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Introduction

The two principal reasons for studying meson photoproduction are:

e to determine as accurately as possible the parameters of known
baryon resonances, i.e. masses and partial widths, including the
radiative widths as they offer a direct probe of hadron structure
and can discriminate among models

e to discover new baryon resonances, if any such exist, and to deter-
mine their parameters

For both purposes the analyis should be as model-independent as pos-
sible. The ideal is to perform a “complete set of experiments”, for
which pseudoscalar (and scalar) photoproduction are the only feasible
reactions.

It is frequently argued that it is necessary to consider vector-meson
photoproduction in addition to pseudoscalar photoproduction to re-
solve the “missing resonance” problem on the grounds that these states
do not couple strongly to the /N channel.



However, many of the known resonances couple strongly to the V-N
channel (necessarily so, otherwise it would not be possible to access
them in photoproduction). As the states are broad and overlapping
there must be mixing through these common hadronic channels, so
“missing resonances’ with the same quantum numbers as the “stan-
dard resonances” and not too far apart in mass should be seen in
pseudoscalar photoproduction.

[t is not possible to perform a “complete set of experiments” for vector-
meson photoproduction, although constraints can be placed on the spin
observables that should be incorporated directly into data analysis.
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There are non-resonant backgrounds not present in pseudoscalar pho-
toproduction (pomeron exchange, contact term). Data analysis is nec-
essarily model-dependent.

Pseudoscalar photoproduction should give access to most non-strange
baryon resonances, although the vector-meson channels cannot neces-
sarily be ignored in the amplitude analysis and certainly cannot be
ignored for a full interpretation.



Amplitude Analysis 1

There are basically two approaches to amplitude analysis: energy-
independent and energy-dependent.

e The more obvious problems with an energy-independent analysis
are ensuring uniqueness at each energy and continuity from energy
to energy (there is no a priori guarantee that the fit at one en-
ergy will match correctly to that at a neighbouring energy) and
satisfying the constraints of analyticity (which connects the energy
dependence of the real and imaginary parts of a partial-wave ampli-
tude). A less-obvious problem is that of the cut off in the partial-
wave expansion, i.e. neglecting all partial waves with [ > [ .x.
Although the data do not allow the higher partial-waves to be
measured, they are non-zero and give a contribution through in-
terference with those partial waves included in the analysis. It is
necessary to model these. An obvious example is pion exchange in
charged-pion photoproduction. An energy-independent analysis is
not quite as model independent as it may seem.

e The problems with an energy-dependent analysis is that it is based
on phenomenological parametrizations or a specific dynamical model
or some combination of the two. Phenomenological models tend to
oversimplify the parametrization of the resonant amplitudes and
the non-resonant background that in some cases can be apprecia-
bly larger than the resonance contributions. Dynamically-based
models build in correlations among partial waves that may not be
physical and also tend to oversimplify the parametrization of the
resonant amplitudes.



e A multiplicity of models is available for consideration, from disper-
sion relations, which are the least prescriptive, to a wide variety
of dynamical models, some of which are very prescriptive. Isobar
models were developed to extract the parameters of the higher-
mass nucleon resonances and to incorporate final states other than
the pion. K-matrix effective-Lagrangian models were developed
initially to study the A(1232) and were later combined with iso-
bar models to perform amplitude analyses as well as extracting
resonance parameters. Further progress was made in extracting
resonance parameters using the multi-channel K-matrix method
combined with the unitary coupled-channel isobar model. Finally
dynamical coupled-channel models including off-shell scattering ef-
fects, which are claimed to be significant, have been developed.
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[t sounds straightforward to use resonance parametrization in energy-
dependent analysis or for extracting resonance parameters, but in prac-
tice parametrizing resonances has to be done with great care. Some
of the dangers in amplitude analysis are illustrated by the case of the
p(1465). This state is observed in e*e™ — 77~ through interference
with the tail of the p(770), easily seen in the cross section. The analy-
sis is complicated by the presence of strong thresholds, principally wm
and a;m. Passing thresholds changes the total width of a resonance and
assumptions have to be made about the magnitude and energy depen-
dence of the partial widths. As a consequence of different assumptions
about the high-mass tail of the p, the mass of the p(1465) varies from
1300 to 1500 MeV and its width from 150 to 500 MeV.



