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Motivations

The Polyakov loop and the correlator of two Polyakov loops are two related and relevant
quantities for the dynamics of one or two static sources in a thermal bath at temperature T .

• The Polyakov loop average in a thermal ensemble at a temperature T is

〈LR〉 ≡ 1

dR
〈Tr LR〉 (R ≡ color representation)

dA = N2 − 1, dF = N and LR(x) = P exp

(

ig

∫ 1/T

0
dτA0(x, τ)

)

.

• The (connected part of a) Polyakov loop correlator is

CPL(r, T ) ≡ 1

N2
〈TrL†

F (0)TrLF (r)〉 − 〈LF 〉2.

Their relevance comes from the fact that they are gauge invariant quantities well known
from lattice calculation.
◦ e.g. Petreczky EPJC 43 (2005) 51

Moreover, we have that

〈Tr L†
F(0)Tr LF(r)〉 =

∑

e−En/T

◦ Lüscher Weisz JHEP 0207 (2002) 049, Jahn Philipsen PRD 70 (200 4) 074504
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〈Tr LR〉 (R ≡ color representation)

dA = N2 − 1, dF = N and LR(x) = P exp
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ig
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0
dτA0(x, τ)

)

.

• The (connected part of a) Polyakov loop correlator is

CPL(r, T ) ≡ 1

N2
〈TrL†

F (0)TrLF (r)〉 − 〈LF 〉2.

Despite the relevance, not much is known about the correlator in perturbation theory.
The correlator is known at LO since long.
◦ McLerran Svetitsky PRD 24 (1981) 450

Gross Pisarski Yaffe RMP 53 (1981) 43

Beyond leading order, it was computed only for 1/r ∼ mD (mD is the Debye mass or
inverse electric screening length).
◦ Nadkarni PRD 33 (1986) 3738



Static and non-static modes

It is convenient to perform the calculation in static gauge ∂0A0(x) = 0:

L(x) = exp

(

igA0(x)

T

)

Propagators may be split into a static and a non-static component:

D00(ωn,k) = � =
δn0

k2

Dij(ωn 6= 0,k) = � =
1

ω2
n + k2

(

δij +
kikj

ω2
n

)

(1− δn0)

Dij(ωn = 0,k) = � =
1

k2

(

δij − (1− ξ)
kikj

k2

)

δn0

Dghost(ωn,k) = � =
δn0

k2

ωn ≡ 2πnT are the Matsubara frequencies.



Π00 at one loop

The temporal component of the gluon self-energy gets non-static

and static contributions



• The calculation is performed in dimensional regularization: d = 3− 2ǫ.

• Π00(|k| ≪ T ) = m2
D + ... where mD is the Debye mass:

m2
D ≡ g2T 2

3

(

N +
nf

2

)

.

• We keep order ǫ corrections of the type

T |k|1−2ǫǫ

because the Fourier transform of |k|1−2ǫ/|k|4, coming from a self-energy
insertion in a temporal-gluon propagator, is divergent.

• Static loops contribute only through the scale mD .

◦ Curci Menotti ZPC 21 (1984) 281

Heinz Kajantie Toimela AP 176 (1987) 218

Rebhan PRD 48 (1993) 3967, NPB 430 (1994) 319



The Polyakov loop at NNLO

We assume the following hierarchy of scales:

T ≫ mD

Up to NNLO the contributing diagrams are

+ + + . . .

giving

〈LR〉 = 1 +
CRαs

2

mD

T
+

CRα2
s

2

[

CA

(

ln
m2

D

T 2
+

1

2

)

− nf ln 2

]

+O(g5)



• At the scale mD , the gluon-self energies get resummed in the propagator

1

k2 +m2
D

• The logarithm, lnm2
D/T 2, signals that an infrared divergence at the scale T has

canceled against an ultraviolet divergence at the scale mD .



