuclei – Medium Modifications of Mesons Teilprojekt B4

SFB/TR16

Volker Metag II. Physikalisches Institut Universität Giessen Germany

- motivation
- first observation of medium modifications of the ω meson:
 a.) mass shift
 - b.) fragmentation of ω strength?
 - b.) in-medium width
- first indication for an ω -nucleus bound state: ${}^{11}_{\omega}\mathbf{B}$?
- modifications of $\pi\pi$ correlations in nuclei
- summary and outlook

SFB/TR16 Mitgliederversammlung Bommerholz, 28.11.2006

Motivation

- hadrons = excitations of the QCD vacuum
- QCD-vacuum: complicated structure characterized by condensates
- in the nuclear medium: condensates are changed
- \rightarrow change of the hadronic excitation energy spectrum

$$\begin{array}{ll} \text{G.E.Brown and M. Rho,} & \frac{\text{m}^{*}}{\text{m}} \approx \frac{\left\langle \overline{\mathbf{q}} \mathbf{q} \right\rangle^{*}}{\left\langle \overline{\mathbf{q}} \mathbf{q} \right\rangle^{*}} \approx 0.8 \left(\rho \approx \rho_{0} \right) \\ \text{PRL 66 (1991) 2720} & \overline{\text{m}} \approx \frac{\left\langle \overline{\mathbf{q}} \mathbf{q} \right\rangle^{*}}{\left\langle \overline{\mathbf{q}} \mathbf{q} \right\rangle^{*}} \approx 0.8 \left(\rho \approx \rho_{0} \right) \\ \text{T.Hatsuda and S. Lee,} & \frac{\text{m}_{V}^{*}}{\text{m}_{V}} = \left(1 - \alpha \frac{\rho_{B}}{\rho_{0}} \right); \alpha \approx 0.18 \end{array}$$

⇒ widespread experimental and theoretical activities to search for and study in-medium modifications of hadrons model predictions for in-medium masses of mesons

\omega-mass roughly constant

at normal nuclear matter density

Model predictions for spectral functions of ρ and ω mesons

structure in spectral function due to coupling to baryon resonances

ω spectral function (structure due to coupling to S_{11,}P₁₃ resonances)

ω-mass in nuclei from photonuclear reactions

J.G.Messchendorp et al., Eur. Phys. J. A 11 (2001) 95

advantage:

- $\pi^0\gamma$ large branching ratio (8 %)
- no ρ -contribution ($\rho \rightarrow \pi^0 \gamma: 7 \cdot 10^{-4}$)

disadvantage:

• π⁰-rescattering

no distortion by pion rescattering expected in mass range of interest; further reduced by requiring T_{π} >150 MeV

No change of mass and lineshape for longlived mesons (π^0 , η , η') decaying outside nuclei

inclusive $\omega \rightarrow \pi^0 \gamma$ signal for LH₂ and Nb target

D. Trnka et al., PRL 94 (2005) 192203

difference in line shape of ω signal for proton and nuclear target consistent with $m_{\omega} = m_0 (1 - \alpha \rho / \rho_0)$ for $\alpha = 0.13$

decomposition of ω signal into in-medium and vacuum decay contributions

lineshape of vacuum contribution taken from LH₂ experiment shape of in-medium contribution taken from BUU simulation (P. Mühlich and U. Mosel, NPA (2006)), assuming $m_{\omega} = m_0(1 - 0.16 \rho/\rho_0)$

momentum dependence of ω signal (Nb-target)

D. Trnka et al., PRL 94 (2005)192303

determination of momentum dependence of ω - nucleus potential requires finer momentum bins \Rightarrow improved 2nd. generation experiment

refined analysis requiring recoil proton and p-ω coplanarity

D. Trnka (Gießen) priv. com.

counts / 12 MeV

⇒ difference in ω - line shape for proton and nuclear target confirmed; no upward mass shift of ω meson!

