The Bonn Electron-Stretcher Accelerator

Status D2

Acceleration of polarized electrons in a medium size stretcher ring up to 5 GeV

W olfgang Hillert

Physics Institute of Bonn University

- 1. Accelerator Status
- 2. Polarized Electrons @ 3.5 GeV
- 1. Energy Upgrade to 5 GeV
- 2. Topics for future Funding

Elektronen Stretcher Anlage ELSA

Wissenschaftliche und technische Leitung: W. Hillert

W. v. Drachenfels		Wissenschaftliche Mitarbeiter: F. Frommberger		C. Nietzel	
Betriebsingenieur: FG. Engelmann					
Hochfrequenz	Elektro- Energietechnik	Elektronik	Mechanik	Vakuum	Technische Infrastruktur
W. Kriesten	KP. Faßbender M. Holzhäuser P. Mahlberg H. Schug J. Schneider	H. Bücking A. Dieckmann M. Humpert W. Lindenberg R. Müller	T. Alscheid B. Neff M. Brock	J. Karthaus N. Rick	T. Becker W. Merfert R. Schulz Aytekin Yildiz

Doktoranden: A. Balling, M. Eberhardt, F. Klarner, T. Pusch, J. Wittschen **Diplomanden:** S. Aderhold, A. Aqrawi, S. Band, O. Preisner, A. Roth

Relationship with the SFB/TR

- ELSA is the "workhorse" for all planned hadron physics experiments
- Polarized electrons @ 3.2 GeV required for proposals 2, 4, 6 and 7 (4 out of 7!)
- ELSA design energy (3.5 GeV) needed in near future (polarized/unpolarized)
- Increase of maximum electron energy to *E* ≥ 5 GeV is "highly desirable"

Infrastructure Improvement

- new 10kV power station
- new cooling plants and heat exchangers
- new cooling circuits synchrotron (magnets + RF)
- temperature stabilization ELSA tunnel ±0.5°C
- new SPS-based slow control of infrastructure
- new SPS-based radiation security system
- new ODL system
- ...and in near future:
- control room renovated with TLC.

Accelerator Improvement

- cooling upgrade of dipole PS for 3.5 GeV
- pulsed PS's for septum 3 and septum MSI 30
- 30 new water cooled **BPM stations**
- improved (fast) read-out of ELSA BPM's
- 32 ion clearing electrodes
- amplitude stabilized accelerator RF

...and in near future:

- new pulsed PS for Ti:Sa-laser (polarized source)
- state of the art capacitor charger for LINAC II
- general overhaul LINAC I with new pulsed gun

Experimental Area

- concrete pillars for rail system detectors and PT
- set-up of bending magnets and beam dump
- surveying and adjustment to ±0.2mm
- set-up of electron and photon beamline
- new slow control for external beamline vacuum
- **new diagnostics** (RF cavity, SR & γ cameras)
- field map measurement of tagger magnet
- ...and in nearest future:
- external polarized beam with low background

- 1. Delivery of a **3.5 GeV polarized electron beam** with high **long term stability**
- Internal polarimetry with high accuracy by Compton backscattering of polarized laserlight
- 5. Development of **design concepts** for an increase of the maximum **electron energy to 5 GeV**
- 7. Development of **correction schemes** for a fast crossing of **depolarizing resonances** up to 5 GeV

Source of Polarized Electrons

Set up of new loadlock will start beginning of next year

Source of Polarized Electrons

new photocathode loaded:

Be-InGaAs/Be-AlGaAs strained layer superlattice (Nagoya 1998)

Quantum lifetime > 3000 hours at the moment

Ready for 5 GeV

COPS PS

newly developed PS

3333444

newly developed

vertical corrector &

water-cooled beam pipe

Harmonic Correction

Tune Measurement

- 1. Delivery of a **3.5 GeV polarized electron beam** with high **long term stability**
- Internal polarimetry with high accuracy by Compton backscattering of polarized laserlight
- 5. Development of **design concepts** for an increase of the maximum **electron energy to 5 GeV**
- 7. Development of **correction schemes** for a fast crossing of **depolarizing resonances** up to 5 GeV

Nucl. Instr. and Meth. A 492 (2002) 356

Internal Polarimetry

- 1. Delivery of a **3.5 GeV polarized electron beam** with high **long term stability**
- Internal polarimetry with high accuracy by Compton backscattering of polarized laserlight
- 5. Development of **design concepts** for an increase of the maximum **electron energy to 5 GeV**
- 7. Development of **correction schemes** for a fast crossing of **depolarizing resonances** up to 5 GeV

Magnets and Power Supplies

• <u>Dipole Magnets:</u>

- $-B_{max}$ = 1.073 T \rightarrow 1.533 T: new magnets required!
 - gap reduction from 50 mm to 40 mm
 - number of coil pancakes increasing from 3 to 4
- power supply: major modifications necessary!
- Quadrupole Magnets:
 - $-g_{max}$ = 10.5 T/m → existing magnets o.k. (10 T/m)
 - power supply I_{max} = 910 A \rightarrow 970A: minor modifications

