Quark mass effects in QCD thermodynamics

York Schröder

(Univ Bielefeld, Germany)

work with: F. Di Renzo, A. Hietanen, K. Kajantie, M. Laine, V. Miccio, J. Möller, K. Rummukainen, C. Torrero, A. Vuorinen

Bad Honnef, 13 Feb 2011

how to check QCD vs Reality?

- just solve its eqs
 - by computer (lattice); tough; 'oracle'; understand?!
- consider models 'close to QCD'
 - ▶ fewer dims; different sy groups; diff particle content
- consider 'extreme' circumstances in which eqs simplify
 - remainder of this talk

Why thermal QCD?

- study confinement and chiral symmetry breaking
- phenomenologically relevant for cosmology
- phenomenologically relevant for RHIC, LHC
- theoretical limit tractable with analytic methods
 - goal: no models stay within QCD!
 - goal: possibility of systematic improvements

 $[\rightarrow \text{see next slide}]$

 $[\rightarrow \text{see next}^2 \text{ slide}]$

solve QCD eqs by computer

look at hadron spectrum

- punchline: QCD postdicts the low-lying hadron masses!
- teraflop speeds, worldwide effort

look at QCD pressure

[e.g. Karsch et al.]

- confirms liberation of dofs: $\pi \rightarrow qu + gl$
- simple asymptotics: ideal gas

check QCD in extreme conditions

• $E \uparrow$: collider physics

Temperature T **Quark-Gluon Plasma** sQGP Critical Poin Quarkyonic **Hadronic** Phase Matter uSC dSC Liquid-Gas CFL **Color Superconductors** CFL-K⁰, Crystalline CSC Nuclear Superfluid Baryon Chemical Potential $\mu_{\rm B}$ Meson supercurrent Gluonic phase, Mixed phase

• $T \uparrow$, $\mu \uparrow$: equilibrium phase diagram

[Fukushima/Hatsuda 2010]

- e.g. LEP, $e^+e^- \rightarrow X$
- check details of theory with jets
- nowadays: calc QCD background

- nature: early universe, n/qu stars
- $T_c \sim 170 \text{ MeV} \sim 10 \mu s$
- lab expt: SPS / RHIC / LHC HI / GSI

Focus on equilibrium thermodynamics of QCD

- typical questions to be addressed
 - equation of state (EoS)
 - structure of QCD phase diagram transition lines, order of transitions, critical points
 - ▶ medium properties: spectral functions, correlation lengths, ...

Interplay of methods

- QGP is strongly coupled system near $T_c \Rightarrow$ need e.g. LAT
- asymptotic freedom at high $T \Rightarrow$ weak-coupling approach in continuum
 - cave: strict loop expansion not well-defined IR divergences at higher orders
- try to use best of both

Discuss

- effective theories (here: $\mu = 0$; $\mu \lesssim T$ similar)
- basic thermodynamic observable: pressure p(T)
- quark mass effects on EoS
- (strong consistency check: spatial string tension)

[Linde 79; Gross/Pisarski/Yaffe 81]

[← main playground]

Once more p(T) via (large) computer ($\mu_B = 0$)

[lattice data from Karsch et al.]

at $T \to \infty$, expect ideal gas: $p_{SB} = \left(16 + \frac{21}{2}N_f\right) \frac{\pi^2 T^4}{90}$ confirms simplicity: 3 dofs $(\pi) \to 52$ $(3 \times 3 \times 2 \times 2 \text{ qu} + 8 \times 2 \text{ gl})$

Energy scales in hot QCD

Interactions make QCD a multi-scale system

At asymptotically high T, $g \ll 1 \Rightarrow$ clean separation of 3 scales expansion parameter:

$$g^{2} n_{b}(|k|) = \frac{g^{2}}{e^{|k|/T} - 1} \overset{|k| \leq T}{\approx} \frac{g^{2}T}{|k|}$$

- $|k| \sim \pi T$ aka 'hard': fully perturbative at high T thermal fluctuations; effective mass of non-static field modes
- $|k| \sim gT$ aka 'soft': dynamically generated; barely perturbative at high T inverse screening length of static color-electric fluctuations; thermal/Debye mass
- $|k| \sim g^2 T$ aka 'ultrasoft': dynamically generated; non-perturbative at high T inverse screening length of static color-magnetic fluctuations; 'magnetic mass'
- no smaller momentum scales / larger length scales due to confinement

treatment of a multi-scale system: effective field theory !

p(T) via weak-coupling expansion

need to explain 20% deviation from ideal gas at $T \sim 4T_c$

• structure of pert series is non-trivial !

