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Figure 3: (Left) The fitted energies for the first-excited (top) and ground state (bottom) as functions of the

number of distillation eigenvectors N. (Middle) A subset of G1g irrep operator correlators, grouped by their

inner product. The yellow blocks indicate overlap> 70%. G1g is the worst case among all the irreps. (Right)
Nucleon excited spectrum sorted according to cubic-group irrep.

will greatly improve precision in our future calculations for extracting excited-state masses using

cubic group-irrep operators, which provide powerful probes to extract highly excited resonances.

A preliminary result for nucleons on Nf = 2+1 m! = 380 MeV is shown in this proceeding. Work

on larger volumes (with a modified stochastic distillation) are under development. Meanwhile,

parallel work from the HSC for meson spectroscopy with exotic quantum numbers and baryons

using derivative operators are also in progress. Multi-particle operators are under investigation

to distinguish these from resonances. We are also investigating the application of the distillation

method to form factors to help us understand the nature of specific states.
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How do we extract S-wave scattering 
information (phase shifts and binding 
energies) from a lattice calculation?



A2(p) =
4π

M

1
p cot δ(p)− ip

+ + ...+

FIG. 1: Feynman diagrams that give the exact two-body scattering amplitude. The oval blob repre-

sents the all-orders interaction derived from the Lagrangian.

This Lagrangian, constrained by Galilean invariance, parity and time-reversal invariance,
describes the low-energy interactions of bosons via an arbitrary finite-range potential. In
principle, it is valid in any number of spacetime dimensions, d. The mass dimensions of the
boson field and of the operator coefficients change with spacetime dimensions: i.e. [ψ] =
(d−1)/2, [C2n] = 2−d−2n and [D0] = 3−2d. While our focus in this paper is on d = 3, in
our general discussion of two- and three-body interactions, we will keep d arbitrary as this
will allow the reader to check our results against the well-known cases with d = 2 and d = 4.
Throughout we use units with ! = 1, however we will keep the boson mass, M , explicit.

Consider 2 → 2 scattering, with incoming momenta labelled p1,p2 and outgoing momenta
labelled p′

1,p
′
2. In the center-of-mass frame, p = p1 = −p2 , and the sum of Feynman

diagrams, shown in fig. 1, computed in the EFT gives the two-body scattering amplitude [22–
24]

A2(p) = −
∑

C2n p2n

1 − I0(p)
∑

C2n p2n
, (2)

where

I0(p) =
M

2

(µ

2

)ε
∫

dD−1q

(2π)D−1

1

p2 − q2 + iδ
, (3)

and it is understood that the ultraviolet divergences in the EFT are regulated using di-
mensional regularization (DR). In eq. (3), µ and D are the DR scale and dimensionality,
respectively, and ε ≡ d − D. A useful integral is:

In(p) =
M

2

(µ

2

)ε
∫

dD−1q

(2π)D−1
q2n

(

1

p2 − q2 + iδ

)

;

= −M

2
p2n(−p2 − iδ)(D−3)/2Γ

(

3 − D

2

)

(µ/2)ε

(4π)(D−1)/2
. (4)

In what follows we will define the EFT coefficients in DR with MS. This choice is by no
means generally appropriate [23, 24]. However it is a convenient choice if no assumption is
made about the relative size of the renormalized EFT coefficients.

Now we should relate the scattering amplitude in the EFT, A2(p), whose normalization is
conventional and fixed to the Feynman diagram expansion, to the S-matrix. We will simply
assume that the S-matrix element for isotropic (s-wave) scattering exists in an arbitrary
number of spacetime dimensions. We then have generally

e2iδ(p) = 1 + i N (p) A2(p) , (5)

5

=

Recall NR scattering

sum of poles in a Finite Volume!

A−1
2 (p) = 0

eigenvalue equation



S-wave at Finite Volume
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�
1; q̃2

�
. The vertical dashed lines denote the position of the poles of the

function corresponding to the non-interacting energy-eigenvalues.

partial-wave, the shift in a second combination is dominated by the interactions in the l = 4
partial-wave, the shift in a third combination is dominated by the interactions in the l = 6
partial-wave, and so on. So while the naive argument that A+

1 states receive contributions
from interactions in the l = 0, 4, 6, ... partial-waves is generally true, linear combinations
of A+

1 states are formed such that it is not true in the infinite-volume limit. The energy-
shift of each occurrence of an A

+
1 energy-eigenstate in a given |n|2-shell is dominated by

the interaction in a different partial-wave in the infinite-volume limit. To demonstrate this
point, consider the situation where the phase-shift in the l = 6 partial-wave vanishes, in
which case eq. (8) becomes a 2× 2 matrix with the following two solutions:

cotδ0
2

+
cotδ4
2

− Z0,0 (1; q̃2)

π3/2q̃
− 280Z8,0 (1; q̃2)

143
√
17π3/2q̃9

− 40Z6,0 (1; q̃2)

11
√
13π3/2q̃7

− 54Z4,0 (1; q̃2)

143π3/2q̃5

±1

2

��
560Z8,0 (1; q̃2)

143
√
17π3/2q̃9

+
80Z6,0 (1; q̃2)

11
√
13π3/2q̃7

+
108Z4,0 (1; q̃2)

143π3/2q̃5
+ cotδ0 − cotδ4

�2

+
48Z4,0 (1; q̃2)

2

7π3q̃10

= 0 . (9)

In the case of tanδ4 � tanδ0, the l = 0 dominated solution is

qcotδ0 =
2√
πL

Z0,0

�
1; q̃2

�
+

12288π7

7L10

Z4,0 (1; q̃2)
2

[q9cotδ4]
+ O

�
tan2δ4

�
, (10)
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�
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F
(FV )
4;4 =

1

π3/2

1

q̃
Z0,0(1; q̃

2
) diag (1, 1, 1, 1, 1, 1, 1, 1, 1)

+
1

π3/2

1

q̃5
Z4,0(1; q̃

2
)

54

1001
diag (2, 2, 7, 7, 7, 14,−13,−13,−13)

+
1

π3/2

1

q̃7
Z6,0(1; q̃

2
)

4

11
√
13

diag (−16,−16,−1,−1,−1, 20, 5, 5, 5)

+
1

π3/2

1

q̃9
Z8,0(1; q̃

2
)

392

1001
√
17

diag (7, 7,−8,−8,−8, 10, 0, 0, 0) . (A13)

It is clear from the form of the matrix F
(FV )
+ that the ordering of the Γ(i)

in the F
(FV )
4;4 -block

is E+
, T+

1 , A+
1 and T+

2 , respectively, and the equations that dictate the energy-eigenvalues of

each of the Γ(i)
, given in eqs. (9), (20), (25), and (29), follow directly from these expressions.

Appendix B: Zl,m(1; q̃2) Functions

The two-hadron Green functions in the finite lattice volume depend upon summations over

plane-wave states subject to periodic boundary conditions and with amplitudes that depend

upon the strength of the interactions in each of the partial-waves that generate the two-

hadron T-matrix. The summations that define the energy-eigenvalues in the volume are [1, 2]

Zl,m(1; q̃
2
) =

�

n

|n|l Ylm(Ωn)

[ |n|2 − q̃2 ]
, (B1)

a special case of the sums defined in eq. (5). The l = 0 summation is special as it requires UV

regulation in order to be defined, while sums with l ≥ 1 are finite due to contribution from

the solitary Ylm. However, brute-force evaluation of the sums is quite inefficient and Lüscher

presented a method to evaluate the sums that exponentially accelerates their evaluation [1,

2], making use of the Poisson resummation formula. In this appendix, we reproduce Lüscher’s

results, and then present each of the Zl,m(1; q̃2) that contribute to the energy-eigenvalues

considered in the body of this paper.