Some history: analyticity

For simplicity consider w7 scattering and construct amplitudes which
are symmetric and antisymmetric under crossing (s <+ u). Take 777+
and 777~ as an example and define

A (vt) = Alr™n" > i)
A_(vt) = Al n~ = ' 1)
1

;(s —u). Then the amplitudes which are symmetric and

antisymmetric under crossing are
A1) = LA, 1) + A1)
Aru,t) = $(AL(v,t) — A_(,))
and they satisfy the fixed-¢ dispersion relations

where v =

S
ReAS(v,t) = lP/ dv/’ ANV, 8 + (v — —v)
0

m (V' —v)
/ S
_ lP/ 0 22U III;A (V1)
T Jo (V'* —1v?)
A
ReA*(v,t) = lP/ dv’ In(l;j <Vy)t) (v — —v)
/s 0 —
A
_ 2_VP/ dVIm/QI (V1)
v 0 ( / —VQ)

Strictly the lower limits on the integrals are given by the physical
thresholds in the s and w channels but ImA = 0 below this limit.
Poles can be incorporated by setting ImA ~ d-function at appropri-
ate values of s or u. Examples of poles are s- and u-channel nucleon
exchange in pion-nucleon scattering and s- and u-channel nucleon ex-
change and t-channel pion exchange in pion photoproduction. Disper-
sion relations for the partial wave amplitudes may be obtained from



those for A%(v,t) and A*(v,t). The partial-wave dispersion relations
which are the ones of direct relevance for partial wave analysis and
which have been applied with some success in pion-nucleon scattering
and pion photoproduction.

Suppose that the large-v behaviour of A*(v,t) is dominated by a sum
of Regge poles for v > v:

R —73(t)
ANy, 1) ~ E; D(a;(t) + 1) Sin(ﬂai(t»(l

_ e imay (t))<2y)ai ()

where the a;(t) are the Regge trajectories. It is then possible to recast
the dispersion relation into a finite-energy sum rule (FESR):

/ dv/ ImA™NV ) t) ——WZ@ )4 O D (ay(t) + 2)

0

For an amplitude A® that is even under crossing the corresponding
FESR is

/V dv/ V'ImAMN V| t) ——WZ@ )42 D (ay(t) + 3)
0

The FESRs relate the Regge-pole parameters (;(t) and «;(t) to the
low-energy amplitudes. For amplitudes dominated at low energy by
resonances this leads to a relation between Regge poles and resonances
called duality.



More history: duality

The practical value of FESRs was on putting constraints on the high-
energy region, that is using knowledge of the resonance region to help
evaluate the Regge terms, notably in pion-nucleon scattering and in
pion photoproduction. Unlike the partial-wave dispersion relations the
FESRs are not directly relevant for partial-wave analysis (PWA) al-
though they do offer some insight. In particular the roles of resonances
and zeros in the amplitude and the connection between the s- and
t-channels are illustrated clearly by the concept of duality.

Strictly speaking, the FESRs are only valid for © sufficiently large for
the Regge-pole expression to be a good numerical approximation to
the amplitude for v > . However in practice # has to be taken to be
the upper limit of the phase-shift analysis, typically /s ~ 2 GeV. If
we write the FESR as

Regge

/V dv' Tm (AN, 1) — ARepee(V', 1)) =0

this means that Aﬁegge
the average, provided that the the averaging takes place over inter-
vals smaller than [0,7]. This does happen in practice, as seen in the
comparison of the experimental pr.p,(o (7~ p) — o1°(7p)) with an

extrapolated Regge fit.

(v, t) describes the amplitude at low energy on
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The 7~ p and 7" p elastic scattering amplitudes receive equal contri-
butions from pomeron exchange, which cancels in the difference, so
the non-pomeron t-channel Regge exchanges are dual to the s-channel
resonances. This is assumed to be so for 7~ p and 7 p scattering sep-
arately. The extrapolations to low energy of the Regge fits to the
high-energy total cross sections gives a good description of the low-
energy cross sections on average. For both reactions, the resonances sit
on a non-resonant background. This leads us to the assumption that
pomeron exchange is dual to the low-energy s-channel non-resonant
background. This is two-component duality, and is also true for the
total photoproduction cross section.

Note that duality is not a precise concept. Although approximate, the
concept does make explicit the fallacy of adding s-channel, u-channel
and t-channel contributions as this is certainly double counting. A
model is not required to see this as it is a general consequence of
analyticity.
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An explicit realisation of two-component duality can be seen in the 7N
partial-wave amplitudes.



