Hadron Interactions from Lattice QCD

Silas Beane

\author{

\boldsymbol{u}^{b}
 | b |
| :--- |
| UNIVERSITAT |
| BERN |
 \triangle UNIVERSITY
 m of New Hampshire BERN

}

Bad Honnef 2/I5/20|I

Outline

- Motivation and basic technology
- Meson-Meson and Meson-Baryon
- Baryon-Baryon and nuclei
- H-dibaryon
- Conclusion

How do we extract S-wave scattering information (phase shifts and binding energies) from a lattice calculation?

Recall NR scattering

$$
\mathcal{A}_{2}(p)=\frac{4 \pi}{M} \frac{1}{p \cot \delta(p)-(i p}=
$$

sum of poles in a Finite Volume!

$$
\mathcal{A}_{2}^{-1}(p)=0
$$

eigenvalue equation

S-wave at Finite Volume

$$
q \cot \delta_{0}=\frac{2}{\sqrt{\pi} L} \mathcal{Z}_{0,0}\left(1 ; \tilde{q}^{2}\right) \quad \mathcal{Z}_{0,0}\left(1 ; \tilde{q}^{2}\right)=\frac{1}{\sqrt{4 \pi}} \lim _{\Lambda_{\mathbf{n}} \rightarrow \infty}\left[\sum_{\mathbf{n}}^{\Lambda_{\mathbf{n}}} \frac{1}{|\mathbf{n}|^{2}-\tilde{q}^{2}}-4 \pi \Lambda_{\mathbf{n}}\right]
$$

$$
+\mathcal{O}\left(e^{-M_{\pi} L}\right)
$$

Weak coupling expansion:

$$
\Delta E_{0}(2, L)=\frac{4 \pi a_{\pi \pi}}{m_{\pi} L^{3}}\left\{1-\left(\frac{a_{\pi \pi}}{\pi L}\right) \mathcal{I}+\left(\frac{a_{\pi \pi}}{\pi L}\right)^{2}\left[\mathcal{I}^{2}-\mathcal{J}\right]+\left(\frac{a_{\pi \pi}}{\pi L}\right)^{3}\left[-\mathcal{I}^{3}+3 \mathcal{I} \mathcal{J}-\mathcal{K}\right]\right\}+\frac{8 \pi^{2} a_{\pi \pi^{3}}}{m_{\pi} L^{6}} r_{\pi \pi}+\mathcal{O}\left(L^{-7}\right)
$$

Calculated on the lattice!

$$
\begin{gathered}
\mathcal{I}=\lim _{\Lambda_{j} \rightarrow \infty} \sum_{\mathbf{i} \neq \mathbf{0}}^{|\mathbf{i}| \leq \Lambda_{j}} \frac{1}{|\mathbf{i}|^{2}}-4 \pi \Lambda_{j}=-8.91363291781 \\
\mathcal{J}=\sum_{\mathbf{i} \neq \mathbf{0}} \frac{1}{|\mathbf{i}|^{4}}=16.532315959
\end{gathered}
$$

phase shift

$$
\mathcal{K}=\sum_{\mathbf{i} \neq \mathbf{0}} \frac{1}{|\mathbf{i}|^{6}}=8.401923974433
$$

$\pi \pi \quad$ scattering in lattice QCD

$$
\mathcal{O}_{\pi^{+}}(t, \vec{x})=\bar{u}(t, \vec{x}) \gamma_{5} d(t, \vec{x})
$$

$$
C_{\pi^{+} \pi^{+}}(p, t)=\langle 0| \sum_{|\mathbf{p}|=p} \sum_{\mathbf{x}, \mathbf{y}} e^{i \mathbf{p} \cdot(\mathbf{x}-\mathbf{y})} \mathcal{O}_{\pi^{-}}(t, \mathbf{x}) \mathcal{O}_{\pi^{-}}(t, \mathbf{y}) \mathcal{O}_{\pi^{+}}(0, \mathbf{0}) \mathcal{O}_{\pi^{+}}(0, \mathbf{0})|0\rangle
$$

$$
\frac{C_{\pi^{+} \pi^{+}}(p, t)}{C_{\pi^{+}}(t) C_{\pi^{+}}(t)} \quad \rightarrow \sum_{n=0}^{\infty} \mathcal{A}_{n} e^{-\Delta E_{n}(2, L) t}
$$

$$
\Delta E_{n}(2, L) \equiv 2 \sqrt{\vec{p}_{n}^{2}+m_{\pi}^{2}}-2 m_{\pi}
$$

$\pi^{+} \Xi^{0} \mathrm{SU}(2)$

$\bar{a}_{\pi^{+} \Xi^{0}} \mathrm{SU}(2)$

$a_{\pi \Xi}^{(3 / 2)}=-0.098 \pm 0.017 \mathrm{fm} \quad N P L Q C D$
$\pi^{+} \Sigma^{+} \mathrm{SU}(2)$

$\bar{a}_{\pi^{+} \Sigma^{+}} \mathrm{SU}(2)$

$$
a_{\pi \Sigma}^{(2)}=-0.197 \pm 0.017 \mathrm{fm}
$$

$\pi \pi I=2 \quad$ S-wave phase shift

What about higher partial waves?