Numerical evaluation of the Z0,0(1; q̃2) can be evaluated by brute force through the defi-

nition

Z0,0(1; q̃
2
) =

1√
4π

lim
Λn→∞

�
Λn�

n

1

|n|2 − q̃2
− 4πΛn

�
, (B2)

64

and is valid for all |n|2-shells. If phase shifts in both the l = 4 and l = 6 partial-waves
vanish, eq. (8) and eq. (10) reduce to the familiar result found by Lüscher 5,

qcotδ0 =
2√
πL

Z0,0

�
1; q̃2

�
, (11)

where the function Z0,0 (1; q̃2) is shown in fig. 1. Performing a large-volume expansion of
the solution (as discussed in Appendix C) to eq. (11) in the |n|2 = 9-shell gives the energy-
eigenvalue

E
A

+(1)
1

=
1

2µ

�
36π2

L2
− 20 tan δ0(|n|2 = 9)

L2
+ O(tan2 δ0) + ...

�
, (12)

while the second solution to eq. (9) has a perturbative expansion of the form

E
A+(2)

1
=

1

2µ

�
36π2

L2
− 8960 tan δ4(|n|2 = 9)

243 L2
+ O(tan δ6) + ...

�
, (13)

where the contribution from the l = 0 partial-wave is strongly suppressed in the large-
volume limit. While the two basis states, ||n|2 = 9;A+

1 (1)� and ||n|2 = 9;A+
1 (2)�, both have

a non-vanishing overlap with |l,m� = |0, 0�, it is obvious that a linear combination can be
formed that has vanishing overlap. Inserting the interactions once, as is appropriate for
determining the energy-eigenvalues in large volumes (i.e. first order perturbation theory in
1/L), dictates the form of the expansions in eq. (12) and eq. (13).

Sources and sinks that have an overlap, and in general a range of overlaps, with the
finite-volume energy-eigenstates of hadronic systems are required for LQCD calculations.
While the interactions between hadrons gives rise to energy-eigenstates that are not products
of single-hadron eigenstates of the linear-momentum operator, sources and sinks can be
constructed from the single-hadron momentum eigenstates that transform as a given Γ(i),
that will have non-zero overlap with the energy-eigenstates in the same irrep. Constructing
sources and sinks from single hadrons that have equal and opposite momenta ensures that
the total momentum of the combined system vanishes. The relative-momentum-eigenstates
of definite parity, P , are denoted by

|�n , P� =

�
|�n� + P |−�n�√

2
(�n �= �0)

|�n� (�n = �0 and P = +1) ,
(14)

where P is the parity of the state (P = ±1) and �n = (nx, ny, nz) is the triplet of integers that
define the relative momentum of the two-body system. The states in eq. (14) are eigenstates
of the relative kinetic energy operator Trel, with the eigenvalues displayed in eq. (6). By
taking appropriate linear combinations of these momentum-eigenstates, states in the A+

1

representation (or any other irrep) can be constructed in each |n|2-shell if the shell supports
it (see table II and Ref. [53]). For example, in the |n|2 = 0 shell the basis-state is

||n|2 = 0; A+
1 � = |(0, 0, 0) , P = +1� ,

5 The “S-function”, S(q̃2), used in, for example, Ref. [56], is related to Z0,0(1; q̃2) by S(q̃2) =
√
4πZ0,0(1; q̃2).
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Weak coupling expansion:

Calculated on 
the lattice! phase shift

ππ-method
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x,y
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π L
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[
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]
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ππ scattering in lattice QCD
Lattice QCD replaces space-time with a grid:

b

L

COST ∼ (L)4 (b)−6.5 (Mq)
−2.5

Taiwan 6/2008 – p. 5/47

ππ

Lesson 4: Compute correlation functions using Montecarlo averaging:

〈0|O(q, q, U)|0〉 =

R

[dU ]Det(M)O(q, q, U)e−
R

d4xLlatt
QCD

R

[dU ] Det(M) e
−

R

d4xLlatt
QCD

[dU ] =
Y

xj ∈ grid

dU(xj)

Lesson 5: Example: properties of the Goldstone pion: m2
π ∝ Mq

〈0|
∑

"x Oπ−(t, !x)Oπ+(0,!0)|0〉 =

Oπ+(t, !x) = u(t, !x)γ5d(t, !x)

Taiwan 6/2008 – p. 9/47



ππ-bottom line

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

µπK  
/  √

____
 f

K 
fπ

-0.25

-0.2

-0.15

-0.1

-0.05

0

µ πK
  
a

π+
K

+

χ-PT  (Tree Level)

NPLQCD (MILC coarse)

NPLQCD (MILC large coarse)

NPLQCD (MILC fine)

physical line

π+
K

+
  (I=3/2)

U of Maryland, 04/10 – p. 20/46

ππ-bottom line

0 0.5 1 1.5 2 2.5 3 3.5 4

m
K 

/ f
K

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

m
K

  
a

K
+

K
+

χ-PT  (Tree Level)

NPLQCD (MILC coarse)

physical line

K
+
K

+ 
 (I=1)

U of Maryland, 04/10 – p. 21/46

1 2 3 4
m
!
 / f

!

-0.5

-0.4

-0.3

-0.2

-0.1

0
m
! 

a !
!I=

2

 " - PT  (Tree Level)
ETM (L=2.1 fm, a=0.086 fm)

ETM (L=2.7 fm, a=0.086 fm)

ETM (L=2.1 fm, a=0.067 fm)

NPLQCD (MILC fine)
NPLQCD  (MILC coarse)
CP-PACS (2004)  (nf = 2)

Roy  (CGL)

!
+
!

+  (I=2)

0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

a
0

0

-0.050 -0.050

-0.045 -0.045

-0.040 -0.040

-0.035 -0.035

-0.030 -0.030

a
2

0

Weinberg 1966

universal band
tree, one loop, two loops

scalar radius 
CGL
MILC
NPLQCD
CERN
ETM
RBC/UKQCD
JLQCD
PACS-CS
Feng, Jansen & Renner

DIRAC
NA48 K3!
NA48 Ke4

!"#"$

!"#"$

!"#"%&

!"#"%&

!"#"%'

!"#"%'

!"#"%%

!"#"%%

!"#"%(

!"#"%(

!"#"%

!"#"%

!
!!
"
!"!"

!")!)*+)),+-..)/.0.12

3+4),(""52

6*/789),("":2

8;/),(""<2

Figure 7: Present constraints on threshold s-wave ππ scattering. Noteworthy in the left

panel are the red ellipse from the Roy equation analysis and the grey band from the direct

Lattice QCD calculation of the π+π+ scattering length, as discussed in the text. The right

panel shows the π+π+ scattering length results only.

There is little or no signal-to-noise problem in such calculations and therefore highly accurate Lattice

QCD calculations can be performed with moderate resources. Moreover, the EFTs which describe the

low-energy interactions of pions and kaons, including lattice-spacing and finite-volume effects, have been
developed to non-trivial orders in the chiral expansion.

The I = 2 pion-pion (π+π+) scattering length serves as a benchmark calculation with an accuracy

that can only be aspired to at present for other systems. Furthermore, due to the chiral symmetry of

QCD, ππ scattering at low energies is the simplest and best-understood of the hadron-hadron scattering

processes. The scattering lengths for ππ scattering in the s-wave are uniquely predicted at LO in χ-
PT [80]:

mπa
I=0
ππ = 0.1588 ; mπa

I=2
ππ = −0.04537 , (39)

when mπ is set equal to the charged pion mass. While experiments do not directly provide stringent

constraints on the scattering lengths, a determination of s-wave ππ scattering lengths using the Roy

equations has reached a remarkable level of precision [81, 82]:

mπa
I=0
ππ = 0.220± 0.005 ; mπa

I=2
ππ = −0.0444± 0.0010 . (40)

The Roy equations [83] use dispersion theory to relate scattering data at high energies to the scattering

amplitude near threshold. At present, Lattice QCD can compute ππ scattering only in the I = 2 channel

with precision as the I = 0 channel contains disconnected diagrams which require large computational

resources. It is of great interest to compare the precise Roy equation predictions with Lattice QCD

calculations. Figure 7 summarizes theoretical and experimental constraints on the s-wave ππ scattering

lengths [82]. It is clearly a strong-interaction process where theory has somewhat out-paced the very-

challenging experimental measurements.