•
$$p(\mathbf{T}) \equiv \lim_{V \to \infty} \frac{T}{V} \ln \int \mathcal{D}[A^a_{\mu}, \psi, \bar{\psi}] \exp\left(-\frac{1}{\hbar} \int_0^{\hbar/T} d\tau \int d^{3-2\epsilon} x \mathcal{L}^E_{QCD}\right)$$

= $c_0 + c_2 g^2 + c_3 g^3 + (c'_4 \ln g + c_4) g^4 + c_5 g^5 + (c'_6 \ln g + c_6) g^6 + \mathcal{O}(g^7)$

 $[c_2$ Shuryak 78, c_3 Kapusta 79, c'_4 Toimela 83, c_4 Arnold/Zhai 94, c_5 Zhai/Kastening 95, Braaten/Nieto 96, c'_6 KLRS 03]

- root cause of nonanalytic (in α_s) behavior well understood: above-mentioned dynamically generated scales
- clean separation best understood in effective field theory setup [here: μ = 0]
 ▷ generalizations, e.g. μ ≠ 0 [Vuorinen], standard model [Gynther/Vepsäläinen]
- other re-organizations possible, e.g. 2PI skeleton-expansion [eg Blaizot/Iancu/Rebhan]

Effective theory prediction for p(T)

$$\begin{split} \frac{p_{\text{QCD}}(T)}{p_{\text{SB}}} &= \frac{p_{\text{E}}(T)}{p_{\text{SB}}} + \frac{p_{\text{M}}(T)}{p_{\text{SB}}} + \frac{p_{\text{G}}(T)}{p_{\text{SB}}} , \quad p_{\text{SB}} = \left(16 + \frac{21}{2}N_f\right)\frac{\pi^2 T^4}{90} \\ &= 1 + g^2 + g^4 + g^6 + \dots \qquad \Leftarrow \text{4d QCD} \\ &+ g^3 + g^4 + g^5 + g^6 + \dots \qquad \Leftarrow \text{3d adj H} \\ &+ \frac{1}{p_{\text{SB}}}\frac{T}{V}\int \mathcal{D}[A_k^a]\exp\left(-S_{\text{M}}\right) & \Leftarrow \text{3d YM} \end{split}$$

- this could be coined the physical leading-order (!) approximation
- collect contributions to p(T) from all physical scales
 - weak coupling, effective field theory setup
 - faithfully adding up all Feynman diagrams
 - get long-distance input from clean lattice observable:

$$p_{\mathsf{G}}(T) \equiv \frac{T}{V} \ln \int \mathcal{D}[A_k^a] \exp\left(-S_{\mathsf{M}}\right) = T \# g_{\mathsf{M}}^6$$

only one non-perturbative (but computable!) coeff needed: 5×10^{16} flops

Open problem at LO

g^6 needs 4-loop sum-integrals

- a single one has already been computed
 - painfully disentangled (sub-)divergences by hand
 - constant term only numerically
 - \triangleright gave the g^6 term in scalar ϕ^4
 - ▷ fermionic generalization for $g^6 N_f^3$ in QCD

[GLSTV 08] [Gynther et al. 09]

$$\begin{split} & \int_{PQRS} \frac{1}{P^2 (P+S)^2 Q^2 (Q+S)^2 R^2 (R+S)^2} = \frac{T^4}{(4\pi)^4} \frac{1}{16\epsilon^2} \left[1 + \epsilon t_{11} + \epsilon^2 t_{12} + \dots \right] \\ & \text{with } t_{11} = \frac{44}{5} - 4\gamma_E + 12 \frac{\zeta'(-1)}{\zeta(-1)} - 4\zeta(3) - \zeta(2) \end{split}$$

- in QCD, need $\mathcal{O}(10^8)$ of them; reduction in progress
- masters: ideas to profit from algorithmic T = 0 methods not fruitful (yet?)
 - as used and tested extensively for the 3d part
 - reduction with one generic index, difference eqs
 - do dimensional recurrences help?
 - ▶ use sector decomposition in 3d piece; sum over 'masses' in the end
 - ▶ factorize sum and integrals via MB; generalized Zetas under MB ints
- find a smart duality to map the problem to sth simpler?