⇒ additional structure at ≈ 600 MeV!! (also seen for heavier targets) fragmentation of ω strength or background ??? under investigation

ω signal for high momenta

$700 \text{ MeV/c} < p_{\omega} < 1400 \text{ MeV/c}$

second structure at around 600 MeV/c² has dissappeared for high momentum ω mesons (mainly decaying outside nucleus)

access to in-medium ω width

in-medium ω width proportional to ω absorption: $\Gamma(\rho, |\vec{p}_{\omega}|) \propto \rho v \sigma_{abs}$

access to in-medium ω width

in-medium ω width proportional to ω absorption: $\Gamma(\rho, |\vec{p}_{\omega}|) \propto \rho v \sigma_{abs}$

ω gets broadened in the medium by a factor 10!!

E. Marco and W. Weise, PLB 502 (2001) 59

comparison of carbon and LH₂ data

D. Trnka

evidence for ω -mesic states also in Ca and Nb??

not understood background effect ??

improved experiment with Cerenkov detector for π/p discrimination in preparation: K. Makonyi, T. Kuske

Partial chiral symmetry restoration in the nuclear medium

degenerate in the chiral limit

$$\mathbf{m}_{\sigma} = \mathbf{m}_{\sigma 0} \left(1 - \alpha \frac{\rho}{\rho_0} \right)$$

P. Schuck et al., nucl-th/0002031

T. Hatsuda et al., PRL 82 (1999) 2840

R. Rapp et al., PRC 59 (1999) 1237

Outgoing pions should experience as little as possible final state interaction

> γ $\rho \approx \rho_{o}$

 $\alpha = 1 \Leftrightarrow$ nuclei transparent to pions

pions have relatively long mean free path for momentum range $\approx 50 - 150$ MeV/c, i.e. for $T_{\pi} \approx 10 - 70$ MeV

sizable mass shift with increasing A only observed for $\pi^0\pi^0$ channel, confirming J. Messchendorp et al., PRL 89 (2002) 222302

- <u>in-medium properties of the ω meson</u>:
 - evidence for dropping ω mass in the nuclear medium: $m_{\omega} = m_0(1 - 0.13\rho / \rho_0)$
 - possible evidence for fragmentation of ω strength?
 - in-medium ω width Γ(ρ=ρ₀, <|p₀|>≈750 MeV/c) ≈ 95 MeV
 → in-medium broadening by factor 10!
 - evidence for ω mesic nuclei?
 ongoing studies; improved experiment in preparation

• <u>in-medium ππ correlations</u>

sizabe concentration of π⁰ π⁰ strength near 2π threshold with increasing nuclear mass number A observed, as theoretically predicted; similar shift not observed in π[±]π⁰ channel; detailed comparison with BUU-simulations (O. Buss, Giessen) ongoing

A3, B4 future prospects (next application period)

depending on successor!!!

- <u>magnetic moments of baryon resonances</u>: remeasurement of μ (Δ^+) using circular polarisation (P=70%) measurement of the magnetic moment of the S₁₁(1535) resonance via $\gamma p \rightarrow p \eta \gamma'$, exploiting linear polarization (ELSA)
- <u>2-π production on nuclei</u>:
 no further experiments planned
- <u>measurement of ω spectral function in nuclei:</u>

further experiments likely (other nuclei, finer ω - momentum bins \rightarrow momentum dependence of ω -nucleus potential), depending on outcome of approved experiment (MAMIC)

• <u>search for ω-mesic nuclei:</u>

further experiments likely (other nuclei; better π /p-discrimination with Cerenkov-detector), depending on outcome of approved experiment (ELSA)

Teilprojekte A3 und B4

<u>Personnel:</u> (3.5 BATIIa positions) postdocs: M. Nanova (IIa), D. Trnka (IIa), PhD-students: S. Lugert (B4),, M. Thiel (A3);

A1: K. Makonyi from 1.1-30.6.2007: R. Gregor, from 1.9.07 F. Hjelm) from 1.8.07 H. Berghäuser

Sachmittel: 140 k€ for new BaF₂ and veto-electronics 30 k€: funds for electronics for 30 additional BaF₂ detectors