The combinations
1 3 1 3
0 _ 1 1

fr =35(fa +2f2)  fl =50 - f2) (1)
correspond to isospin 0 and isospin 1 exchange in the ¢-channel. As
the pomeron does not contribute to the ¢-channel / = 1 exchange
amplitude, two-component duality predicts that the f'. should be given
entirely by s-channel resonances. On the other hand, the f;. should
not be given by s-channel resonance alone, but have a predominantly-
imaginary smooth background on which the s-channel resonances are

superimposed. With the exception of the S-waves, this is what TN
partial-wave analysis shows. The P; and Fj; partial waves are typical

examples.
0.7 : : 0 ‘ ‘
0 | P3, 1=0 00 | P3, I=1
05 | f 01}
0.4 r 1 -0.15 ¢
03} f 02!
0.2 r 1 -0.25 ¢
01} f 03!
- ‘ ‘ ‘ 0.35 L ‘ ‘ ‘ ‘
04 02 0 02 04 02 01 0 01 02
0.25 | 0.2 F5, I=1
0.2 | 0.15 |
0.15 ¢
0.1t
0.1}
0.05 |
0.05 |

oL . 0 —
-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2 -0.15 -0.1 005 0 005 0.1 0.15




The Veneziano Model

The Veneziano model for the non-pomeron part of the scattering am-
plitude is crossing symmetric, analytic, has Regge behaviour, satisifies
FESRs, contains resonances and exhibits duality. However it does not
satisfy unitarity. For a reaction which is identical in all three channels,
for example w7 scattering, the Veneziano amplitude is

A(s,t) = B(B(—a(s), —alt) + B(—a(s), —a(u))
+ B(—a(t), —a(u)))

which is explicitly s <> t, s <> u, t <> u crossing symmetric. B(x,y)
is the Euler Beta function I'(z)I'(y) /T'(z +v), 8 is a constant and «(s)
is a real linear trajectory a(s) = a(0) + o's. The model contains an
infinite set of daughter trajectories and zeros. The latter arise from the
poles in the denominator Gamma functions at, for example, a(s) +
a(t) = integer and hence at s + ¢ = constant for linear trajectories.
Daughter trajectories are now well established and were predicted by
Regge theory long before the lower-lying mesons were discovered.
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Four families of daughter Regge trajectories. Only PDG “four-star”
resonances have been included.



Barrelet zeros

As B(zx,y) may be written as a sum of poles in either variable

n! z+nl(y—n)

(=) 1 Iz
vy (2)

n! y+nl(z—n)

B(—a(s),—a(t) = ) —"——=

with R, a polynomial of degree n:
1
Ra(t) = —(a(t) +1)(a(t) +2) - (at) + 1)
The zeros of the Veneziano model are in fact of greater generality, and
depend only on the standard assumptions about analyticity. They
are very relevant for partial-wave analysis as they identify multiple
ambiguities, first stressed by Barrelet and are known as Barrelet zeros.

The Veneziano model is characterized by the trajectories of its zeros
which are straight lines parallel, for example, to s + ¢t = 0, passing
through the intersections of the two pole sets s = s;, t = ¢;. In
practice the zero trajectories are neither parallel nor linear and they
have imaginary parts, but they retain the fundamental properties of
the Veneziano model:



(i) they are regular in the Mandelstam (s-t) plane

(ii) they determine the spin of the resonances

(iii) they pass through the intersection of each couple of resonance lines
in crossed channels.

The zeros occur in complex-conjugate pairs. The form of the coefficient
R, (t) implies that there is an infinity of zeros, but in practice the rel-
evant number is finite as the order of partial waves which are allowed
to contribute is restricted to [ < [,,.x. Let 2 = cos 6. The relation be-
tween the differential cross section and the amplitude, o(z) = |f(2)[%
is extended to complex values of z by

o(z) = f(z) x f1(z7)

The simplest solution, f(z) = a(z)%, is not appropriate as each zero of
o becomes a branch point of a%, and f(z) is analytic in the z-plane,
except on the right- and left-hand cuts. So let us write
n . n
o(2) = ao(2) | [(z = 20)(z = 2) = loo(2)2 exp(ig(2)) | [ (= = 20) [
i=1 i=1
where 0((z) is analytic in the z-plane and ¢(z) is an arbitrary phase.
The phase is constrained by the optical theorem and elastic unitarity,
but there remain 2" discrete ambiguities corresponding to the number
of ways of exchanging some of the z; with their complex conjugates.
Barrelet obtained the zeros for /N scattering and showed that some
solutions jumped from one set of zeros to another despite the partial-
wave amplitudes appearing to be continuous. So given these discrete
ambiguities how was it possible to write a paper with the title “Ev-
idence from mp phase shift analysis for nine more possible nucleon
resonances’ ?