<u>Setupole Magnets:</u>

- $-g'_{max}$ = 53.4 T/m² \rightarrow existing magnets o.k. (100 T/m²)
- existing power supply o.k.: I_{max} = 190 A << 600 A

Beam Sizes and Apertures

 $\sigma_{x} \leq 7.3 \text{ mm} = 6.85 \sigma_{A} \\ \sigma_{z} \leq 2.0 \text{ mm} = 7.50 \sigma_{A} \end{pmatrix} \rightarrow \tau \geq 115 \text{ h}$

no critical elements except extraction septum magnets

Dynamic Aperture at ELSA

Accelerating Voltage

with 4 n. c. resonators limitation to $E \le 4.3 \text{ GeV}$

Operation in a fast ramping circular accelerator puts questions to:

RF Operation Parameters

Energy Ramp 1.2 GeV -> 5.0 GeV

Crossing of Sy.-Sidebands

SC RF-System:

Acceleration of I = 50 mA up to E = 5 GeV:

- \checkmark standard parameters: $Q_0 = 2 \cdot 10^9$, $R_s = 10^{11} G\Omega$
- ✓• optimization for 50mA @ 5GeV: $Q_{ext} = 4.10^6$, $\beta = 540$
- ✓ beam lifetime $t \ge 1 \min @ 5 \text{GeV}$ with q = 2.7
- two 5-cell resonators $\leftrightarrow U_{Cav} \le 4.5 \text{ MV/m}$ maximum generator power $P_g \le 260 \text{ kW}$

 - maximum power for input coupler $P_{cp} \leq 130 \text{ kW}$
 - maximum detuning $\Delta f \leq 3.5$ kHz, depends on R_s/Q
 - maximum overvoltage factor $q \leq 50$
 - investigation of HOM-coupler parameters has been started, no principle problems expected

- 1. Delivery of a **3.5 GeV polarized electron beam** with high **long term stability**
- Internal polarimetry with high accuracy by Compton backscattering of polarized laserlight
- 5. Development of **design concepts** for an increase of the maximum **electron energy to 5 GeV**

7. Development of **correction schemes** for a fast crossing of **depolarizing resonances** up to 5 GeV

Resonance Strengths

1. Variation of the vertical tune on the energy ramp:

Intrinsic Resonances

1. Variation of the vertical tune on the energy ramp:

Intrinsic Resonances

1. Reduction of vertical beam size with skew quadupoles

high resolution SR-monitor needed for measurement of the vertical beam size

Final Report SFB/TR

SFB-report will be dealing with follow. topics:

- acceleration of polarized electrons to 3.5 GeV
- internal polarimetry
- design concepts for energy upgrade to 5 GeV
- adv. correction schemes for resonance crossing

In addition, a separate detailed design report will be written, dealing with all aspects of an energy upgrade to 5 GeV

"Next Funding"

 $I_{\parallel}^{thres} < 20 \text{ mA observed} @ 2.3 \text{ GeV}$

<u>"Next Funding"</u>

- incoh./coh. tune shifts due to wall effects: $\Delta Q_{x/z}^{\text{inc}} = -\frac{eI}{4\pi^2 \varepsilon_0} \frac{m_0(\beta c)^3 \gamma}{m_0(\beta c)^3 \gamma} \cdot \left\{ \frac{\left(1 - \beta^2 - \eta\right)}{B} \frac{\varepsilon_{sc}}{a^2} + \left[\beta^2 + \frac{\left(1 - \beta^2 - \eta\right)}{B}\right] \frac{\varepsilon_1}{h^2} + \beta^2 \frac{\varepsilon_2}{g^2} \right\}$
- neutralization of residual gas
- collective instabilities: Z_{\parallel} , Z_{\perp} , HOM

$$\sum_{l=-\infty}^{\infty} \left(\Omega_{c} - l\Omega_{S}\right) \hat{\tau} g_{l}(\hat{\tau}) e^{-jl\phi} = \frac{2\pi I \Omega_{S}}{h\omega_{0}^{2} U_{wf} \cos\varphi_{S}} \frac{\partial g_{0}(\hat{\tau})}{\partial \hat{\tau}} \sum_{p,k=-\infty}^{\infty} \frac{Z_{P}(p\omega_{0})}{p} j^{k-1} e^{-jk\phi} k J_{k}(p\omega_{0}\hat{\tau}) \sum_{m=-\infty}^{\infty} S_{m}(p\omega_{0})$$

long. and transverse feedback systems

Elektronen-Stretcher-Anlage (ELSA)

Closed Orbit Correction

Closed Orbit Correction

Beam positions horizontal

horizontal orbit, measured in every quadrupole

Beam positions vertical

vertical orbit, measured in every quadrupole

Achieved maximum Polarization

2.4 GeV←GDH→2.92 GeV