The only existing nf = 2 + 1 Lattice QCD prediction of the I = 2 ππ scattering length involves a

mixed-action Lattice QCD scheme of domain-wall valence quarks on a rooted staggered sea. Details of

the lattice calculation can be found in Ref. [84]. The scattering length was computed at pion masses,
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FIG. 1: Low-lying spectrum, in units of the temporal lat-

tice spacing, of finite volume states in irreps A+
1 , E

+, T+
2 at

mπ = 396MeV for L/as = 16, 20, 24. The box size indicates

the statistical uncertainty on the energy. Orange boxes cor-

respond to states suspected of being ππ�
scattering states.

Dashed lines indicate the non-interacting energy of pion pairs

with the allowed lattice momenta between them.

k2 ∼ 0.35, 0.55, 0.85GeV2 (corresponding to the levels at
atE ∼ 0.25, 0.29, 0.36 in Figure 1), have a possible origin
in the neglect of a non-negligible value of δ4. We can
estimate the size of this δ4 by solving the coupled system
of Equations 1 for T+

2 and E+ at the relevant energy for
the two unknowns, δ2, δ4. The values of δ4 so extracted
are shown by the pink points in Figure 2.

For a direct estimate of δ4 from T+
1 , only the L/as = 24

lattice has a point within our plotted range of scattering
momentum. The extracted point is shown by the pink
diamond in Figure 2, and is in good agreement with the
other estimates, showing that |δ4| is less than 2◦ over the
whole of the explored momentum range.

With an estimated magnitude of δ4(k) in hand (from
interpolation between the determined points), we can
solve Equation 1 including the effect of the � = 4 wave.
This gives rise to the orange, light green and cyan colored
points in Figure 2 which are seen to differ relatively little
from the points with δ4 assumed to be zero. For final
presentation we enlarge the errorbar to include the effect
of the estimated δ4 giving rise to asymmetric errorbars
in Figure 3.

It is important to note that inelastic channels open
up within the energy range of our extracted phase-shifts.
As shown in Figure 2, the 4π and ρρ thresholds open
at rather low momentum, but we do not see any sign
of such states in the analysis of our correlators, which
have been computed without explicit 4π-like or ρρ-like
operators. The breakdown of elasticity at higher scatter-
ing momentum may provide an explanation of the slight
discrepancies observed there between phase-shift points
obtained from different volumes.

Results: In Figure 3 we show our results for S and
D-wave phase shifts, at a range of pion masses, along
with experimental data taken from [7–10]. We observe

-60

-50

-40

-30

-20

-10

 0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

FIG. 2: Phase-shifts extracted from spectra with mπ =

396MeV. Red (A+
1 ), green (E+

), blue (T+
2 ) colored points

assume δ4 = 0; orange (A+
1 ), light green (E+

), cyan (T+
2 )

colored points (shifted slightly to the right) used estimated

δ4 as described in the text: note that the corrected δ2 val-

ues from E+, T+
2 coincide by construction at momenta near

|�p|2 = 2 ·
�
2π
L

�2
. Estimated δ4 shown by pink points. Also

indicated are the positions of inelastic thresholds into 4π and

ρρ.

-70

-60

-50

-40

-30

-20

-10

 0
 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Hoogland
Losty

Cohen
Durusoyex

pt
.

-15

-10

-5

 0

 5
 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Hoogland
Losty

Cohen
Durusoyex

pt
.

FIG. 3: Phase-shift in degrees for ππ I = 2 scattering with

� = 0(δ0) and � = 2(δ2). Lattice results at various pion masses

and volumes. Experimental data from [7–10].

3

FIG. 1: Low-lying spectrum, in units of the temporal lat-

tice spacing, of finite volume states in irreps A+
1 , E

+, T+
2 at

mπ = 396MeV for L/as = 16, 20, 24. The box size indicates

the statistical uncertainty on the energy. Orange boxes cor-

respond to states suspected of being ππ�
scattering states.

Dashed lines indicate the non-interacting energy of pion pairs

with the allowed lattice momenta between them.

k2 ∼ 0.35, 0.55, 0.85GeV2 (corresponding to the levels at
atE ∼ 0.25, 0.29, 0.36 in Figure 1), have a possible origin
in the neglect of a non-negligible value of δ4. We can
estimate the size of this δ4 by solving the coupled system
of Equations 1 for T+

2 and E+ at the relevant energy for
the two unknowns, δ2, δ4. The values of δ4 so extracted
are shown by the pink points in Figure 2.

For a direct estimate of δ4 from T+
1 , only the L/as = 24

lattice has a point within our plotted range of scattering
momentum. The extracted point is shown by the pink
diamond in Figure 2, and is in good agreement with the
other estimates, showing that |δ4| is less than 2◦ over the
whole of the explored momentum range.

With an estimated magnitude of δ4(k) in hand (from
interpolation between the determined points), we can
solve Equation 1 including the effect of the � = 4 wave.
This gives rise to the orange, light green and cyan colored
points in Figure 2 which are seen to differ relatively little
from the points with δ4 assumed to be zero. For final
presentation we enlarge the errorbar to include the effect
of the estimated δ4 giving rise to asymmetric errorbars
in Figure 3.

It is important to note that inelastic channels open
up within the energy range of our extracted phase-shifts.
As shown in Figure 2, the 4π and ρρ thresholds open
at rather low momentum, but we do not see any sign
of such states in the analysis of our correlators, which
have been computed without explicit 4π-like or ρρ-like
operators. The breakdown of elasticity at higher scatter-
ing momentum may provide an explanation of the slight
discrepancies observed there between phase-shift points
obtained from different volumes.

Results: In Figure 3 we show our results for S and
D-wave phase shifts, at a range of pion masses, along
with experimental data taken from [7–10]. We observe

-60

-50

-40

-30

-20

-10

 0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

FIG. 2: Phase-shifts extracted from spectra with mπ =

396MeV. Red (A+
1 ), green (E+

), blue (T+
2 ) colored points

assume δ4 = 0; orange (A+
1 ), light green (E+

), cyan (T+
2 )

colored points (shifted slightly to the right) used estimated

δ4 as described in the text: note that the corrected δ2 val-

ues from E+, T+
2 coincide by construction at momenta near

|�p|2 = 2 ·
�
2π
L

�2
. Estimated δ4 shown by pink points. Also

indicated are the positions of inelastic thresholds into 4π and

ρρ.

-70

-60

-50

-40

-30

-20

-10

 0
 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Hoogland
Losty

Cohen
Durusoyex

pt
.

-15

-10

-5

 0

 5
 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Hoogland
Losty

Cohen
Durusoyex

pt
.

FIG. 3: Phase-shift in degrees for ππ I = 2 scattering with

� = 0(δ0) and � = 2(δ2). Lattice results at various pion masses

and volumes. Experimental data from [7–10].

JLAB-THY-10-1291 / TCDMATH-10-09

The phase-shift of isospin-2 ππ scattering from lattice QCD
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Finite-volume lattice QCD calculations offer the possibility of extracting resonance parameters

from the energy-dependent elastic phase-shift computed using the Lüscher technique. In this letter,

as a trial of the method, we report on the extraction of the non-resonant phase-shift for S and

D-wave ππ isospin-2 scattering from dynamical lattice QCD computations. We define a variational

basis of operators resembling pairs of pions of definite relative momentum and extract a spectrum of

excited states that maps to phase-shifts at a set of discrete scattering momenta. Computations are

performed with pion masses between 400 and 520 MeV on multiple spatial volumes. We observe no

significant quark mass dependence in the phase-shifts extracted which are in reasonable agreement

with the available experimental data at low momentum.