Amplitude analysis II

Provided the energy is not too high then elastic unitarity holds. For
elastic scattering this means that the partial-wave amplitudes can be
written as

fi(s) = e sin 6,

with d; real, and for photoproduction the amplitudes can be written as
Mi(s) = | Mj|e™

where ¢; is the corresponding elastic partial-wave phase shift, by Wat-
son’s theorem. That is, in both cases the partial-wave amplitude is
defined by one parameter, not two. Also in elastic scattering the opti-
cal theorem provides an additional constraint at ¢ = 0

There are also theoretical aids. For example threshold theorems, as
in yp — 7'p or 7w scattering, which provide a fixed point of de-
parture. Or the results of partial-wave dispersion relations which can
provide constraints. It is essential that any PWA reflects correctly the
known analytic structure of the amplitudes, for example the nucleon
and pion poles in pion photo- and electroproduction. There are also
fortunate experimental circumstances, such as the dominance of known
resonances. The impact of small partial waves is enhanced by inter-
ference with these and the number of intrinsic ambiguities reduced or
even removed. Experimental data on different channels can help. A
two-fold ambiguity in 77 scattering at /s ~ 1 GeV arose because it is
sufficiently far from the p peak for the p to be no longer the dominant
amplitude. This was resolved by including 7 — KK in a multichan-
nel analysis.

Elastic unitarity becomes progressively of less relevance as the energy
increases, but continues to hold reasonably well for small partial waves.



Of course there is no a prior: guide to the breakdown of elastic unitarity
in any given partial wave: it is a matter of trial and error. For much
of the relevant energy region there is still useful input from dispersion
relations. They provide information on high partial waves which cannot
be determined by the data but which nevertheless have an impact on
the analysis through interference and they can be used to ensure that
the constraints of analyticity are satisfied. There is also the fortunate
experimental fact that the cross sections in w7 and m/N scattering
and in YN — 7N are dominated by a small number of leading
resonances and in elastic scattering the optical theorem again provides
a useful constraint at ¢ = 0. Further, particular inelastic channels
can be dominated by a small number of resonances, for example in
7N — nN and YN — nN. As in the case of the two-fold ambiguity
in w7 scattering. coupled-channel analysis provides a powerful tool.



Example of 7N analysis

[t is instructive to consider the procedure used in an early example
of TN PWA. All partial waves for [ > [, Were given by dispersion
relations. Energy-independent fits were then performed for all [ < [,,.«
and partial-wave dispersion relations used to smooth the phase shifts
and eliminate spurious behaviour, for example violations of causality or
analyticity. Constrained energy-independent fits, with big errors on the
results of the dispersion relations, were then performed for all [ < [.x.
The data reject those dispersion-relation predictions they do not like
and the fits are still smoothed by the acceptable ones. The procedure
is then iterated. This general approach is still being followed today.
To use the dispersion relations, every partial wave is represented by a
series of complex functions each with the correct analytic and threshold
behaviour on the right-hand cut and each multiplied by an adjustable
real parameter. To them was added the nucleon poles and the known
nearby left-hand cut contribution plus several poles with adjustable
residues to represent the distant left-hand cut. The sum was then fitted
to the experimental partial-wave amplitudes, the number of right-hand
terms required being found from statistical tests. This represented the
main problem: too few and the genuine structure may be lost; too
many and the fits become unstable. This is similar for any smoothing
process, for example polynomial fits to differential cross sections, but
differs in that the smoothing is for analyticity as well as continuity.



The comparison of the results of the 1967 analysis with the 2000 PDG
compilation shows how successful the initial analyses were. Some states
were missed in the 1967 analysis because they were narrow and/or
weakly coupled to m V. For example the D;3(1700) which is three-star,
but I' = 100 MeV, I'xn/T're = 0.05 to 0.15 and the P3;(1750) for
which ' = 300 MeV, but I';y/T'ro; = 0.05 to 0.10 and even today is
only listed as one-star. The S17(1535) and S11(1650) were combined
into a single broad S11(1591). The 1967 analysis did not have the ad-
vantage of the high-quality n/N data now available. With hindsight
there is evidence in the unsmoothed fits for Py3(1720) (four-star) and
possibly for the Ps3(1920), which were removed by the smoothing pro-
cedure!