Angular Momentum, l	Irreps of the Cubic Group, $\Gamma^{(i)}$
0	$\left.A_{1}^{+}\right)$
1	T_{1}^{-}
2	$E^{+} \oplus T_{2}^{+}$
3	$A_{2}^{-} \oplus T_{1}^{-} \oplus T_{2}^{-}$
4	$A_{1}^{+} \oplus E^{+} \oplus T_{1}^{+} \oplus T_{2}^{+}$
5	$E^{-} \oplus T_{1}^{-(1)} \oplus T_{1}^{-(2)} \oplus T_{2}^{-}$
6	$A_{1}^{+} \oplus A_{2}^{+} \oplus E^{+} \oplus T_{1}^{+} \oplus T_{2}^{+(1)} \oplus T_{2}^{+(2)}$
7	$A_{2}^{-} \oplus E^{-} \oplus T_{1}^{-(1)} \oplus T_{1}^{-(2)} \oplus T_{2}^{-(1)} \oplus T_{2}^{-(2)}$
8	$A_{1}^{+} \oplus E^{+(1)} \oplus E^{+(2)} \oplus T_{1}^{+(1)} \oplus T_{1}^{+(2)} \oplus T_{2}^{+(1)} \oplus T_{2}^{+(2)}$
9	$A_{1}^{-} \oplus A_{2}^{-} \oplus E^{-} \oplus T_{1}^{-(1)} \oplus T_{1}^{-(2)} \oplus T_{1}^{-(3)} \oplus T_{2}^{-(1)} \oplus T_{2}^{-(2)}$

D-wave at Finite Volume

$$
q^{5} \cot \delta_{2}=\left(\frac{2 \pi}{L}\right)^{5} \frac{1}{\pi^{3 / 2}} \mathcal{X}_{E}^{+}\left(\tilde{q}^{2}\right)
$$

$\pi \pi I=2 \quad$ D-wave phase shift (5 (

Nuclear physics

Trivial IR fixed point:
"natural case"

Nontrivial UV fixed point:"unnatural case"
"Unitarity"

Why is nuclear physics near this UV fixed point??

$$
a_{s}^{-1} \sim \frac{m_{\pi}-m_{\pi}^{*}}{m_{\pi}} \Lambda_{Q C D}
$$

Lattice QCD will answer this question!

Lattice QCD: NN

YN interactions

Does signal/noise decay exponentially?

Does signal/noise decay exponentially?

Yes!

For a system of A nucleons:

$$
\frac{\text { noise }}{\text { signal }} \underset{t \rightarrow \infty}{\longrightarrow} \frac{1}{\sqrt{N}} e^{A\left(m_{p}-\frac{3}{2} m_{\pi}\right) t}
$$

Does signal/noise decay exponentially?

Yes!

For a system of A nucleons:

$$
\frac{\text { noise }}{\text { signal }} \underset{t \rightarrow \infty}{\longrightarrow} \frac{1}{\sqrt{N}} e^{A\left(m_{p}-\frac{3}{2} m_{\pi}\right) t}
$$

However, only asymptotically!

Is there a signal/noise problem?
related to sign problem?

Is there a signal/noise problem?

related to sign problem?

Contraction bottleneck for $A \gg 2$?

Naive factorial growth!

$$
\text { np: } 36
$$

nnp: 2880
$(A, Z): \quad(A+Z)!(2 A-Z)!$
Recursion relations for mesons $\rightarrow A$ growth!

Baryon recursion relations in development!

Contraction bottleneck for $A \gg 2$?

Naive factorial growth!
np: 36
Symmetries
nnp: 2880

$(A, Z): \quad(A+Z)!(2 A-Z)!$
Recursion relations for mesons $\rightarrow A$ growth!

Baryon recursion relations in development!

$20^{3} \times 128$ aniso clover NPLQCD (2009)

Lattice QCD: Baryon-Baryon

What about bound states?

$$
\mathcal{A}_{2}(p)=\frac{8 \pi}{M} \frac{1}{p \cot \delta(p)-i p} \quad \longrightarrow \quad \cot \delta(i \gamma)=i
$$

Finite-V: $\quad \cot \delta(i \kappa)=i-i \sum_{\mathbf{m} \neq 0} \frac{e^{-|\mathbf{m}| \kappa L}}{|\mathbf{m}| \kappa L}$

$$
\kappa=\gamma+\frac{6}{L} \frac{e^{-\gamma L}}{1-\gamma r_{3}}+\mathcal{O}\left(e^{-\sqrt{2} \gamma L}\right)
$$

Need several volumes!

Is there an H-dibaryon?

Need other volumes!

$$
\begin{aligned}
& 16^{3} \times 128 \\
& 20^{3} \times 128 \\
& 24^{3} \times 128 \\
& 32^{3} \times 128
\end{aligned}
$$

$$
\kappa=\gamma+\frac{6}{L} \frac{e^{-\gamma L}}{1-\gamma r_{3}}+\mathcal{O}\left(e^{-\sqrt{2} \gamma L}\right)
$$

$m_{\pi} \sim 389 \mathrm{MeV} \quad b_{s} \sim 0.1227(8) \mathrm{fm} \quad b_{s} / b_{t}=3.500(32)$

Volume dependence of the Λ mass

$24^{3} \times 128$

$32^{3} \times 256$

Energy-Momentum Relation

Special relativity satisfied!

The bottom line:

$$
B_{\infty}^{H}=16.6 \pm 2.1 \pm 4.6 \mathrm{MeV}
$$

$$
m_{\pi} \sim 389 \mathrm{MeV} \quad b_{s} \sim 0.1227(8) \mathrm{fm}
$$

Need smaller lattice spacing and lighter quarks!

Conclusion

- Stretched Meson-Meson systems are now a precision science.
- Work is beginning on obtaining hadron-hadron phase shifts.
- Two-baryon systems are currently under intense investigation. Calculation of the deuteron is a major outstanding benchmark.
- The H -dibaryon is bound at unphysical quark masses!
- Lattice QCD requires:
\star the resources to move beyond the benchmarking stage.
* a strong collaborative effort among physicists, computer scientists and applied mathematicians.