Summary and outlook

• An in-medium dropping of the ω meson mass has been observed consistent with $m_{\omega}(\rho) = m_0 \left(1 - 0.14 \cdot \frac{\rho}{\rho_0}\right)$

major step forward towards understanding the origin of hadron masses

- first information on in-medium ω width: $\Gamma_{\omega} \approx 95 \,\text{MeV}$ at $\rho = \rho_0 \,\text{and} \left\langle \left| \vec{p}_{\omega} \right| \right\rangle \approx 750 \,\text{MeV/c}$
- first indication for the existence of ω mesic ¹¹B
- remaining open questions
 - \Rightarrow momentum dependence of ω -nucleus potential?
 - \Rightarrow structure in ω strength function?
 - \Rightarrow confirm existence of ω mesic states in heavier nuclei
- \Rightarrow higher statistics needed !!
- ⇒ improved experiments planned at MAMI and ELSA

CBELSA/TAPS collaboration

II. Physikalisches Institut, Universität Gießen:

R. Gregor, S. Lugert, V. Metag, M. Nanova, R. Novotny, L.M. Pant, H. van Pee, M. Pfeiffer, A. Roy, S. Schadmand, <u>D. Trnka</u>, R. Varma

Physikalisches Institut, Universität Erlangen:

G. Anton, R. Bogendörfer, J. Hößl, G. Suft

Kernfysisch Versneller Instituut, Groningen:

J. Bacelar, R. Castelijns, H. Löhner, J. Messchendorp, S. Shende

Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn:

O. Bartholomy, V. Credé, A. Ehmanns, K. Essig, I. Fabry, M. Fuchs, C. Funke, E. Gutz, P. Hoffmeister, I. Horn, J. Junkersfeld, H. Kalinowsky, E. Klempt, J. Lotz, C. Schmidt, T. Szczepanek, U. Thoma, C. Weinheimer, C. Wendel

Physikalisches Institut, Universität Bonn:

H. Dutz, D. Elsner, R. Ewald, R. Gothe, S. Höffgen, F. Klein, F. Klein, M. Konrad, J. Langheinrich, D. Menze, C. Morales, M. Ostrick, H. Schmieden, B. Schoch, A. Süle, D. Walther

Institut für Kern- und Teilchenphysik, TU Dresden B. Kopf

Institut für Physik, Universität Basel:

I. Jaeglé, M. Kotulla, B. Krusche, T. Mertens

Petersburg Nuclear Physics Institute:

D. Bayadilov, Y. Beloglazov, A. Gridnev, I. Lopatin, A. Radkov, V. Sumachev

Expected ω in-medium signal

no distortion by pion rescattering expected in mass range of interest

$\pi\pi$ interaction in the chiral unitary model

M.J. Vicente Vacas and E. Oset et al., nucl-th/0204055 <u> $\pi\pi$ - interaction in vacuum</u>:

 σ = resonance in $\pi\pi$ interaction

 $\pi\pi$ - interaction in the nuclear medium: dro

coupling to N^{*} resonances Roper resonance $P_{11}(1440)$ drop of σ mass and width with increasing nuclear density ρ

chiral condensate as function of baryon density ρ_{B} and temperature T

<u>QCD sum rules:</u> provide link between hadronic observables and condensates $\frac{Q^2}{24\pi^2} \int ds \frac{R(s)}{(s+Q^2)^2} = \frac{1}{16\pi^2} \left(1 + \frac{\alpha_s}{\pi} \right) + \frac{1}{Q^4} \left[m_q \langle \overline{q} q \rangle + \frac{1}{24} \langle \frac{\alpha_s}{\pi} G^2 \rangle \right] + \text{higher order terms}$ hadronic spectral function: $R(s) \sim F^2 \frac{1}{\pi} \frac{\sqrt{s} \Gamma(s)}{(s-M_0^2)^2 + s(\Gamma(s))^2}$

BUU calculation of $\gamma A \rightarrow \omega + X$

P. Mühlich (Gießen), priv. comm. (2005)

red curve: CB/TAPS@MAMI 05

blue points: TAPS@MAMI 99/00

Counts (a.u.)

Ralf Gregor Stefan Lugert

E_γ = 400-500 MeV

 $M(\pi^0\pi^0)$ (MeV)

<- Old statistic ~ 150 datapoints New statistic ~ 9000 datapoints ->improvement by a factor of >60

refined analysis requiring recoil proton and p-ω coplanarity

additional structure at ≈ 600 MeV!!

fragmentation of ω strength or background ???

In-medium spectral function of the ω-meson

dependence of ω width on ω momentum

• ω gets broadened in the medium by a factor 10!!