Comparison with the literature

In 1981, Gava and Jengo obtained:

〈LR〉GJ = 1 +
CRαs

2

mD

T
+

CRCAα2
s

2

(

ln
m2

D

T 2
− 2 ln 2 +

3

2

)

+O(g5)

This result disagrees with ours. The origin of the disagreement has been traced back to
not having resummed the Debye mass in the temporal gluons contributing to the static
gluon self energy.
◦ Gava Jengo PLB 105 (1981) 285

Our result agrees with a recent determination of Burnier, Laine and Vepsäläinen, who
use a dimensionally reduced EFT framework in a covariant or Coulomb gauge.
◦ Burnier Laine Veps äl äinen JHEP 1001 (2010) 054



The Polyakov loop: some higher order terms

• Non-static modes at the scale mD :

δ〈LR〉NS,mD
=

3g4CR

4(4π)3
mD

T

[

β0 ln
( µ

4πT

)2
+ 2β0γE +

11

3
CA − 2

3
nf (4 ln 2− 1)

]

This contribution fixes the renormalization scale of g3 in the LO term to µ ∼ 4πT .

•

δ〈LR〉 =
(

3C2
R − CRCA

2

)

α2
s

24

(mD

T

)2

This contribution comes from the scale mD : it is the leading contribution whose
color structure is non linear in CR



The Polyakov loop correlator at NNLO

We assume the following hierarchy of scales:

1

r
≫ T ≫ mD ≫ g2

r
.

We calculate the Polyakov loop correlator up to order g6(rT )0:

I II III IV

V VI



The Polyakov loop correlator at NNLO

We assume the following hierarchy of scales:

1

r
≫ T ≫ mD ≫ g2

r
.

We calculate the Polyakov loop correlator up to order g6(rT )0:

CPL(r, T ) =
N2 − 1

8N2

{

αs(1/r)2

(rT )2
− 2

α2
s

rT

mD

T

+
α3
s

(rT )3
N2 − 2

6N
+

1

2π

α3
s

(rT )2

(

31

9
CA − 10

9
nf + 2γEβ0

)

+
α3
s

rT

[

CA

(

−2 ln
m2

D

T 2
+ 2− π2

4

)

+ 2nf ln 2

]

+α2
s

m2
D

T 2
− 2

9
πα3

sCA

}

+O
(

g6(rT ),
g7

(rT )2

)



Comparison with the literature

In 1986, Nadkarni calculated the Polyakov loop correlator at NNLO assuming the
hierarchy:

T ≫ 1/r ∼ mD

Whenever the previous results do not involve the hierarchy rT ≪ 1, they agree with
Nadkarni’s ones, expanded for mDr ≪ 1.

◦ Nadkarni PRD 33 (1986) 3738



The Polyakov loop correlator in an EFT language

Integrating out 1/r from static QCD leads to pNRQCD:

SpNRQCD =

∫ 1/T

0
dτ

∫

d3x

∫

d3rTr

{

S†(∂0 + Vs)S + O†(D0 + Vo)O

−iVA

(

S†r · gEO+O†
r · gES

)

− i

2
VB

(

O†
r · gEO+O†Or · gE

)

+
i

8
VC

(

rirjO†DigEjO− rirjO†ODigEj
)

+ δLpNRQCD

}

+

∫ 1/T

0
dτ

∫

d3x

(

1

4
Fa
µνF

a
µν +

nf
∑

l=1

q̄lD/ ql

)

where S and O=
√
2OaTa are the quark-antiquark color singlet and octet fields.

◦ Pineda Soto NPB PS 64 (1998) 428

Brambilla Pineda Soto Vairo NPB 566 (2000) 275

Brambilla Eiras Pineda Soto Vairo PRD 67 (2003) 034018



pNRQCD potentials

Vs(r) = −CF
αs(1/r)

r

[

1 +

(

31

9
CA − 10

9
nf + 2γEβ0

)

αs

4π
+O(α2

s )

]

,

Vo(r) =
1

2N

αs(1/r)

r

[

1 +

(

31

9
CA − 10

9
nf + 2γEβ0

)

αs

4π
+O(α2

s )

]

,

(N2 − 1)Vo(r) + Vs(r) =
N(N2 − 1)

8

α3
s

r

(

π2

4
− 3

)

[1 +O(αs)] .