Introduction: The hadron spectrum and interactions
of QCD can be studied from first principles using nu-
merical simulation of the quark and gluon fields on a fi-
nite lattice. While significant progress has been made in
studying isolated excited meson states with qq̄-like op-
erators [1, 2], it remains challenging to extract proper-
ties of resonances that appear in the scattering of stable
hadrons. One procedure, due to Lüscher [3], maps the
discrete spectrum of eigenstates of QCD in a finite cubic
volume to the phase shift for elastic scattering. By ex-
tracting multiple excited eigenstates within a given quan-
tum number sector, one can map out the phase shift as a
function of scattering momentum and, if present in that
channel, observe resonant behaviour.

In this letter, we demonstrate the feasibility of the
technique in a simple sector, that of ππ scattering in
isospin-2 (I = 2), where the interaction is not strong
enough to form a resonance, but rather is weak and re-
pulsive. For the first time using this method, we extract
the S- and D-wave phase shifts as a function of scatter-
ing momentum. This procedure is carried out indepen-
dently on multiple volumes to validate the finite-volume
method. We find through computations at a range of
quark masses that at the level of precision available to us
the phase shift is largely quark mass independent.

Previous lattice QCD calculations of ππ scattering
have limited themselves to extracting the phase shift at
near-zero energy, more conveniently expressed via the
scattering length [4, 5]. In contrast, we use the “distil-
lation” method [6] to construct both creation and anni-
hilation operators of definite inter-pion momentum, and
employ them to form a variational basis of composite
QCD operators that resemble pairs of pions. This en-
ables us to extract a spectrum of multiple states with
I = 2, �P = 0+, 2+ (� is the partial wave and P the par-
ity) and, using the Lüscher technique, we find the phase
shift as a discrete function of the scattering momentum.
This sets the groundwork for investigating resonances in
other meson-meson scattering channels.

Experimentally, ππ I = 2 phase shifts have been
extracted from πN → ππN � charge-exchange scattering
reactions, treating the dominantly-exchanged pion as
approximately on-shell owing to the proximity of the
t-channel pole to the physical small-t region. The extant
data [7–10] for δ�=0 and δ�=2 are broadly consistent in
the region of scattering momentum, k � 700MeV and
the inelasticity in this region is found to be small.

Finite volume analysis: Lüscher’s method relates the
discrete spectrum of energy levels in a finite volume to
phase shifts evaluated at the scattering momenta corre-
sponding to the extracted energy values. Complications
arise from the cubic symmetry of the lattice boundary
which reduces the irreducible symmetry channels from
the set of all integer spins to a finite set of irreducible rep-
resentations. The relevant irreps, Γ, for ππ isospin-2 scat-
tering at low momentum are A+

1 which contains contin-
uum spins � = 0, 4 . . ., T+

2 (� = 2, 4 . . .), E+(� = 2, 4 . . .)
and T+

1 (� = 4 . . .). Odd � do not contribute due to Bose
symmetry.
Once the finite volume energy levels, Eππ are ob-

tained from an explicit Monte-Carlo calculation on a
fixed volume (L3) lattice, the scattering momenta fol-
low assuming a continuum-like dispersion relation, k =�
(Eππ/2)2 −m2

π. The desired phase-shifts are embed-
ded in an equation

det
�
e2iδ(k) −UΓ

�
k L
2π

��
= 0, (1)

where UΓ

�
k L
2π

�
is a matrix in the space of partial waves,

�, of known functions particular to this irrep, Γ, evalu-
ated at the scattering momentum, k. e2iδ(k) is a diagonal
matrix featuring phase-shifts, δ�(k), for all partial waves
contributing to the irrep Γ. The dimension of these ma-
trices is formally infinite, since there are an infinite num-
ber of possible partial waves contributing to each irrep
Γ. However, one can argue that, since higher waves typ-
ically contribute less at low momentum, one can cut-off
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TABLE I: Decomposition of the orbital angular momentum eigenstates, |l,m�, into irreps of the
cubic group, Γ(i), for l ≤ 9 (see, for instance, Ref. [53]).

Angular Momentum, l Irreps of the Cubic Group, Γ(i)

0 A+
1

1 T−
1

2 E+ ⊕ T+
2

3 A−
2 ⊕ T−

1 ⊕ T−
2

4 A+
1 ⊕ E+ ⊕ T+

1 ⊕ T+
2

5 E− ⊕ T−(1)
1 ⊕ T−(2)

1 ⊕ T−
2

6 A+
1 ⊕A+

2 ⊕ E+ ⊕ T+
1 ⊕ T+(1)

2 ⊕ T+(2)
2

7 A−
2 ⊕ E− ⊕ T−(1)

1 ⊕ T−(2)
1 ⊕ T−(1)

2 ⊕ T−(2)
2

8 A+
1 ⊕ E+(1) ⊕ E+(2) ⊕ T+(1)

1 ⊕ T+(2)
1 ⊕ T+(1)

2 ⊕ T+(2)
2

9 A−
1 ⊕A−

2 ⊕ E− ⊕ T−(1)
1 ⊕ T−(2)

1 ⊕ T−(3)
1 ⊕ T−(1)

2 ⊕ T−(2)
2

representations of the full cubic group, Γ(i). 2 Table I shows the decomposition of the orbital

angular momentum eigenstates, |l,m�, into the Γ(i) for l ≤ 9, from which it is straightforward

to determine the Γ(i) that have energy-eigenvalues that depend upon a given phase-shift δl 3.

A cursory study of table I shows that A
+
1 -states will, in general, receive contributions to their

energy from interactions with l = 0, 4, 6, 8, ..., as is well known [6], and similarly for the other

Γ(i). As the dimensionality of an SO(3) irrep (which is 2l+1 for |l,m�) must be equal to the

sum of the dimensionalities of the cubic irreps in its decomposition, cubic irreps will, in gen-

eral, appear multiple times (with multiplicities denoted by N(Γ(i), l)) in the decomposition

of an SO(3) irrep. Multiplicities greater than one occur for l ≥ 5. The space associated with

the jth occurrence of Γ(i) in the decomposition of |l,m� is spanned by the orthonormal basis

{ |Γ(i), Lz; l; j� }, where the number of values of Lz equals the dimensionality of Γ(i), e.g. for

l = 5, the 3-dimensional irrep T
−
1 occurs twice, and the space associated with the second

occurrence is spanned by { |T−
1 , 0; 5; 2� , |T−

1 , 1; 5; 2� , |T−
1 , 3; 5; 2�} 4. When calculating

observables in a cubic volume, operators transforming as a component of a spherical tensor

of rank-S, Ô
(µ)
S , are most conveniently written as

Ô
(µ)
S =

�

i,j,Lz

θ(Γ
(i),j,Lz ;S,µ) |Γ(i)

, Lz;S; j��Γ(i)
, Lz;S; j| , (1)

where the values of the θ(Γ
(i),j,Lz ;S,µ) are simply determined by matrix elements of Ô

(µ)
S

2 The irreps of the full cubic group are Γ(i) = A±
1 , A

±
2 , E

±, T±
1 , and T±

2 , and have dimensionality 1, 1, 2, 3

and 3 respectively. The superscript denotes the parity of Γ(i).
3 Each Γ(i) appears at least once in the decomposition of the |l,m� with l ≤ 6 except A−

1 which first

appears in the decomposition of the l = 9 irrep [53]. It is important to note that the decompositions of

the l = 7 and l = 8 irreps contain only Γ(i) that also appear in the decomposition of the l ≤ 6 irreps, and

consequently there is no Γ(i) for which the dominant contribution to the interaction energy (in the large

volume limit) is from the l = 7 and l = 8 partial-waves.
4 The Lz quantum number indicates that a phase of eiLzφ results from a (cubic) rotation of φ = nπ/2 about

the z-axis, with n an integer. Lz = 3 is equivalent to a Lz = −1 and Lz = 2 is equivalent to Lz = −2.