State | Mass | Width | T';n /1ot | Rating | Mass | Width | Ty /T
P | 1440 | 350 0.6 to 0.7 4% 1466 | 211 0.66
D13 | 1520 | 120 0.5 to 0.6 4% 1541 | 149 0.51
S1p | 1535 | 150 |0.35 to 0.55 4% 1591 | 268 0.70
S1p | 1650 | 150 |0.55 to 0.90 4%

D15 | 1675 | 150 0.4 to 0.5 4% 1678 | 173 0.14
Fis | 1680 | 130 0.6 to 0.7 4% 1687 | 177 0.56
D13 | 1700 | 100 [0.05 to 0.15 3*

P | 1710 | 100 0.1 to 0.2 3* 1750 | 327 0.32
P3| 1720 | 150 0.1 to 0.2 4%

Pis | 1900 ? 0.2 to 0.3 2% 1863 | 296 0.21
Fi7 11990 ? 0.05 to 0.10 2% 1983 | 225 0.13
P33 | 1600 | 350 |0.10 to 0.25 3* 1688 | 281 0.10
Sa; | 1620 | 150 0.2 to0 0.3 4% 1635 | 177 0.28

Das | 1700 | 300 | 01to02 | 4% |1691| 269 | 0.14

P3; [ 1750 | 300 |0.05to 0.10 1*
Sa; | 1900 | 200 0.1 to 0.3 2%
F55 11905 | 350 |0.05t00.15 4% 1913 | 350 0.16
Ps; [ 1910 | 250 10.15to 0.30 4% 1934 | 340 0.30
P33 1 1920 | 200 |0.05 to 0.20 3*

D35 | 1930 | 350 0.1 to 0.2 3* 1954 | 311 0.15
D33 | 1940 ? 0.1 to 0.3 1*

F57 11950 | 300 |0.35to 0.40 4% 1946 | 221 0.39

Results from 2000 (left-hand) and from 1967 (right-hand)




Complete experiments in pseudoscalar photoproduction

I S Barker, A Donnachie & J K Storrow, Nucl.Phys. B95 (1975) 347
G Keaton & R Workman, Phys.Rev. C53 (1996) 1434

W-T Chiang & F Tabakin, Phys.Rev. C55 (1997) 2054

e Although the result can be stated economically without any for-
malism, it is useful to define amplitudes. The relevant ones for the
derivation are the transversity amplitudes b; - - - b4.

e The notation for experiments is { Py; Pr; Pp} where
P, = beam polarisation, L(#) linear, C' circular
Pr = direction of target polarisation
Pr component of recoil polarisation
with the z-axis in the beam direction, the y-axis normal
to the production plane, 2z’ in the direction of the
meson and &' =y x 2’



Symbol  Transversity Experiment Type
representation required

do/dt  |bi]* + [bo|* + [bs]* + [ba]® {—;—;—} S
Sdo/dt  [bi|? + |ba|? — |bs]? — |ba* {L(3m,0);—;—}
Tdo/dt |b|> — |bo)? — |bs|? + |ba]? {—;y; =}

Pdo/dt |bi|* — |bo]? + |bs]* — [b4* {—;—;y}

Gdo/dt 2 Im(byb} + byb}) {L(£3im);2;—} BT
Hdo/dt —2 Re(b1bj — beb}) {L(£3im);z;—}
Edo/dt —2 Re(bib} + byb}) {C;z;,—}

Fdo/dt 2 Im(bibj — bob}) {C;z; -}

O,do/dt —2 Re(b1bj — bab3) {L(£57);—;2'} BR
O.do/dt —2 Im(b1b} + bob}) {L(£3m);—; 2"}
Cydo/dt 2 Im(bib} — bybj) {C; —;2'}

C,do/dt —2 Re(bib} + bob%) {C;—; 2}

Tydo/dt 2 Re(bibj — bsb}) {—;z;2'} TR

T.do/dt 2 Im(bibj — bsb}) {—;z;2'}
L,do/dt 2 Im(byb} + bsb}) {—;z;2'}
L,do/dt 2 Re(bib} + bsb}) {—; 22"}




Resolving ambiguities

e Without considering discrete ambiguities, seven measurements are
required to determine the four helicity amplitudes (four magnitudes
and three phases) up to an arbitrary overall phase. However it is
necessary to resolve all discrete ambiguities to extract complete
information.

e In BDS the following rule was promulgated:
In order to determine amplitudes without discrete ambiguities,
one has to measure five double-spin observables along with the
four S-type measurements, provided no four double-spin ob-
servables are selected from the same set of BT, BR and T'R.