[Laporta 00]

[Lee 10]

p(T) beyond LO: $g^6 \rightarrow g^7 \rightarrow g^8$

$$\begin{array}{rcl} \frac{p_{\rm E}}{p_{\rm SB}} &=& \#_{(0)} + \#_{(2)}g^2 + \#_{(4)}g^4 + \#_{(6)}g^6 + [4d\ 5loop\ 0pt]_{(8)} + \cdots_{(10)} \\ g_{\rm E}^2 &=& T\left[g^2 + \#_{(6)}g^4 + \#_{(8)}g^6 + \cdots_{(10)}\right] \\ \lambda_{\rm E} &=& T\left[\#_{(6)}g^4 + \#_{(8)}g^6 + \cdots_{(10)}\right] \\ m_{\rm E}^2 &=& T^2\left[\#_{(3)}g^2 + \#_{(5)}g^4 + [4d\ 3loop\ 2pt]_{(7)} + \cdots_{(9)}\right] \\ \frac{p_{\rm M}}{p_{\rm SB}} &=& \frac{m_{\rm E}^2}{T^3}\left[\#_{(3)} + \frac{g_{\rm E}^2}{m_{\rm E}}\left(\#_{(4)} + \#_{(6)}\frac{\lambda_{\rm E}}{g_{\rm E}^2}\right) + \left(\frac{g_{\rm E}^2}{m_{\rm E}}\right)^2 \left(\#_{(5)} + \#_{(7)}\frac{\lambda_{\rm E}}{g_{\rm E}^2} + \#_{(9)}\left(\frac{\lambda_{\rm E}}{g_{\rm E}^2}\right)^2\right) \\ &\quad + \left(\frac{g_{\rm E}^2}{m_{\rm E}}\right)^3 \left(\#_{(6)} + \#_{(8)}\frac{\lambda_{\rm E}}{g_{\rm E}^2} + \#_{(10)}\left(\frac{\lambda_{\rm E}}{g_{\rm E}^2}\right)^2 + \#_{(12)}\left(\frac{\lambda_{\rm E}}{g_{\rm E}^2}\right)^3\right) \\ &\quad + [3d\ 5loop\ 0pt]_{(7)} + [\delta\mathcal{L}_{\rm E}]_{(7)} + [3d\ 6loop\ 0pt]_{(8)} + \cdots_{(9)}] \\ g_{\rm M}^2 &=& g_{\rm E}^2 \left[1 + \#_{(7)}\frac{g_{\rm E}^2}{m_{\rm E}} + \left(\frac{g_{\rm E}^2}{m_{\rm E}}\right)^2 \left(\#_{(8)} + \#_{(10)}\frac{\lambda_{\rm E}}{g_{\rm E}^2}\right) + \cdots_{(9)}\right] \\ \frac{p_{\rm G}}{p_{\rm SB}} &=& \#_{(6)}\left(\frac{g_{\rm M}^2}{T}\right)^3 + [\delta\mathcal{L}_{\rm M}]_{(9)} \end{array}$$

notation: $\#_{(n)}$ enters p_{QCD} at g^n

[cave: no $\frac{1}{\epsilon} + 1 + \epsilon$, no IR/UV, and no logs shown above]

Results: estimating $p(T, N_f=0)$ at LO

while working on the open problems at LO ...

- want to show results / tackle simpler problems / do phenomenology
- strive for best possible description of pure-glue sector

- fix unknown perturbative $\mathcal{O}(g^6)$ coeff
- match to lattice data [Boyd et al. 96] at intermediate T $\sim 3\text{-}5T_c$
- translate via $T_c/\Lambda_{\overline{\rm MS}} pprox 1.20$

Results: estimating $p(T, N_f=0)$ at LO

test the approach to conformality for pure YM theory

⇒ no window where a strongly coupled conformal theory describes SU(N) thermodynamics?!