5

What about higher partial waves?
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FIG. 7: The function X+
E , as defined in eq. (21), as a function of q̃2. The vertical dashed lines denote

the position of the poles in the function corresponding to the non-interacting energy-eigenvalues.

where

F
(FV,E+)
2;2 =

Z0,0 (1; q̃2)

π3/2q̃
+

6Z4,0 (1; q̃2)

7π3/2q̃5

F
(FV,E+)
2;4 = −

30
�

3
13Z6,0 (1; q̃2)

11π3/2q̃7
− 40

√
3Z4,0 (1; q̃2)

77π3/2q̃5

F
(FV,E+)
2;6 =

8
�

14
1105Z8,0 (1; q̃2)

π3/2q̃9
+

4
�

14
5 Z6,0 (1; q̃2)

11π3/2q̃7
+

30
�

10
91Z4,0 (1; q̃2)

11π3/2q̃5

F
(FV,E+)
4;4 =

Z0,0 (1; q̃2)

π3/2q̃
+

392Z8,0 (1; q̃2)

143
√
17π3/2q̃9

− 64Z6,0 (1; q̃2)

11
√
13π3/2q̃7

+
108Z4,0 (1; q̃2)

1001π3/2q̃5

F
(FV,E+)
4;6 = −

1512
�

2
65Z10,0 (1; q̃2)

323π3/2q̃11
−

128
�

210
221Z8,0 (1; q̃2)

209π3/2q̃9
− 18

√
210Z6,0 (1; q̃2)

187π3/2q̃7
−

8
�

30
91Z4,0 (1; q̃2)

11π3/2q̃5

F
(FV,E+)
6;6 =

Z0,0 (1; q̃2)

π3/2q̃
+

30492Z12,0 (1; q̃2)

37145π3/2q̃13
+

264
√
1001Z12,4 (1; q̃2)

37145π3/2q̃13
+

1152
√
21Z10,0 (1; q̃2)

7429π3/2q̃11

+
280Z8,0 (1; q̃2)

209
√
17π3/2q̃9

+
480

√
13Z6,0 (1; q̃2)

3553π3/2q̃7
+

114Z4,0 (1; q̃2)

187π3/2q̃5
.
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TABLE VI: The momentum-space structure of E+, Lz = 0 sources and sinks for |n|2=1,2, and 4.

|n|2=1 |n|2=2 |n|2=4

|(1,0,0) , +1� 1√
6

|(0,1,0) , +1� 1√
6

|(0,0,1) , +1� −
�

2
3

|(1,1,0) , +1� 1√
3

|(1,0,1) , +1� − 1
2
√
3

|(1,0,-1) , +1� − 1
2
√
3

|(1,-1,0) , +1� 1√
3

|(0,1,1) , +1� − 1
2
√
3

|(0,1,-1) , +1� − 1
2
√
3

|(2,0,0) , +1� 1√
6

|(0,2,0) , +1� 1√
6

|(0,0,2) , +1� −
�

2
3

It is obvious that the solutions of eq. (19) depend upon the l = 2, 4, and 6 partial-waves in
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In the limit that tan δ4 << tan δ2, the l = 2 dominated solutions to eq. (20) result from
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where function X+
E is shown in fig. 7 as a function q̃2 6. The graphical representations of

the sources and sinks that generate this irrep for |n|2 ≤ 6-shell are shown in figs. 8 and 9 in
the case of Lz = 0, and the momentum-space structures are given explicitly in table VI and
table VIII.

There are two occurrences of the E+ irrep in the |n|2 = 5-shell. Linear combinations of
the basis states can be formed: one that is dominated by δ2, and one that is dominated by
δ4 in the infinite-volume limit, as shown in table VI and table VIII. The states are defined
by �l,m||n|2l ;Γ(i), Lz� = �2, 0|54;E+, 0� = 0, and the orthogonal combination |52;E+, 0�.
As is the case in the A+

1 sector, these states are not energy-eigenstates since they have a
non-zero projection, in principle, onto all E+ states. The perturbative expansions of the
energy-eigenvalues in the large-volume limit can be found in Appendix C.

6 This expression has been derived previously by R. Briceno [19].
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by �l,m||n|2l ;Γ(i), Lz� = �2, 0|54;E+, 0� = 0, and the orthogonal combination |52;E+, 0�.
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FIG. 1: Low-lying spectrum, in units of the temporal lat-

tice spacing, of finite volume states in irreps A+
1 , E

+, T+
2 at

mπ = 396MeV for L/as = 16, 20, 24. The box size indicates

the statistical uncertainty on the energy. Orange boxes cor-

respond to states suspected of being ππ�
scattering states.

Dashed lines indicate the non-interacting energy of pion pairs

with the allowed lattice momenta between them.

k2 ∼ 0.35, 0.55, 0.85GeV2 (corresponding to the levels at
atE ∼ 0.25, 0.29, 0.36 in Figure 1), have a possible origin
in the neglect of a non-negligible value of δ4. We can
estimate the size of this δ4 by solving the coupled system
of Equations 1 for T+

2 and E+ at the relevant energy for
the two unknowns, δ2, δ4. The values of δ4 so extracted
are shown by the pink points in Figure 2.

For a direct estimate of δ4 from T+
1 , only the L/as = 24

lattice has a point within our plotted range of scattering
momentum. The extracted point is shown by the pink
diamond in Figure 2, and is in good agreement with the
other estimates, showing that |δ4| is less than 2◦ over the
whole of the explored momentum range.

With an estimated magnitude of δ4(k) in hand (from
interpolation between the determined points), we can
solve Equation 1 including the effect of the � = 4 wave.
This gives rise to the orange, light green and cyan colored
points in Figure 2 which are seen to differ relatively little
from the points with δ4 assumed to be zero. For final
presentation we enlarge the errorbar to include the effect
of the estimated δ4 giving rise to asymmetric errorbars
in Figure 3.

It is important to note that inelastic channels open
up within the energy range of our extracted phase-shifts.
As shown in Figure 2, the 4π and ρρ thresholds open
at rather low momentum, but we do not see any sign
of such states in the analysis of our correlators, which
have been computed without explicit 4π-like or ρρ-like
operators. The breakdown of elasticity at higher scatter-
ing momentum may provide an explanation of the slight
discrepancies observed there between phase-shift points
obtained from different volumes.

Results: In Figure 3 we show our results for S and
D-wave phase shifts, at a range of pion masses, along
with experimental data taken from [7–10]. We observe
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The phase-shift of isospin-2 ππ scattering from lattice QCD
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Finite-volume lattice QCD calculations offer the possibility of extracting resonance parameters

from the energy-dependent elastic phase-shift computed using the Lüscher technique. In this letter,

as a trial of the method, we report on the extraction of the non-resonant phase-shift for S and

D-wave ππ isospin-2 scattering from dynamical lattice QCD computations. We define a variational

basis of operators resembling pairs of pions of definite relative momentum and extract a spectrum of

excited states that maps to phase-shifts at a set of discrete scattering momenta. Computations are

performed with pion masses between 400 and 520 MeV on multiple spatial volumes. We observe no

significant quark mass dependence in the phase-shifts extracted which are in reasonable agreement

with the available experimental data at low momentum.