e However KW argued that there are cases obeying the BDS rule
that still leave an unresolved discrete ambiguity although they were
unable to provide sufficient conditions for resolving this

e C'T were able to show that four appropriately chosen double-
spin observables, along with the four S-type measurements, are
sufficient to resolve all discrete ambiguities.

e Note that these discrete ambiguities are at the level of the transver-
sity amplitudes. Even once they are removed there remains the
problem of discrete ambiguities at the level of partial-wave ampli-
tudes



Complete sets of eight measurements

e Define A, B, C, D, E, F as sets of pairs of double-spin

observables:
{(H,E),(0,C.), (T, L)} =
{(G, F), (04, C.), (T, Ly
{(H, F), (O, Ca),

T O Qm >

{<G7 E), (027 Cz)a (an Lz)} —
and X, Y as sets of double-spin observables:

{H,E,Ox,CZ,Tx,Lz} = X
{G7F7Ozacx7TZ7L:E} =Y

e The CT rules for a complete set are considerably more
complicated than the BDS rule. They cannot be expressed
succinctly nor is there any simple physical guidance.

2 + 2 cases

Pick one pair of double-spin observables from the same type
(BT, BR, TR) and a second pair from another type.

e 2 BT +2TR: choose at least one pair from set D or set £

e 2 BT + 2 BR: choose at least one pair from set C or set F'

e 2 BR+2TR: choose the BR pair from set D or set E
and the T'R pair from set C or set F



2+ 1+ 1 cases

Pick one pair of double-spin observables from the same type
(BT, BR, TR) and one observable from each of the remaining two
types. Most combinations allow ambiguities to be resolved. Those that
do not are:
e when the pair belongs to set A and the other two belong to
set X or toset YV
e when the pair belongs to set B, one of the other two
observables belongs to set X (Y) and the fourth to set ¥ (X).

3+ 1 cases

Pick three double-spin observables from one type and one observable
from another type. Ambiguities cannot be resolved in these cases.

4 cases

Pick all double-spin observables from the same type. The amplitudes
can never be determined uniquely in these cases.



Bounds

Not all allowed experiments are necessarily practical, for example the
asymmetry to be measured may be small. Bounds can be very useful
in deciding which experiments to do.

e All double-spin observables are bounded by the type S:

X pr| < min{\/l 32 \/1— T2}

where
Xpr=G,H,E or F
Xpr| < min{\/l —y24/1— P?}
where
Xgr = 0,,0,,C; or C,
Xrg| < min{\/l “ P21 T2}
where

XTR = Txa T27 L,orL,



e If one double-spin observable has been measured then there exist
more stringent bounds between two observables of a given type
and the type S.

max{(G2 + E%),(H*+ F?),(G*+ H?), (E* + F2)}
gmm{vd—zavﬁ—iﬂ}

max{ (02 + 02), (C2 + C2), (02 + C2), (0% + €3}
gmm{vd—zavﬁ—fﬂ}

masc{ (T2 + T2), (L2 + L), (T2 + L2), (T2 + L) }

gmm{Vi—P%vﬁ—zﬂ}

mwﬂGiFMEiH§g1iR
mw“ﬂiLﬁﬂ}i@&glii
mw“OfiC*KL$CH}§1iT.

Many other relationships can be derived, for example if three double-
spin observables of a particular type are known then the fourth member
of that type is uniquely determined and its measurement is redundant.
(This is another statement of the inability to determine uniquely all the
amplitudes if all four double-spin measurements are of the same type.)
Explicit procedures for determining all relationships and bounds are
given in CT



Summary

e The CT rules require that at least two of the four double-spin
measurements involve measuring the recoil baryon polarization.

e The bounds on the double-spin measurements are absolute and
must be taken into account when planning which measurements to
make. For example, suppose the polarized beam asymmetry X is
close to 1 in some kinematical region (which does happen), then

Xpr| < min{\/l 32 /1 - T2}

where
Xpr=G,H,Eor F

means that measuring any of the beam-target asymmetries in that
kinematic region will provide no new information.

e Note, however, that obtaining a unique set of transversity ampli-
tudes, or equivalently helicity amplitudes, does not guarantee a
unique set of multipole amplitudes. In principle discrete ambigui-
ties (i.e. more than one solution) remain at the level of the multi-
pole amplitudes (recall Barrelet). Even if a “solution” appears to be
continuous in energy it may be that at some point it has switched
from one solution to another (i.e. two solutions have crossed). Bar-
relet demonstrated this for some fits to pion-nucleon scattering.
Additional information (or assumptions) may be required.