◦ Fischler NPB 129 (1977) 157, Billoire PLB 92 (1980) 343

Kniehl Penin Schr öder Smirnov Steinhauser PLB 607 (2005) 96

For our accuracy, VA = VB = VC = 1.



The Polyakov loop correlator in pNRQCD

CPL(r, T ) =
1

N2

[

Zs〈S(r,0, 1/T )S†(r,0, 0)〉+ Zo〈Oa(r,0, 1/T )Oa †(r,0, 0)〉

+O
(

α3
s (rT )4

)

]

− 〈LF 〉2.

• Integrating out the scale 1/r and matching to the previous determination of
CPL(r, T ), we get:

Zs = Zo = 1

〈S(r,0, 1/T )S†(r,0, 0)〉|1/r = e−Vs(r)/T

〈Oa(r,0, 1/T )Oa †(r,0, 0)〉|1/r = (N2 − 1)e−Vo(r)/T

This is consistent with the spectral decomposition.

• If we assume instead the spectral decomposition, then the matching provides a
non-trivial verification of the two-loop octet potential.



Integrating out T and mD

〈S(r,0, 1/T )S†(r,0, 0)〉 = e−Vs(r)/T (1 + δs) ≡ e−fs/T

〈Oa(r,0, 1/T )Oa †(r,0, 0)〉 = e−Vo(r)/T
[

(N2 − 1) 〈LA〉+ δo
]

≡ (N2 − 1)e−fo/T

• δs and δo stand for loop corrections to the singlet and octet correlators:

δs = δs,T + δs,mD
δo = δo,T + δo,mD

• 〈LA〉 comes from the covariant derivative D0 acting on the octet field in the
pNRQCD Lagrangian:

〈LA〉 = 〈LA〉T + 〈LA〉mD

The adjoint Polyakov loop 〈LA〉 factorizes the contribution coming from the gluons
in the thermal bath that bind with the color-octet quark-antiquark states to form
part of the spectrum appearing in the spectral decomposition of the Polyakov loop
correlator.

• For T >
∼ g2/r, the octet correlator is not suppressed with respect to the singlet one,

while for T ≪ g2/r, the Polyakov loop correlator is dominated by the singlet contribution.



Singlet and octet free energies

fs and fo can be interpreted as the singlet and octet free energies in pNRQCD.

fs(r, T,mD) = Vs(r)

+
2

9
πNCFα2

s rT
2
[

1 +
∑

cNS
n (rT )2n+2

]

− π

36
N2CFα3

sT

−
(

3

2
ζ(3)CF

αs

π
(rmD)2T − 2

3
ζ(3)NCFα2

s r
2T 3

)

[

1 +
∑

cSn(rT )2n+2
]

+CF
αs

6
r2m3

D + TO
(

g6(rT ),
g8

rT

)



Singlet and octet free energies

fs and fo can be interpreted as the singlet and octet free energies in pNRQCD.

fo(r, T,mD) = Vo(r)

−CAαs

2
mD +

1

48
C2

Aα2
s

m2
D

T

−CAα2
s

2
T

[

CA

(

− ln
T 2

m2
D

+
1

2

)

− nf ln 2 + b1 g + b2 g
2 + aαs

]

−π

9
α2
s rT

2
[

1 +
∑

cNS
n (rT )2n+2

]

− π

72
Nα3

sT

+

(

3

4N
ζ(3)

αs

π
(rmD)2T − 1

3
ζ(3)α2

s r
2T 3

)

[

1 +
∑

cSn(rT )2n+2
]

− 1

N

αs

12
r2m3

D + TO
(

g6(rT ),
g8

rT

)

Note that higher multipole contributions in the singlet and octet sector are related.