- transparency ratio measurement also possible for charmed mesons in the nuclear medium $\Rightarrow \sigma_{inel}(p) \sim \Gamma(p)$; (J/ ψ -suppression in AA collisions)
- experimental problem: luminosity L ~ A^{-2/3} (for Au factor 30 !!)
 p loss due to single Coulomb scattering ~ Z²

access to in-medium ω width

in-medium ω width proportional to ω absorption: $\Gamma \propto \rho v \sigma_{abs}$

transparency ratio: $\mathbf{T}_{\mathbf{A}} = \frac{\boldsymbol{\sigma}_{\gamma \mathbf{A} \to \omega \mathbf{X}}}{\mathbf{A} \cdot \boldsymbol{\sigma}_{\gamma \mathbf{N} \to \omega \mathbf{X}}}$

data: D. Trnka (CBELSA/TAPS) transport calculation: P. Mühlich (Giessen)

 $\Gamma \approx 60 \text{ MeV} \text{ at } \rho = \rho_0$

- need measurement on d for normalization
- need better statistics to separate coherent ω production

Prediction of ω mesic states

E. Marco and W. Weise, PLB 502 (2001) 59

		$(\varepsilon_{nl},\Gamma_{nl})$ [MeV]				
nucleus	n	l = 0	l = 1	l=2		
$^{6}_{\omega}\mathrm{He}$	(1)	(-49, 36)	(-18, 33)	_		
$^{11}_{\omega}{ m B}$	(1) (2)	(-66, 41) (-14, 34)	(-40, 39)	(-13, 37)		
$^{39}_{\omega}{ m K}$	(1) (2) (3)	(-88, 44) (-54, 45) (-16, 41)	$(-73, 45) \\ (-36, 44) \\ -$	$(-57, 45) \\ (-17, 44) \\ -$		

Prediction of ω mesic states in QMC and QHD models

K. Saito, K. Tsushima, A.W. Thomas, hep-ph/0506314

		$\Gamma_{\eta}^{0} = 0$		$\Gamma^0_{\eta'} = 0$	$\Gamma^0_\omega = 8.43$	(MeV)	$\Gamma^0_\omega = 8.43$	(MeV)
		$\gamma_{\eta} = 0.5$	(QMC)	$(\dot{Q}MC)$	$\gamma_{\omega}=0.2$	(QMC)	$\gamma_{\omega} = 0.2$	(QHD)
		E_{η}	Γ_η	$E_{\eta'}$	E_{ω}	Γ_{ω}	E_{ω}	Γ_{ω}
$_{j}^{6}$ He	1s	-10.7	14.5	*	-55.6	24.7	-97.4	33.5
$_{j}^{11}\mathrm{B}$	1s	-24.5	22.8	*	-80.8	28.8	-129	38.5
$_{j}^{26}\mathrm{Mg}$	1s	-38.8	28.5	*	-99.7	31.1	-144	39.8
Ū.	$1\mathrm{p}$	-17.8	23.1	*	-78.5	29.4	-121	37.8
	2s			*	-42.8	24.8	-80.7	33.2
$\frac{16}{j}$ O	1s	-32.6	26.7	-41.3	-93.4	30.6	-134	38.7
U U	$1\mathrm{p}$	-7.72	18.3	-22.8	-64.7	27.8	-103	35.5
$\frac{40}{j}$ Ca	1s	-46.0	31.7	-51.8	-111	33.1	-148	40.1
-	$1\mathrm{p}$	-26.8	26.8	-38.5	-90.8	31.0	-129	38.3
	2s	-4.61	17.7	-21.9	-65.5	28.9	-99.8	35.6
$\frac{90}{j}$ Zr	1s	-52.9	33.2	-56.0	-117	33.4	-154	40.6
-	$1\mathrm{p}$	-40.0	30.5	-47.7	-105	32.3	-143	39.8
	2s	-21.7	26.1	-35.4	-86.4	30.7	-123	38.0
$\frac{208}{i}$ Pb	1s	-56.3	33.2	-57.5	-118	33.1	-157	40.8
	$1\mathrm{p}$	-48.3	31.8	-52.6	-111	32.5	-151	40.5
	2s	-35.9	29.6	-44.9	-100	31.7	-139	39.5