Introduction: The hadron spectrum and interactions
of QCD can be studied from first principles using nu-
merical simulation of the quark and gluon fields on a fi-
nite lattice. While significant progress has been made in
studying isolated excited meson states with qq̄-like op-
erators [1, 2], it remains challenging to extract proper-
ties of resonances that appear in the scattering of stable
hadrons. One procedure, due to Lüscher [3], maps the
discrete spectrum of eigenstates of QCD in a finite cubic
volume to the phase shift for elastic scattering. By ex-
tracting multiple excited eigenstates within a given quan-
tum number sector, one can map out the phase shift as a
function of scattering momentum and, if present in that
channel, observe resonant behaviour.

In this letter, we demonstrate the feasibility of the
technique in a simple sector, that of ππ scattering in
isospin-2 (I = 2), where the interaction is not strong
enough to form a resonance, but rather is weak and re-
pulsive. For the first time using this method, we extract
the S- and D-wave phase shifts as a function of scatter-
ing momentum. This procedure is carried out indepen-
dently on multiple volumes to validate the finite-volume
method. We find through computations at a range of
quark masses that at the level of precision available to us
the phase shift is largely quark mass independent.

Previous lattice QCD calculations of ππ scattering
have limited themselves to extracting the phase shift at
near-zero energy, more conveniently expressed via the
scattering length [4, 5]. In contrast, we use the “distil-
lation” method [6] to construct both creation and anni-
hilation operators of definite inter-pion momentum, and
employ them to form a variational basis of composite
QCD operators that resemble pairs of pions. This en-
ables us to extract a spectrum of multiple states with
I = 2, �P = 0+, 2+ (� is the partial wave and P the par-
ity) and, using the Lüscher technique, we find the phase
shift as a discrete function of the scattering momentum.
This sets the groundwork for investigating resonances in
other meson-meson scattering channels.

Experimentally, ππ I = 2 phase shifts have been
extracted from πN → ππN � charge-exchange scattering
reactions, treating the dominantly-exchanged pion as
approximately on-shell owing to the proximity of the
t-channel pole to the physical small-t region. The extant
data [7–10] for δ�=0 and δ�=2 are broadly consistent in
the region of scattering momentum, k � 700MeV and
the inelasticity in this region is found to be small.

Finite volume analysis: Lüscher’s method relates the
discrete spectrum of energy levels in a finite volume to
phase shifts evaluated at the scattering momenta corre-
sponding to the extracted energy values. Complications
arise from the cubic symmetry of the lattice boundary
which reduces the irreducible symmetry channels from
the set of all integer spins to a finite set of irreducible rep-
resentations. The relevant irreps, Γ, for ππ isospin-2 scat-
tering at low momentum are A+

1 which contains contin-
uum spins � = 0, 4 . . ., T+

2 (� = 2, 4 . . .), E+(� = 2, 4 . . .)
and T+

1 (� = 4 . . .). Odd � do not contribute due to Bose
symmetry.
Once the finite volume energy levels, Eππ are ob-

tained from an explicit Monte-Carlo calculation on a
fixed volume (L3) lattice, the scattering momenta fol-
low assuming a continuum-like dispersion relation, k =�
(Eππ/2)2 −m2

π. The desired phase-shifts are embed-
ded in an equation

det
�
e2iδ(k) −UΓ

�
k L
2π

��
= 0, (1)

where UΓ

�
k L
2π

�
is a matrix in the space of partial waves,

�, of known functions particular to this irrep, Γ, evalu-
ated at the scattering momentum, k. e2iδ(k) is a diagonal
matrix featuring phase-shifts, δ�(k), for all partial waves
contributing to the irrep Γ. The dimension of these ma-
trices is formally infinite, since there are an infinite num-
ber of possible partial waves contributing to each irrep
Γ. However, one can argue that, since higher waves typ-
ically contribute less at low momentum, one can cut-off
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β̂0 = µ
d

dµ
Ĉ0 = −Ĉ0(Ĉ0 − 1)

Define a dimensionless coupling: �C0 ≡ −
Mµ

4π
C0 =

µ

µ + 1
a

C0(µ) = −4π

M

1
µ + 1

a

The beta function is then given by: �β = µ
∂ �C0

∂µ
= − �C0

�
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FIG. 1: Feynman diagrams that give the exact two-body scattering amplitude. The oval blob repre-

sents the all-orders interaction derived from the Lagrangian.

This Lagrangian, constrained by Galilean invariance, parity and time-reversal invariance,
describes the low-energy interactions of bosons via an arbitrary finite-range potential. In
principle, it is valid in any number of spacetime dimensions, d. The mass dimensions of the
boson field and of the operator coefficients change with spacetime dimensions: i.e. [ψ] =
(d−1)/2, [C2n] = 2−d−2n and [D0] = 3−2d. While our focus in this paper is on d = 3, in
our general discussion of two- and three-body interactions, we will keep d arbitrary as this
will allow the reader to check our results against the well-known cases with d = 2 and d = 4.
Throughout we use units with ! = 1, however we will keep the boson mass, M , explicit.

Consider 2 → 2 scattering, with incoming momenta labelled p1,p2 and outgoing momenta
labelled p′

1,p
′
2. In the center-of-mass frame, p = p1 = −p2 , and the sum of Feynman

diagrams, shown in fig. 1, computed in the EFT gives the two-body scattering amplitude [22–
24]

A2(p) = −
∑

C2n p2n

1 − I0(p)
∑

C2n p2n
, (2)

where

I0(p) =
M

2

(µ

2

)ε
∫

dD−1q

(2π)D−1

1

p2 − q2 + iδ
, (3)

and it is understood that the ultraviolet divergences in the EFT are regulated using di-
mensional regularization (DR). In eq. (3), µ and D are the DR scale and dimensionality,
respectively, and ε ≡ d − D. A useful integral is:

In(p) =
M

2

(µ

2

)ε
∫

dD−1q

(2π)D−1
q2n

(

1

p2 − q2 + iδ

)

;

= −M

2
p2n(−p2 − iδ)(D−3)/2Γ

(

3 − D

2

)

(µ/2)ε

(4π)(D−1)/2
. (4)

In what follows we will define the EFT coefficients in DR with MS. This choice is by no
means generally appropriate [23, 24]. However it is a convenient choice if no assumption is
made about the relative size of the renormalized EFT coefficients.
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Why nuclear physics is special!

a−1
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mπ − m∗
π
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Why is nuclear physics near this UV fixed point??

Lattice QCD will answer this question!
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Does signal/noise decay exponentially?

noise
signal

−→ 1√
N

eA(mp− 3
2 mπ)t

t→∞

For a system of A nucleons:

Yes!



Does signal/noise decay exponentially?

However, only asymptotically!

noise
signal

−→ 1√
N

eA(mp− 3
2 mπ)t

t→∞

For a system of A nucleons:

Yes!
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Is there a signal/noise problem?
related to sign problem?
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Contraction bottleneck for             ?A � 2contractions

Contraction of spin-color indices now poses major limitations!

np: 36

nnp: 2880

npnp: 518400

...