York Schröder, U Bielefeld

[Datta/Gupta 2010]

Results: Quark mass dependence

analyze quark mass dependence to NLO

 \Rightarrow charm quark contributes already at low $T \sim 350 MeV$

Results: Quark mass dependence

Charm contribution: Lattice estimate for $N_f = 2+1+1$ EoS

[Borsanyi et al. 10]

- upper: charm contribution to pressure (for 2 different lattice spacings)
- lower: pressure with and w/o charm (on $N_t = 8$ lattices; $m_c/m_s = 11.85$)
- \Rightarrow confirmation of early onset of charm quark contribution

Results: Quark mass dependence

now ready to estimate thermodynamic quantities

multiply best
$$N_f = 0$$
 result with correction factor

$$g^{2}(\bar{\mu}) = \frac{24\pi^{2}}{(11C_{A} - 2N_{f})\ln(\bar{\mu}/\Lambda_{\overline{\mathrm{MS}}})} , \ m_{i}(\bar{\mu}) = m_{i}(\bar{\mu}_{\mathrm{ref}}) \left[\frac{\ln(\bar{\mu}_{\mathrm{ref}}/\Lambda_{\overline{\mathrm{MS}}})}{\ln(\bar{\mu}/\Lambda_{\overline{\mathrm{MS}}})}\right]^{\frac{9C_{F}}{11C_{A} - 2N_{f}}}$$

Setting the scale

- need to fix $\Lambda_{\overline{MS}}$ in physical units!
- strategy: matching take p of hadronic resonances match p and p' to our recipe
- obtain $\Lambda^{\rm (eff)}_{\overline{\rm MS}} pprox 175...180~{\rm MeV}$
- shaded: lattice simulations needed!

Results: EoS with physical quark masses at NLO

now use the recipe $| p(N_f=0) \times \text{corr.fct} |$ and plot dimensionless ratios

equation of state

$$w(T) \equiv \frac{p(T)}{e(T)} = \frac{p(T)}{Tp'(T) - p(T)}$$

• sound speed (squared)

$$c_s^2(T) \equiv \frac{p'(T)}{e'(T)} = \frac{p'(T)}{Tp''(T)} = \frac{s(T)}{c(T)}$$

- $\left(\frac{1}{3} w(T)\right) \propto$ 'trace anomaly'
- observe significant structure
- at 2nd order phase transition $c(T) \sim (T T_c)^{-\gamma}$

peak around 70MeV not (yet) visible in lattice simulations

Results: EoS with physical quark masses at NLO

recent lattice data

[Bazavov et al. 09]

- HotQCD 2009
- $N_f = 2 + 1$ m_s physical light quarks not
- $N_{\tau} = 8$ two (staggered) actions

Summary

- thermodynamic quantities of QCD are relevant for cosmology and heavy ion collisons
- these quantities can be determined
 - \triangleright numerically at $T \sim 200$ MeV; analytically at $T \gg 200$ MeV
 - ▷ multi-loop sports, eff. theories convenient → systematic improvement
- 3d effective field theory opens up tremendous opportunities
 - analytic treatment of fermions (cf. LAT problems!)
 - universality, superrenormalizabilty
 - ideal playground for multi-loop methods
- e.g. QCD pressure: not even known at 'physical leading order'
 - \triangleright (mild) open problem: LAT-continuum matching for general N_c
 - (hard) open problem: 4-loop sum-integrals
 - shows friendly functional behavior with fitted unknown coefficient
- e.g. Quark mass dependence in EoS; Spatial string tension
 - ▷ show good convergence
 - successful test of effective theory setup
 - even higher precision under investigation

Results: spatial string tension σ_s at NNLO

Define: $W_s(R_1, R_2) = \exp(-\sigma_s R_1 R_2)$ at large R_1, R_2

- SU(3), 4d lat: $\frac{\sqrt{\sigma_s}}{T} = \text{fct}\left(\frac{T}{T_c}\right)$; $T_c \approx 1.2\Lambda_{\overline{\text{MS}}}$
- SU(3), 3d MQCD: $\frac{\sqrt{\sigma_s}}{T} = \# \frac{g_M^2}{g_E^2} \frac{g_E^2}{T} = \operatorname{fct}\left(\frac{T}{\Lambda_{\overline{MS}}}\right) ; \# = 0.553(1)$ [Teper/Lucini 02]