experiment at COSY (ENSTAR/Big-Karl): Roy et al. : $p^{12}C \rightarrow {}^{3}He + {}_{\eta}{}^{10}B; p^{6}Li \rightarrow {}^{3}He + {}_{\eta}{}^{4}He$ experiment at GSI: Hayano et al., EPJ A6 (1999) 105; ${}^{7}Li(d, {}^{3}He)_{\eta}{}^{6}He; T_{d} = 3.6 \text{GeV}$

meson-nucleus bound states – recoilless meson photo production

forward going nucleon takes over photon momentum

η -, ω -meson-nucleus potential

K. Saito, K. Tsushima, A.W. Thomas, hep-ph/0506314

predictions within the quark meson coupling model (QMC)

η: E(1s) = -39 MeV; Γ = 29 MeV ω: E(1s) = -100 MeV; Γ = 31 MeV

 $η: E(1s) = -56 \text{ MeV}; \Gamma = 33 \text{ MeV}$ ω: E(1s) = -118 MeV; Γ= 33 MeV Search for *w*-mesic nuclei

formation of ω -mesic nuclei in recoil-less quasi-free production: magic energy: E_{γ} = 2.75 GeV; forward going proton takes over photon momentum

Predictions for different *\omega***-nucleus potentials**

T. Nagahiro et al. N. Phys. A 761 (2005) 92

structure in excitation function of $\pi^0 p$ back-to-back emission near η -threshold: B(³He)= (5.5 ± 5) MeV; Γ = (39 ± 21)

η

Flatte fit to TAPS data M. Pfeiffer et al., PRL 94 (2005)

expected mass distribution for p, Nb

(including detector resolution and $2\pi^0$ background)

 $\gamma + (p,Nb)$ @ 1.2 GeV

after cut on π^0 kinetic energy

within $0.6 < M_{\pi^0 \gamma} < 0.8$:

outside	76%
inside no π^{0} -rescat.	22%
inside π^{0} -rescat.	1%
double-π ⁰	1%

First observation of in-medium modifications of the ω-meson

D. Trnka et al., PRL 94 (2005) 192303; experiment at ELSA

ω in-medium mass: 720⁺³⁵ MeV/c² consistent with $m_ω = m_0 (1 - 0.14 \rho/\rho_0)$ -5 Open questions: 1.) in-medium ω width? 2.) structure at 630 MeV/c²?

ω photo production off C and LH₂

David Trnka (Giessen) et al.

again difference in line shape of ω signal for proton and nuclear target

contribution from ω in-medium decays (C-target)

contribution from ω in-medium decays

 ω decays in vacuum removed by subtracting ω mass distribution measured with LH₂ target (75%)

strength of in-medium ω decays concentrated around masses of 720 MeV (systematic error due to normalization: +35, -5 MeV)

 $\Rightarrow \text{mass drop by about 7\%} \\ \text{at estimated baryon} \\ \text{density of about 0.55 } \rho_0$

consistent with $m_{\omega} = m_0 (1 - \alpha \rho / \rho_0);$ for $\alpha = 0.14$

almost quantitative agreement between experiment and calculation

Summed spectra (C+Nb)

countrate estimate for improved 2nd. generation experiment at MAMI C (A2-1)

P. Mühlich (priv. com.) most of the medium modifications occur for $E_{\gamma} \le 1.3 \text{ GeV}$ \Rightarrow MAMI C

targets	р	d	C	Ca	Nb	Pb
photon flux (0.8-1.4 GeV) [10 ⁶ /s]	13	13	13	11	10	8
target thickness [cm]	5	5	2	1	0.1	0.06
running time [h]	50	50	100	100	400	500
number of events	17 000	34 000	20 000	10 000	20 000	4 500
effective number of events	7 000	14 000	3 600	1 500	3 600	450

Total requested runng time 1300 h (including 100 h of no-target runs)

countrate estimate

for 2nd. generation experiment at ELSA (E5)

for ω mesic nuclei

targets	С	Ca	Nb
photon flux (0.8-2.9 GeV) [10 ⁶ /s]	10	10	8
target thickness [cm]	2	1	0.1
running time [h]	200	300	500
number of events	300	300	300
effective number of events	150	120	100