(A,Z): (A+Z)! (2A-Z)!
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Figure 23: The quenched results for the binding energies (in lattice units) obtained by the
PACS-CS collaboration in the triton channel and the channel with the quantum numbers of
the α-particle [120]. The pion mass in these calculations is mπ ∼ 800 MeV.

where Nα(x, t) is an interpolating field (composed of three quark operators) that has non-vanishing
overlap with the nucleon, Γ+ is a positive energy projector, and the angle brackets indicate statistical
averaging over calculations on an ensemble of configurations. The variance of this correlation function
is given by

N σ2 ∼ �θ†N(t)θN(t)� − �θN(t)�2

=
�

x,y

Γδα
+ Γγβ†

+ �0| Nα(x, t)N
β
(y, t)Nγ(0, 0)N

δ
(0, 0) |0� − �θN(t)�2

→ ZNNe
−2MN t − Z2

Ne
−2MN t + Z3π e−3mπt + ...

t→∞→ Z3π e−3mπt , (66)

where all interaction energies have been neglected, and N is the number of (independent) calculations.
At large times, the noise-to-signal ratio has the form, as argued by Lepage [125],

σ

x
=

σ(t)

�θ(t)� ∼ 1√
N

e(MN− 3
2mπ)t . (67)

More generally, for a system of A nucleons, the noise-to-signal ratio behaves as

σ

x
∼ 1√

N
eA(MN− 3

2mπ)t (68)

at large times.
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Lattice QCD:  Baryon-Baryon
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What about bound states?

cot δ(iκ) = i − i
�

m �=0

e−|m|κL

|m|κL

κ = γ +
6

L

e−γL

1 − γr3
+ O(e−

√
2γL)

Need several volumes!

cot δ(iγ) = iA2(p) =
8π

M

1
p cot δ(p)− ip

Finite-V:



Is there  an H-dibaryon?

Need other volumes!
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2

�
q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
1

π L
S

�
q2n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
c1

�
e−γL +

√
2 e−

√
2γL

�
+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The
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Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]
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where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and

0 0.005 0.01 0.015 0.02

0.22

0.222

0.224

0.226

e�mΠ�L

M
�
�t.l.u�

0 0.005 0.01 0.015

0.22

0.24

0.26

k2 �t.l.u.�2

E �
�k2 �

�t.l.u.�

FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
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Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]
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where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.
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that the Λmass on the 163×128 ensemble (mπL = 3.86)
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more importantly, is shifted by an amount that is com-
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The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.
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2.0, 2.5, 3.0 and 3.9 fm respectively.
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lators that we use, and the methodology for extracting
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Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]
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where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.
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that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
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calculated energy eigenvalues. In order to verify that the
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16, 20, 24, 32, corresponding to spatial dimensions of L ∼
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Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]
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where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.
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parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
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baryon interactions. Therefore, only calculations on the
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from the power-law volume dependence of a scattering
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mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
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of the single baryon masses. The results of this anal-
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the exponential contributions to the baryon masses do
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where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.
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more importantly, is shifted by an amount that is com-
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olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The
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q2n is related to the real part of the inverse scattering
amplitude,
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thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
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Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]
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where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the

κ = γ +
6

L

e−γL

1 − γr3
+ O(e−

√
2γL)



0.000 0.005 0.010 0.015 0.020 0.025
0.220

0.221

0.222

0.223

0.224

0.225

0.226

e�MΠ L

b
M
�

0 0.005 0.01 0.015 0.02

0.22

0.222

0.224

0.226

e�mΠ�L

M
�
�t.l.u�

0.22 0.221 0.222
0.

0.1

0.2

0.3

M���� �t.l.u�

C �
�V�

FIG. 3: The left panel shows the mass of the Λ as a function of e−mπL where L is the spatial extent
of the lattice. From left-to-right, the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point corresponds to the mass of the Λ extrapolated to L = ∞, and the red
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Λ e−mπL with the statistical
and systematic uncertainties combined in quadrature. The right panel shows the 68% confidence
interval associated with the parameters MΛ(∞) and C(V )

Λ .

It is clear that the calculated baryon masses on the 163 × 128 ensemble, with an
mπ L = 3.86, are significantly shifted from the infinite-volume value and, more impor-
tantly, are shifted by an amount that is comparable to the power-law energy-splittings in
the two-baryon sector. Therefore, we do not use the calculations performed on the 163×128
ensemble in the analysis of two-baryon interactions. While the energy-shifts calculated on
the 203 × 128 ensemble, with an mπ L = 4.82, are significantly less than those on the
163 × 128 ensemble, they remain large enough that these are also not used in the analysis
of two-baryon interactions. Therefore, only calculations on the 243× 128 ensemble, with an
mπ L = 5.79, and on the 323 × 128 ensemble, with an mπ L = 7.71, are used in the
analysis of the two-baryon sector, and in particular, in the calculation of two-baryon binding
energies. From this analysis we conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential volume effects to be negligible small,
appears to be true. We believe it to be the case that reliable calculations of baryon-baryon
scattering parameters and bound-states from two-baryon energy-eigenvalues requires that
mπL>∼ 2π. In the case of the interactions between π’s and K’s, such large volumes are not
required as the range of the interaction is set by 2mπ and not π due to the absence of a
three-meson interaction vertex, and therefore a calculations of the meson-meson scattering
amplitude on the 163 × 128 and 203 × 128 ensembles can be relied upon.

C. Verifying the Energy-Momentum Relation

Implicit in the calculation of hadron-hadron scattering amplitudes with Lüschers method
is that the single hadron energy-momentum relation is satisfied over the range of momenta
(that may be) projected against in forming the correlation functions that are analyzed, and
over the range of energy eigenvalues that are subsequently extracted. In order to verify that
the energy-momentum relation is well-satisfied for the baryons, single hadron correlation
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2
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q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
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, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1
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e−γL +

√
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√
2γL
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+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2

�
q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
1

π L
S

�
q2n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
c1

�
e−γL +

√
2 e−

√
2γL

�
+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2

�
q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
1

π L
S

�
q2n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
c1

�
e−γL +

√
2 e−

√
2γL

�
+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2

�
q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
1

π L
S

�
q2n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
c1

�
e−γL +

√
2 e−

√
2γL

�
+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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of the two-hadron system in the lattice volume from the

sum of the single-hadron masses is related to the scat-

tering phase shift, δ. The form of the baryon interpo-

lating operators, the baryon and baryon-baryon correla-

tors, and the methodology used for extracting the en-

ergy shift are discussed in detail in Ref. [24]. For gauge-

field configurations that have different lattice spacings

in the temporal and spatial directions (anisotropic lat-

tices), the energy shift, ∆E(AB)
n (in temporal lattice units

(t.l.u)), of two particles of equal mass, m, is given by

∆E(AB)
n = 2

�
q2
n/ξ2

t + m2 − 2m, where ξt is the lattice

anisotropy. The subscript n denotes the nth energy-level

in the lattice volume. This relation determines a squared

momentum, q2
n (in spatial lattice units (s.l.u)), which can

be either positive or negative. For s-wave scattering be-

low inelastic thresholds, q2
n is related to the real part of

the inverse scattering amplitude through the eigenvalue

equation

qn cot δ(qn) =
1

π L
S

�
q2
n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum

numbers in multiple volumes allows for bound states to

be distinguished from scattering states. Writing q0 = iκ
for states that are negatively shifted in energy in the lat-

tice volume, the volume dependence of the binding mo-

mentum in the large volume limit follows directly from

eq. (1) and is of the form [23]

κ = γ +
g1

L

�
e−γL

+
√

2 e−
√

2γL
�

+ ... , (3)

where γ is the infinite-volume value of the binding mo-

mentum, under the assumption that γ � mπ, and g1

is treated as a fit parameter. With calculations in two

or more lattice volumes that both have q2
0 < 0 and

q0 cot δ(q0) < 0 it is possible to perform an extrapola-

tion with eq. (3) to the infinite-volume limit to deter-

mine the binding energy of the bound state, B = γ2/m.

The range of nuclear interactions is set by the pion mass,

and therefore the use of Lüscher’s method requires that

mπL� 1 in order to strongly suppress the contributions

that depend upon the volume as e−mπL [25].