- 4d lattice data from [Boyd et al. 96] (cave: no cont. extrapolation)
- parameter-free comparison
- support for hard/soft+ultrasoft picture of thermal QCD
- NNNLO (3-loop) appears doable

Effective theory setup: $QCD \rightarrow EQCD$

$$\begin{array}{ll} \mbox{high T: QCD dynamics contained in 3d EQCD} \\ \mbox{integrate out } |p| \gtrsim 2\pi T : \psi, \ A_{\mu}(n \neq 0) \\ \\ p_{\rm QCD}(T) &\equiv p_{\rm E}(T) + \frac{T}{V} \ln \int \mathcal{D}[A^a_k, A^a_0] \exp\left(-\int d^{3-2\epsilon}x \, \mathcal{L}_{\rm E}\right) \\ \\ \mathcal{L}_{\rm E} &= \frac{1}{2} Tr \, F^2_{kl} + Tr \, [D_k, A_0]^2 + m^2_{\rm E} Tr \, A^2_0 + \lambda^{(1)}_{\rm E} (Tr \, A^2_0)^2 + \lambda^{(2)}_{\rm E} Tr \, A^4_0 + \dots \\ \\ \mbox{five matching coefficients} & [{\rm E. Braaten, A. Nieto, 95; KLRS 02; M. Laine, YS, 05] \\ \\ p_{\rm E} &= T^4 \left[\# + \# g^2 + \# g^4 + \# g^6 + \dots\right], \ m^2_{\rm E} &= T^2 \left[\# g^2 + \# g^4 + \dots\right], \\ \\ g^2_{\rm E} &= T \left[g^2 + \# g^4 + \# g^6 + \dots\right], \ \lambda^{(1),(2)}_{\rm E} &= T \left[\# g^4 + \dots\right]. \\ \\ \mbox{higher order operators do not (yet) contribute} & [{\rm S. Chapman, 94; Kajantie et al, 97, 02] \\ \end{array}$$

$$\frac{\delta p_{\text{QCD}}(T)}{T} \sim \delta \mathcal{L}_{\text{E}} \sim g^2 \frac{D_k D_l}{(2\pi T)^2} \mathcal{L}_{\text{E}} \sim g^2 \frac{(gT)^2}{(2\pi T)^2} (gT)^3 \sim g^7 T^3$$

Effective theory setup: $QCD \rightarrow EQCD \rightarrow MQCD$

the IR of 3d EQCD is contained in 3d MQCD

integrate out $|p| \gtrsim gT$: A_0

$$p_{\text{QCD}}(T) \equiv p_{\text{E}}(T) + p_{\text{M}}(T) + \frac{T}{V} \ln \int \mathcal{D}[A_k^a] \exp\left(-\int d^{3-2\epsilon} x \mathcal{L}_{\text{M}}\right)$$
$$\mathcal{L}_{\text{M}} = \frac{1}{2} Tr F_{kl}^2 + \dots$$

two matching coefficients

[KLRS 03; P. Giovannangeli 04, M. Laine/YS 05]

$$p_{\mathsf{M}} = Tm_{\mathsf{E}}^3 \left[\# + \# \frac{g_{\mathsf{E}}^2}{m_{\mathsf{E}}} + \# \frac{g_{\mathsf{E}}^4}{m_{\mathsf{E}}^2} + \# \frac{g_{\mathsf{E}}^6}{m_{\mathsf{E}}^3} + \dots \right], \ g_{\mathsf{M}}^2 = g_{\mathsf{E}}^2 \left[1 + \# \frac{g_{\mathsf{E}}^2}{m_{\mathsf{E}}} + \# \frac{g_{\mathsf{E}}^4}{m_{\mathsf{E}}^2} + \dots \right].$$

higher order operators do not (yet) contribute

$$\frac{\delta p_{\text{QCD}}(T)}{T} \sim \delta \mathcal{L}_{\text{M}} \sim g_{\text{E}}^2 \frac{D_k D_l}{m_{\text{E}}^3} \mathcal{L}_{\text{M}} \sim g_{\text{E}}^2 \frac{(g^2 T)^2}{m_{\text{E}}^3} (g^2 T)^3 \sim g^9 T^3$$