In the Polyakov loop correlator, CPL(r, T ), strong cancellations occur between the
singlet energy, octet energy and Polyakov loop

〈LR〉 = 1 +
CRαs

2

mD

T
+

CRα2
s

2

[

CA

(

ln
m2

D

T 2
+

1

2

)

− nf ln 2 + aαs + b1 g + b2 g
2

]

+

(

3C2
R − CRCA

2

)

α2
s

24

(mD

T

)2
+O

(

g7
)

.

They lead, up to order g6(rT )0, to the previous result.



Comparison with the literature and discussion I

EFT approaches for the calculation of the correlator of Polyakov loops for the situation
mD >

∼ 1/r and T ≫ 1/r were developed in the past. In that situation, the scale 1/r was

not integrated out, and the Polyakov-loop correlator was described in terms of
dimensionally reduced effective field theories of QCD, while the complexity of the
bound-state dynamics remained implicit in the correlator.

Those descriptions are valid for largely separated Polyakov loops when the correlator is
either screened by the Debye mass, for mDr ∼ 1, or the mass of the lowest-lying
glueball, for mDr ≫ 1.

◦ Braaten Nieto PRL 74 (1995) 3530

Nadkarni PRD 33 (1986) 3738



Comparison with the literature and discussion II

The color-singlet quark-antiquark potential has been calculated in real-time formalism in
the same thermodynamical situation considered here.

• The real part of the real-time potential differs from fs(r, T,mD) by

1

9
πNCFα2

s rT
2 − π

36
N2CFα3

sT

The origin of the difference has been traced back to terms that would vanish for
large real times.

• The real-time potential has also an imaginary part that is absent in the free energy.

• Performing the calculation of 〈S(r,0, τ)S†(r,0, 0)〉 for an imaginary time τ ≤ 1/T

and then continuing analytically τ to large real times, one gets back both the real
and the imaginary parts of the real-time color-singlet potential.

◦ Brambilla Ghiglieri Petreczky Vairo PRD 78 (2008) 014017



Comparison with the literature and discussion III

Jahn and Philipsen have analyzed the gauge structure of the allowed intermediate states
in the correlator of Polyakov loops: the quark-antiquark component, ϕ, of an intermediate
state made of a quark located in x1 and an antiquark located in x2 should transform as

ϕ(x1,x2) → g(x1)ϕ(x1,x2)g
†(x2)

under a gauge transformation g.

• The pNRQCD decomposition of the Polyakov loop correlator in terms of a color
singlet and a color octet correlator is in accordance with that result for, in
pNRQCD, both the singlet field S and the octet field O transform in that way.

• We remark, however, a difference in language: in pNRQCD, singlet and octet refer
to the gauge transformation properties of the quark-antiquark fields, while, in Jahn
and Philipsen, they refer to the gauge transformation properties of the physical
states. In that last sense, of course, octet states cannot exist as intermediate
states in the correlator of Polyakov loops.

◦ Jahn Philipsen PRD 70 (2004) 074504



Comparison with the literature and discussion IV

Burnier, Laine and Vepsäläinen have recently performed a weak-coupling calculation of
the untraced Polyakov-loop correlator in Coulomb gauge and of the cyclic Wilson loop up
to order g4.

Both these objects may be seen as contributing to the correlator of two Polyakov loops. It
is expected that large cancellations occur between these correlators and their octet
counterparts in order to reproduce the Polyakov-loop correlator. Such large cancellations
should occur at the level of the scales 1/r, T and mD . In the case of the untraced
Polyakov-loop correlator, the octet contribution should restore gauge invariance and, in
the case of the cyclic Wilson loop, the octet contribution should cancel the divergences
observed at order g4.

◦ Burnier Laine Veps äl äinen JHEP 1001 (2010) 054
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