Our present results are from calculations on four en-

sembles of nf = 2 + 1 anisotropic clover gauge-field con-

figurations at a pion mass of mπ ∼ 389 MeV, a spatial

lattice spacing of bs ∼ 0.1227(8) fm, an anisotropy fac-

tor [26, 27] of ξt = bs/bt = 3.500(32), and with spatial-

extents of 16, 20, 24, 32 lattice sites, corresponding to spa-

tial dimensions of L ∼ 2.0, 2.5, 3.0 and 3.9 fm respec-

tively, and temporal extents of 128, 128, 128, and 256

lattice sites, respectively. The precision of the calcula-

tions is sufficiently high that the exponential volume de-

pendence of the single baryon masses can be quantified.

The results of this analysis dictate a minimum lattice

volume for which the exponential contributions to the

baryon masses do not significantly contaminate the ex-

traction of scattering parameters. The Λ mass, unlike
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. The left-most
(red) point and uncertainty is the infinite-volume extrapola-
tion of the other (blue) points calculated in lattice volumes
with spatial extents of, from left-to-right, L = 32, 24, 20, and
16. Right panel: the energy-momentum relation of the Λ
calculated on the 323×256 ensemble. The points (and uncer-
tainties) are the results of lattice calculations and the (red)
curve corresponds to the best quadratic fit. The units of the
vertical axes in both plots are are t.l.u., and of the horizontal
axis of the right plot are (t.l.u.)2

that of the π and kaon, is found to have statistically sig-

nificant volume-dependence, as shown in the left panel

of fig. 1. It is clear that the Λ mass on the 163 × 128

ensemble (mπL = 3.86) is significantly higher than its

infinite-volume value and, more importantly, is shifted

by an amount that is comparable to the two-baryon en-

ergy shifts. The deviation found in calculations on the

203 × 128 ensemble (mπL = 4.82) is much less than

that of the 163×128 ensemble, but we choose to use only

calculations on the 243 × 128 ensemble (mπL = 5.79)

and on the 323 × 256 ensemble (mπL = 7.71) in the

bound-state analysis.

Lüscher’s method assumes that the single-hadron

energy-momentum relation is satisfied over the range of

energies used in the eigenvalue equation in eq. (1). In or-

der to verify that the energy-momentum relation is sat-

isfied, single hadron correlation functions were formed

with well-defined lattice spatial momentum k =
2π
L n for

|n|2 ≤ 5. As the low-lying states in the lattice volume

have energies that are small compared with the Λ mass,

it is sufficient to determine the non-relativistic energy-

momentum relation,

EΛ = M0 +
|k|2

2M1
− |k|4

8M3
2

+ ... . (4)

The Λ energy as a function of momentum calculated

on the 323 × 256 ensemble is shown in the right panel

M0 = 0.22135(10)(05)

M1 = 0.2231(34)(13)

M2 = 0.261(26)(04)

Energy-Momentum Relation

Special relativity satisfied!



The bottom line:

BH

∞ = 16.6 ± 2.1 ± 4.6 MeV 2

exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2

�
q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
1

π L
S

�
q2n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
c1

�
e−γL +

√
2 e−

√
2γL

�
+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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shift at the energy ∆E(AB)
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Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]
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where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.
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dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]
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where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the

Need smaller lattice spacing 
and lighter quarks!

3

of fig. 1, and yields M0,M1,M2 of 0.22135(10)(05),
0.2231(34)(13), 0.261(26)(04) t.l.u, respectively. Clearly
the special-relativity limit of M0 = M1 = M2 is satisfied,
but an uncertainty of ∼ 2% is introduced into q2

0
from

the uncertainties in the energy-momentum relation.
In the absence of interactions, the ΛΛ-ΞN -ΣΣ system

is expected to exhibit three low-lying states as the mass-
splittings between the single-particle states are (on the
323 × 256 ensemble)

2(MΣ −MΛ) = 0.01317(13)(19) t.l.u
MΞ + MN − 2MΛ = 0.003397(61)(65) t.l.u . (5)

However, if the interaction generates a bound state, it
is unlikely that a second or third state will also be
bound, and therefore the splitting between the ground-
state and the two additional states will likely be larger
than estimates based upon the single baryon rest masses.
The effective mass plot (EMP) for the Λ calculated
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FIG. 2: The EMPs for the Λ (left panels) and the splitting
between the ΛΛ system and twice the Λ mass (right panels)
calculated on the 243 × 128 (upper) and 323 × 256 (lower)
ensembles. The units of both axes are t.l.u.

on the 243 × 128 and 323 × 256 ensembles that have
been optimized for the ground-states using the matrix-
Prony method are shown in the left panels of fig. 2, and
clear plateaus are identified. The calculated EMP for
the energy-splittings between the ΛΛ-ΞN -ΣΣ coupled-
channels (optimized using the matrix-Prony method) and
twice the energy of the Λ (formed from the ratio of cor-
relation functions) on the 243 × 128 and 323 × 256 en-
sembles are shown in the right panels of fig. 2. In each
lattice volume, the results are consistent with a single iso-
lated ground-state with an energy that is less than the
rest mass of two Λ’s 1. The energy splittings and their
uncertainties extracted from both ensembles lead to neg-
ative values of q0 cot δ indicating that they both lie on the

1 The finite-volume binding energies calculated in the L = 16,
20, 24 and 32 lattice volumes are 12.3(1.1)(4.0), 4.5(1.1)(1.3),
16.3(1.2)(1.4), and 16.6(1.4)(3.1) MeV, respectively.
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FIG. 3: The results of the Lattice QCD calculations of−i cot δ
versus q2

0/m2
π obtained using eq. (1), along with the infinite-

volume extrapolation using eq. (3). The dark (blue) (light
(green)) lines correspond to the statistical (systematic and
statistical uncertainties combined in quadrature) 68% confi-
dence intervals calculated on the 243 × 128 ensemble (lower)
and 323×256 (upper) ensembles. The (red) point and its un-
certainty at −i cot δ = +1 corresponds to the infinite-volume
extrapolation, the inner uncertainty being statistical and the
outer being the systematic and statistical combined in quadra-
ture.

bound-state branch of the S-function, and as such they
are identified with the H-dibaryon. The extracted values
of −i cot δ from the 243 × 128 and 323 × 256 ensembles
and their uncertainties are shown in fig. 3, along with
the infinite-volume extrapolation implicit in eq. (1), and
made explicit in eq. (3). The H-dibaryon binding energy
at this pion mass is found to be

BH

∞ = 16.6± 2.1± 4.5± 1.0± 0.6 MeV , (6)

where the first uncertainty is statistical, the second sys-
tematic, the third is an estimate of the uncertainty in
the infinite-volume extrapolation, and the fourth is the
uncertainty from the energy-momentum relation. Com-
bining the various systematic uncertainties in quadrature
gives BH

∞ = 16.6±2.1±4.6 MeV. A Monte-Carlo propa-
gation of the uncertainties indicates that there is a prob-
ability greater than 0.98 that the H-dibaryon is bound at
this pion mass.

In conclusion, we have presented strong evidence for
the existence of a bound H-dibaryon from Lattice QCD
calculations at a pion mass of mπ ∼ 389 MeV. Our cal-
culations were performed in four lattice volumes, and a
negatively shifted ground-state was found in all four vol-
umes. In order to suppress finite-volume modifications to
the Λ mass and interactions, only the results obtained in
the larger two volumes were used in the infinite-volume
extrapolation. Within statistical errors, the calculated
H-dibaryon energy in the largest two volumes is the same
indicating that both volumes are large compared with the
H-dibaryon size, consistent with the calculated binding
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Conclusion

• Stretched Meson-Meson systems are now a precision science.

• Work is beginning on obtaining hadron-hadron phase shifts.

• Two-baryon systems are currently under intense investigation. 
Calculation of the deuteron is a major outstanding benchmark.

• The H-dibaryon is bound at unphysical quark masses!

• Lattice QCD requires:

★ the resources to move beyond the benchmarking stage. 

★ a strong collaborative effort among physicists, computer 
scientists and applied mathematicians.