• look for η -mesic nuclei in recoilless production around magic photon energy: $E_{\gamma} \approx 930 \text{ MeV}$ decay mode: $\eta N \rightarrow N \pi^0$ (back-to-back emission)

Total requested running time <u>1100 h</u> (including no-target runs of 100 h)

The accelerator facility ELSA at Bonn

ELSA = Elektron Strecher Anlage

The Crystal Barrel/ TAPS detector @ELSA

tagging spectrometer: tagging range: 31% -94% of E_{beam} $E_{\gamma} = E_{beam} - E_{e}$ CB: 1290 CsI modules TAPS: 528 BaF₂ modules

Proposed experimental setup for experiment E5

hadrons: strongly interacting composite particles

Baryons (qqq)

proton: (uud) $J^{\pi} = \frac{1}{2^+}, \uparrow \downarrow \uparrow$ neutron: (udd) $J^{\pi} = \frac{1}{2^+}, \uparrow \downarrow \uparrow$ Mesons $(q\overline{q})$

pseudoscalar mesons: $J^{\pi} = 0^{-}, \uparrow \downarrow \pi^{+}(u\bar{d}), \pi^{0}(u\bar{u}-d\bar{d})/\sqrt{2}, \pi(d\bar{u})$

<u>vector mesons</u>: $J^{\pi} = 1^{-}, \uparrow\uparrow$ $\rho^{+}(u\overline{d}), \rho^{0}(u\overline{u}-d\overline{d})/\sqrt{2}, \rho^{-}(d\overline{u})$ $\omega(u\overline{u}-d\overline{d})/\sqrt{2}, \phi(s\overline{s})$

scalar mesons: $J^{\pi} = 0^+, \uparrow \downarrow \sigma, (\pi\pi)_{l=0}$

how is the mass of the nucleon generated?

symmetry

the interaction among quarks has to become so strong that it overcomes their quantum mechanical resistance to localization (Wilczek)

mass split comparable to hadron masses !

mesons

mesons

phase transition: ferromagnetism \rightarrow paramagnetism

restoration of full rotational symmetry

medium modifications of vector mesons in <u>heavy ion reactions</u> and <u>elementary processes</u>

Chiral condensate as function of baryon density $\rho_{\rm B}$ and temperature T

NJL - model :

V.Bernard and U.G.Meißner Nucl. Phys. A 489 (1988) 647

S. Klimt et al. Phys. Lett. B 249 (1990) 386

partial restoration of chiral symmetry ?

Link between hadronic and QCD-description: QCD sum rules

hadronic side QCD -side

$$\frac{Q^2}{\pi} \int_0^\infty ds \frac{\Im \min(s)}{s(s+Q^2)} = -\frac{1}{8\pi^2} \left(1 + \frac{\alpha_s}{\pi}\right) \ln \frac{Q^2}{\Lambda^2} + \frac{m_q \langle \overline{q}q \rangle}{Q^4} + \frac{1}{24} \frac{\langle \frac{\alpha_s}{\pi} G^2 \rangle}{Q^4} - \frac{112}{81} \alpha_s \pi \frac{\langle \overline{q}q \rangle^2}{Q^6} + \dots$$

No direct relation between in medium properties of hadrons and the quark condensate but an indirect one via QCD sum rules

Suppression of π^0 rescattering events

after rescattering π^0 kinetic energy below 150 MeV \cong 250 MeV/c (Δ -decay kinematics) \Rightarrow cut on π^0 kinetic energy

J.G.Messchendorp et al. Eur. Phys. J. A11 (2001) 95

photoproduction of ρ , ω mesons off nuclei

distribution of decay sites (M. Effenberger et al.)

a sizable fraction of ω mesons decay outside of the nucleus average baryon density at ω decay points $\langle \rho \rangle = 0.11 \rho_0$

theoretical predictions for mass changes of vector mesons in the nuclear medium

1.) lowering of in-medium mass
2.) broadening of resonance
for ρ_BA, TA

e⁺e⁻ invariant mass spectrum from p A \rightarrow ρ, ω, Φ +X at 12 GeV

S. Yokkaichi, Chiral-2005, Japan, KEK-E325

Comparison to model calculation assuming $m^* = m_0 (1 - 0.10 \rho / \rho_0)$ \Rightarrow modification of $\rho (\omega)$ spectral function
